Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.337
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(11): e9745, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591150

RESUMO

RATIONALE: As per International Council for Harmonization (ICH) drug stability test guideline Q1A(R2), inherent stability characteristics of a drug should be studied. This work was designed to investigate inherent degradation characteristics of the drug idelalisib under ICH prescribed stress conditions, identify its degradation products, and postulate their corresponding degradation pathways. METHODS: Idelalisib was subjected to the ICH prescribed conditions of hydrolytic (neutral, acidic, and alkaline), photolytic, oxidative, and thermal stress according to ICH guideline Q1A(R2). An ultrahigh-performance liquid chromatography with photodiode array (UHPLC-PDA) method was developed to adequately resolve the drug from its degradation products, validated as per the ICH guidelines, and subsequently extended to UHPLC with electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS) studies to identify the degradation products. RESULTS: Significant degradation was noted under conditions of acidic/alkaline hydrolysis, acid photolysis, and oxidative stress. The UHPLC/ESI-QTOFMS studies revealed the generation of four degradation products (I-IV), which were satisfactorily resolved from the drug by UHPLC on a Kinetex® C18 (100 × 4.6 mm; 2.6 µm) column by the developed isocratic elution method. Detection wavelength was selected as 270 nm. All the degradation products (I-IV) could be identified and characterized from their mass spectral data. The degradation pathways for the generation of various products from the drug were postulated. CONCLUSIONS: A UHPLC-PDA method was developed and validated for idelalisib. Four degradation products of idelalisib were revealed through UHPLC/ESI-QTOFMS studies, and corresponding degradation pathways were postulated for the same.


Assuntos
Purinas , Quinazolinonas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Hidrólise , Estabilidade de Medicamentos , Oxirredução , Fotólise , Cromatografia Líquida de Alta Pressão/métodos
2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612835

RESUMO

Peripheral arterial disease (PAD) strikes more than 200 million people worldwide and has a severe prognosis by potentially leading to limb amputation and/or death, particularly in older patients. Skeletal muscle mitochondrial dysfunctions and oxidative stress play major roles in this disease in relation with ischemia-reperfusion (IR) cycles. Mitochondrial dynamics through impairment of fission-fusion balance may contribute to skeletal muscle pathophysiology, but no data were reported in the setting of lower-limb IR despite the need for new therapeutic options. We, therefore, investigated the potential protective effect of mitochondrial division inhibitor-1 (mDivi-1; 50 mg/kg) in young (23 weeks) and old (83 weeks) mice submitted to two-hour ischemia followed by two-hour reperfusion on systemic lactate, muscle mitochondrial respiration and calcium retention capacity, and on transcripts specific for oxidative stress and mitochondrial dynamics. At the systemic levels, an IR-related increase in circulating lactate was still major despite mDivi-1 use (+305.9% p < 0.0001, and +269.4% p < 0.0001 in young and old mice, respectively). Further, IR-induced skeletal muscle mitochondrial dysfunctions (more severely impaired mitochondrial respiration in old mice (OXPHOS CI state, -68.2% p < 0.0001 and -84.9% p < 0.0001 in 23- and 83-week mice) and reduced calcium retention capacity (-46.1% p < 0.001 and -48.2% p = 0.09, respectively) were not corrected by mDivi-1 preconditioning, whatever the age. Further, mDivi-1 treatment did not oppose superoxide anion production (+71.4% p < 0.0001 and +37.5% p < 0.05, respectively). At the transcript level, markers of antioxidant enzymes (SOD 1, SOD 2, catalase, and GPx) and fission markers (Drp1, Fis) remained unchanged or tended to be decreased in the ischemic leg. Fusion markers such as mitofusin 1 or 2 decreased significantly after IR in both groups. In conclusion, aging enhanced the deleterious effects or IR on muscle mitochondrial respiration, and in this setting of lower-limb IR, mDivi-1 failed to protect the skeletal muscle both in young and old mice.


Assuntos
Doenças Mitocondriais , Doença Arterial Periférica , Quinazolinonas , Humanos , Animais , Camundongos , Idoso , Dinâmica Mitocondrial , Cálcio , Isquemia/tratamento farmacológico , Músculo Esquelético , Ácido Láctico , Superóxido Dismutase
3.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543043

RESUMO

A series of novel 4-Hydroxyquinazoline derivatives were designed and synthesized to enhance sensitivity in primary PARPi-resistant cells. Among them, the compound B1 has been found to have superior cytotoxicity in primary PARPi-resistant HCT-15 and HCC1937 cell lines, and dose-dependently suppressed the intracellular PAR formation and enhanced the γH2AX aggregation. Mechanistic study showed that B1 stimulated the formation of intracellular ROS and the depolarization of the mitochondrial membrane, which could increase apoptosis and cytotoxicity. An in vivo study showed that B1 significantly suppressed tumor growth at a dose of 25 mg/kg, and an acute toxicity study confirmed its safety. Molecular docking and dynamics simulations revealed that hydrogen bonding between B1 and ASP766 may be helpful to enhance anti-drug resistance ability. This study suggests that B1 is a potent PARP inhibitor that can overcome PARPi resistance and deserves further investigation.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Quinazolinonas , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
4.
PLoS One ; 19(3): e0300045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536853

RESUMO

Photoreceptor cell death can cause progressive and irreversible visual impairments. Still, effective therapies on retinal neuroprotection are not available. Hypoxia-inducible factors (HIFs) are transcriptional factors which strongly regulate angiogenesis, erythropoiesis, intracellular metabolism, and programed cell death under a hypoxic or an abnormal metabolic oxidative stress condition. Therefore, we aimed to unravel that inhibition of HIFs could prevent disease progression in photoreceptor cell death, as recent studies showed that HIFs might be pathologic factors in retinal diseases. Adult male balb/cAJcl (8 weeks old; BALB/c) were used to investigate preventive effects of a novel HIF inhibitor halofuginone (HF) on a murine model of light-induced retinopathy. After intraperitoneal injections of phosphate-buffered saline (PBS) or HF (0.4 mg/kg in PBS) for 5 days, male BALB/c mice were subjected to a dark-adaption to being exposed to a white LED light source at an intensity of 3,000 lux for 1 hour in order to induce light-induced retinal damage. After extensive light exposure, retinal damage was evaluated using electroretinography (ERG), optical coherence tomography (OCT), and TUNEL assay. Light-induced retinal dysfunction was suppressed by HF administration. The amplitudes of scotopic a-wave and b-wave as well as that of photopic b-wave were preserved in the HF-administered retina. Outer retinal thinning after extensive light exposure was suppressed by HF administration. Based on the TUNEL assay, cell death in the outer retina was seen after light exposure. However, its cell death was not detected in the HF-administered retina. Halofuginone was found to exert preventive effects on light-induced outer retinal cell death.


Assuntos
Piperidinas , Quinazolinonas , Degeneração Retiniana , Camundongos , Masculino , Animais , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/etiologia , Degeneração Retiniana/prevenção & controle , Modelos Animais de Doenças , Retina/patologia , Eletrorretinografia
5.
Int Immunopharmacol ; 130: 111790, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447417

RESUMO

OBJECTIVE: Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS: In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS: Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION: Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Alcaloides Indólicos , Podócitos , Piroptose , Quinazolinonas , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino
6.
Org Biomol Chem ; 22(13): 2620-2629, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38451121

RESUMO

Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 µg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.


Assuntos
Alcaloides Indólicos , Quinazolinonas , Quinazolinas/química
7.
Sci Rep ; 14(1): 3530, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347004

RESUMO

A series of novel azepine derivatives based on quinazolinone moiety was synthesized through the reaction of quinazolinone chalcones (2a-d) either with 2-amino aniline in acidic medium to give diazepines (3a-d) or with 2-aminophenol to offer oxazepine (4a-d). The structure of the synthesized compounds was confirmed via melting points, elemental analyses, and different spectroscopic techniques. Moreover, these newly compounds mode of action was investigated in-silico using molecular docking against the outer membrane protein A (OMPA), exo-1,3-beta-glucanase for their antimicrobial activity, and against Smoothened (SMO), transcription factor glioma-associated homology (SUFU/GLI-1), the main proteins of Hedgehog signaling pathway to inspect their anticancer potential. Our results showed that, diazepine (3a) and oxazepine (4a) offered the highest binding energy against the target OMPA/ exo-1,3-beta-glucanase proteins and exhibited the potent antimicrobial activities against E. coli, P. aeruginosa, S. aureus, B. subtilis, C. Albicans and A. flavus. As well, diazepine (3a) and oxazepine (4a) achieved the best results among the other compounds, in their binding energy against the target SMO, SUFU/GLI-1 proteins. The in-vitro cytotoxic study was done for them on panel of cancer cell lines HCT-116, HepG2, and MCF-7 and normal cell line WI-38. Conclusively, it was revealed that molecular docking in-silico simulations and the in-vitro experiments were agreed. As a result, our findings elucidated that diazepine (3a) and oxazepine (4a), have the potential to be used as antimicrobial agents and as possible cancer treatment medications.


Assuntos
Anti-Infecciosos , Antineoplásicos , Oxazepinas , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Proteínas Hedgehog , Quinazolinonas/farmacologia , Proliferação de Células , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Glucana 1,3-beta-Glucosidase , Oxazepinas/farmacologia , Estudos Prospectivos , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais
8.
BMC Cancer ; 24(1): 228, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373960

RESUMO

OBJECTIVES: The irreversible epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) afatinib and dacomitinib are approved for first-line treatment of EGFR mutation-positive non-small cell lung cancer (NSCLC). We aimed to compare the efficacy and safety of afatinib and dacomitinib in this setting. MATERIALS AND METHODS: Between September 2020 and March 2023, we retrospectively recruited patients diagnosed with advanced-stage EGFR-mutant NSCLC who were treated with first-line irreversible EGFR-TKIs. The enrolled patients were assigned to two groups based on whether they received afatinib or dacomitinib. RESULTS: A total of 101 patients were enrolled in the study (70 to afatinib and 31 to dacomitinib). The partial response rates (PR) for first-line treatment with afatinib and dacomitinib were 85.7 and 80.6% (p = 0.522). The median progression-free survival (PFS) (18.9 vs. 16.3 months, p = 0.975) and time to treatment failure (TTF) (22.7 vs. 15.9 months, p = 0.324) in patients with afatinib and dacomitinib treatment were similar. There was no significant difference observed in the median PFS (16.1 vs. 18.9 months, p = 0.361) and TTF (32.5 vs. 19.6 months, p = 0.182) between patients receiving the standard dose and those receiving the reduced dose. In terms of side effects, the incidence of diarrhea was higher in the afatinib group (75.8% vs. 35.5%, p < 0.001), while the incidence of paronychia was higher in the dacomitinib group (58.1% vs. 31.4%, p = 0.004). The PFS (17.6 vs. 24.9 months, p = 0.663) and TTF (21.3 vs. 25.1 months, p = 0.152) were similar between patients younger than 75 years and those older than 75 years. CONCLUSION: This study showed that afatinib and dacomitinib had similar effectiveness and safety profiles. However, they have slightly different side effects. Afatinib and dacomitinib can be safely administered to patients across different age groups with appropriate dose reductions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinazolinonas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Afatinib/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Estudos Retrospectivos , Inibidores de Proteínas Quinases/efeitos adversos , Resultado do Tratamento , Receptores ErbB , Mutação
9.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338390

RESUMO

Diacylhydrazine bridged anthranilic acids with aryl and heteroaryl domains have been synthesized as the open flexible scaffold of arylamide quinazolinones in order to investigate flexibility versus rigidity towards DNA photocleavage and sensitivity. Most of the compounds have been synthesized via the in situ formation of their anthraniloyl chloride and subsequent reaction with the desired hydrazide and were obtained as precipitates, in moderate yields. All compounds showed high UV-A light absorption and are eligible for DNA photocleavage studies under this "harmless" irradiation. Despite their reduced UV-B light absorption, a first screening indicated the necessity of a halogen at the p-position in relation to the amine group and the lack of an electron-withdrawing group on the aryl group. These characteristics, in general, remained under UV-A light, rendering these compounds as a novel class of UV-A-triggered DNA photocleavers. The best photocleaver, the compound 9, was active at concentrations as low as 2 µΜ. The 5-Nitro-anthranilic derivatives were inactive, giving the opposite results to their related rigid quinazolinones. Molecular docking studies with DNA showed possible interaction sites, whereas cytotoxicity experiments indicated the iodo derivative 17 as a potent cytotoxic agent and the compound 9 as a slight phototoxic compound.


Assuntos
Antineoplásicos , Melanoma , Humanos , Simulação de Acoplamento Molecular , Melanoma/tratamento farmacológico , DNA/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Quinazolinonas , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais
10.
PLoS One ; 19(2): e0299197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394069

RESUMO

BACKGROUND: Halofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied. METHODS: We conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization. RESULTS: From September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days. CONCLUSIONS: Among non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days.


Assuntos
COVID-19 , Piperidinas , Quinazolinonas , Adulto , Humanos , SARS-CoV-2 , Fatores de Tempo , Método Duplo-Cego
11.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 345-355, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419497

RESUMO

Psoriasis is accepted as a chronic, inflammatory, immune-mediated skin disease triggered by complex environmental and genetic factors. For a long time, disease recurrence, drug rejection, and high treatment costs have remained enormous challenges and burdens to patients and clinicians. Natural products with effective immunomodulatory and anti-inflammatory activities from medicinal plants have the potential to combat psoriasis and complications. Herein, an imiquimod (IMQ)-induced psoriasis-like dermatitis model is established in mice. The model mice are treated with 1% rutaecarpine (RUT) (external use) or the oral administration of RUT at different concentrations. Furthermore, high-throughput 16S rRNA gene sequencing is applied to analyze the changes in the diversity and composition of the gut microbiota. Based on the observation of mouse dorsal skin changes, RUT can protect against inflammation to improve psoriasis-like skin damage in mice. Additionally, RUT could suppress the expression levels of proinflammatory cytokines (IL-23, IL-17A, IL-22, IL-6, and IFN-α) within skin tissue samples. Concerning gut microbiota, we find obvious variations within the composition of gut microflora between IMQ-induced psoriasis mice and RUT-treated psoriasis mice. RUT effectively mediates the recovery of gut microbiota in mice induced by IMQ application. Psoriasis is linked to the production of several inflammatory cytokines and gut microbiome alterations. This research shows that RUT might restore gut microbiota homeostasis, reduce inflammatory cytokine production, and ameliorate psoriasis symptoms. In conclusion, the gut microbiota might be a therapeutic target or biomarker for psoriasis that aids in clinical diagnosis and therapy.


Assuntos
Dermatite , Microbioma Gastrointestinal , Alcaloides Indólicos , Psoríase , Quinazolinonas , Humanos , Animais , Camundongos , Imiquimode/efeitos adversos , RNA Ribossômico 16S/genética , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
12.
BMC Complement Med Ther ; 24(1): 105, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413973

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a prevalent autoimmune disease marked by chronic synovitis as well as cartilage and bone destruction. Halofuginone hydrobromide (HF), a bioactive compound derived from the Chinese herbal plant Dichroa febrifuga Lour., has demonstrated substantial anti-arthritic effects in RA. Nevertheless, the molecular mechanisms responsible for the anti-RA effects of HF remain unclear. METHODS: This study employed a combination of network pharmacology, molecular docking, and experimental validation to investigate potential targets of HF in RA. RESULTS: Network pharmacology analyses identified 109 differentially expressed genes (DEGs) resulting from HF treatment in RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses unveiled a robust association between these DEGs and the IL-17 signaling pathway. Subsequently, a protein-protein interaction (PPI) network analysis revealed 10 core DEGs, that is, EGFR, MMP9, TLR4, ESR1, MMP2, PPARG, MAPK1, JAK2, STAT1, and MAPK8. Among them, MMP9 displayed the greatest binding energy for HF. In an in vitro assay, HF significantly inhibited the activity of inflammatory macrophages, and regulated the IL-17 signaling pathway by decreasing the levels of IL-17 C, p-NF-κB, and MMP9. CONCLUSION: In summary, these findings suggest that HF has the potential to inhibit the activation of inflammatory macrophages through its regulation of the IL-17 signaling pathway, underscoring its potential in the suppression of immune-mediated inflammation in RA.


Assuntos
Artrite Reumatoide , Metaloproteinase 9 da Matriz , Piperidinas , Quinazolinonas , Humanos , Simulação de Acoplamento Molecular , Interleucina-17 , Farmacologia em Rede , Transdução de Sinais , Artrite Reumatoide/tratamento farmacológico
13.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202856

RESUMO

Paclitaxel is still used as a standard first-line treatment for ovarian cancer. Although paclitaxel is effective for many types of cancer, the emergence of chemoresistant cells represents a major challenge in chemotherapy. Our study aimed to analyze the cellular mechanism of dacomitinib, a pan-epidermal growth factor receptor (EGFR) inhibitor, which resensitized paclitaxel and induced cell cytotoxicity in paclitaxel-resistant ovarian cancer SKOV3-TR cells. We investigated the significant reduction in cell viability cotreated with dacomitinib and paclitaxel by WST-1 assay and flow cytometry analysis. Dacomitinib inhibited EGFR family proteins, including EGFR and HER2, as well as its downstream signaling proteins, including AKT, STAT3, ERK, and p38. In addition, dacomitinib inhibited the phosphorylation of Bad, and combination treatment with paclitaxel effectively suppressed the expression of Mcl-1. A 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay revealed a substantial elevation in cellular reactive oxygen species (ROS) levels in SKOV3-TR cells cotreated with dacomitinib and paclitaxel, which subsequently mediated cell cytotoxicity. Additionally, we confirmed that dacomitinib inhibits chemoresistance in paclitaxel-resistant ovarian cancer HeyA8-MDR cells. Collectively, our research indicated that dacomitinib effectively resensitized paclitaxel in SKOV3-TR cells by inhibiting EGFR signaling and elevating intracellular ROS levels.


Assuntos
Fluoresceínas , Neoplasias Ovarianas , Paclitaxel , Quinazolinonas , Feminino , Humanos , Paclitaxel/farmacologia , Espécies Reativas de Oxigênio , Neoplasias Ovarianas/tratamento farmacológico , Apoptose , Receptores ErbB
14.
BMC Vet Res ; 20(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172952

RESUMO

BACKGROUND: In this case series abomasitis as a consequence of halofuginone intoxication is suspected. CASE PRESENTATION: Seven Belgian-Blue calves with complaints of anorexia and weight loss were presented to an university clinic. Ultrasonography showed thickening and edema of the abomasal wall in all cases, suggesting abomasitis. Abomasitis was confirmed on necropsy in three cases. Retrospective analysis clarified the uptake of an overdose of halofuginone lactate (348-421 µg/kg/day). Four animals fully recovered after removal of halofuginone lactate administration, therapy for comorbidities (pneumonia, diarrhoea) and supportive therapy. CONCLUSION: To the authors' knowledge, this case series is the first report associating halofuginone lactate use with abomasitis. This was suspected after clinical improvement of four of the presented animals after terminating the administration of a high dose of halofuginone lactate, and exclusion of other possible causes. Underlying mechanisms are still unclear.


Assuntos
Doenças dos Bovinos , Gastrite , Humanos , Animais , Bovinos , Animais Recém-Nascidos , Estudos Retrospectivos , Doenças dos Bovinos/tratamento farmacológico , Quinazolinonas/uso terapêutico , Gastrite/veterinária
15.
Bioorg Chem ; 144: 107086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219478

RESUMO

The upregulation of RecQ helicases has been associated with cancer cell survival and resistance to chemotherapy, making them appealing targets for therapeutic intervention. In this study, twenty-nine novel quinazolinone derivatives were designed and synthesized. The anti-proliferative activity of all compounds was evaluated against 60 cancer cell lines at the National Cancer Institute Developmental Therapeutic Program, with six compounds (11f, 11g, 11k, 11n, 11p, and 11q) being promoted to a five-dose screen. Compound 11g demonstrated high cytotoxic activity against all examined cell lines. The compounds were further assayed for Bloom syndrome (BLM) helicase inhibition, where 11g, 11q, and 11u showed moderate activity. These compounds were counter-screened against WRN and RECQ1 helicases, where 11g moderately inhibited both enzymes. An ATP competition assay confirmed that the compounds bound to the ATP site of RecQ helicases, and molecular docking simulations were used to study the binding mode within the active site of BLM, WRN, and RECQ1 helicases. Compound 11g induced apoptosis in both HCT-116 and MDA-MB-231 cell lines, but also caused an G2/M phase cell cycle arrest in HCT-116 cells. This data revealed the potential of 11g as a modulator of cell cycle dynamics and supports its interaction with RecQ helicases. In addition, compound 11g displayed non-significant toxicity against FCH normal colon cells at doses up to 100 µM, which confirming its high safety margin and selectivity on cancer cells. Overall, these findings suggest compound 11g as a potential pan RecQ helicase inhibitor with high anticancer potency and a favorable safety margin and selectivity.


Assuntos
Antineoplásicos , RecQ Helicases , Simulação de Acoplamento Molecular , RecQ Helicases/metabolismo , Quinazolinonas/farmacologia , Antineoplásicos/farmacologia , Trifosfato de Adenosina
16.
Antiviral Res ; 222: 105798, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190972

RESUMO

Halofuginone hydrobromide has shown potent antiviral efficacy against a variety of viruses such as SARS-CoV-2, dengue, or chikungunya virus, and has, therefore, been hypothesized to have broad-spectrum antiviral activity. In this paper, we tested this broad-spectrum antiviral activity of Halofuginone hydrobomide against viruses from different families (Picornaviridae, Herpesviridae, Orthomyxoviridae, Coronaviridae, and Flaviviridae). To this end, we used relevant human models of the airway and intestinal epithelium and regionalized neural organoids. Halofuginone hydrobomide showed antiviral activity against SARS-CoV-2 in the airway epithelium with no toxicity at equivalent concentrations used in human clinical trials but not against any of the other tested viruses.


Assuntos
Antivirais , Piperidinas , Quinazolinonas , Vírus , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Sistemas Microfisiológicos , SARS-CoV-2 , Encéfalo
17.
Chem Biodivers ; 21(2): e202301737, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38204291

RESUMO

A series of flavonol derivatives containing quinazolinone were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. The results of the half maximal effective concentration (EC50 ) test against TMV showed that the EC50 value of curative activity of K5 was 139.6 µg/mL, which was better than that of the commercial drug ningnanmycin (NNM) 296.0 µg/mL, and the EC50 value of protective activity of K5 was 120.6 µg/mL, which was superior to that of NNM 207.0 µg/mL. The interaction of K5 with TMV coat protein (TMV-CP) was investigated using microscale thermophoresis (MST) and molecular docking and the results showed that K5 can combine with TMV-CP more strongly to TMV-CP than that NNM can. Furthermore, the assay measuring malondialdehyde (MDA) content indicated that K5 had the ability to improve the disease resistance of tobacco. Hence, this study offers strong evidence that flavonol derivatives have potential as novel antiviral agents.


Assuntos
Quinazolinonas , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Quinazolinonas/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Testes de Sensibilidade Microbiana , Desenho de Fármacos
18.
Life Sci ; 339: 122414, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38216121

RESUMO

Contamination by pathogens, such as bacteria, can irritate a wound and prevent its healing, which may affect the physical fitness of the infected person. As such, the development of more novel nano-biomaterials able to cope with the inflammatory reaction to bacterial infection during the wound healing process to accelerate wound healing is required. Herein, a halofuginone­silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. HTPM&AgNPs-gel was characterized based on thermogravimetric analysis, differential scanning calorimetry, morphology, injectability, and rheological mechanics that reflected its exemplary nature. Moreover, HTPM&AgNPs-gel was further tested for its ability to facilitate healing of skin fibroblasts and exert antibacterial activity. Finally, HTPM&AgNPs-gel was tested for its capacity to accelerate general wound healing and treat bacterially induced wound damage. HTPM&AgNPs-gel appeared spherical under a transmission electron microscope and showed a grid structure under a scanning electron microscope. Additionally, HTPM&AgNPs-gel demonstrated excellent properties, including injectability, temperature-dependent swelling behavior, low loss at high temperatures, and appropriate rheological properties. Further, HTPM&AgNPs-gel was found to effectively promote healing of skin fibroblasts and inhibit the proliferation of Escherichia coli and Staphylococcus aureus. An evaluation of the wound healing efficacy demonstrated that HTPM&AgNPs-gel had a more pronounced ability to facilitate wound repair and antibacterial effects than HTPM-gel or AgNPs-gel alone, and exhibited ideal biocompatibility. Notably, HTPM&AgNPs-gel also inhibited inflammatory responses in the healing process. HTPM&AgNPs-gel exhibited antibacterial, anti-inflammatory, and scar repair features, which remarkably promoted wound healing. These findings indicated that HTPM&AgNPs-gel holds great clinical potential as a promising and valuable wound healing treatment.


Assuntos
Nanopartículas Metálicas , Piperidinas , Quinazolinonas , Prata , Humanos , Prata/farmacologia , Prata/química , Staphylococcus aureus , Cicatrização , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Hidrogéis/química , Anti-Inflamatórios/farmacologia
19.
J Biosci Bioeng ; 137(3): 165-172, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212152

RESUMO

6,7-Bis-(2-methoxyethoxy)-4(3H)-quinazolinone (BMEQ) was selected from quinazolinones for its strong tyrosinase inhibitory activity (IC50 = 160 ± 6 µM). It suppressed tyrosinase activity in a competitive way and quenched the fluorescence of the enzyme through a static mechanism. The binding of BMEQ to tyrosinase increased the hydrophobicity of the latter and facilitated non-radiative energy transfer between them. The formation of BMEQ-tyrosinase complex was driven by hydrogen bonds and hydrophobic interactions, and it loosened the basic framework structure of tyrosinase, affecting the conformation of the enzyme, and leading to a decrease in tyrosinase activity. In addition, the BMEQ postponed the oxidation of phenolics and flavonoids by inhibiting polyphenol oxidase (PPO) and peroxidase (POD), which resulted in the inhibition of the browning of fresh-cut apples. This study identified a novel tyrosinase inhibitor BMEQ and verified its potential application for improving the preservation of postharvest fruits.


Assuntos
Malus , Monofenol Mono-Oxigenase , Quinazolinonas/farmacologia , Frutas
20.
Atherosclerosis ; 390: 117450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266625

RESUMO

BACKGROUND AND AIMS: New treatments are needed to prevent neointimal hyperplasia that contributes to post-angioplasty and stent restenosis in patients with coronary artery disease (CAD) and peripheral arterial disease (PAD). We investigated whether modulating mitochondrial function using mitochondrial division inhibitor-1 (Mdivi-1) could reduce post-vascular injury neointimal hyperplasia by metabolic reprogramming of macrophages from a pro-inflammatory to anti-inflammatory phenotype. METHODS AND RESULTS: In vivo Mdivi-1 treatment of Apoe-/- mice fed a high-fat diet and subjected to carotid-wire injury decreased neointimal hyperplasia by 68%, reduced numbers of plaque vascular smooth muscle cells and pro-inflammatory M1-like macrophages, and decreased plaque inflammation, endothelial activation, and apoptosis, when compared to control. Mdivi-1 treatment of human THP-1 macrophages shifted polarization from a pro-inflammatory M1-like to an anti-inflammatory M2-like phenotype, reduced monocyte chemotaxis and migration to CCL2 and macrophage colony stimulating factor (M-CSF) and decreased secretion of pro-inflammatory mediators. Finally, treatment of pro-inflammatory M1-type-macrophages with Mdivi-1 metabolically reprogrammed them to an anti-inflammatory M2-like phenotype by inhibiting oxidative phosphorylation and attenuating the increase in succinate levels and correcting the decreased levels of arginine and citrulline. CONCLUSIONS: We report that treatment with Mdivi-1 inhibits post-vascular injury neointimal hyperplasia by metabolic reprogramming macrophages towards an anti-inflammatory phenotype thereby highlighting the therapeutic potential of Mdivi-1 for preventing neointimal hyperplasia and restenosis following angioplasty and stenting in CAD and PAD patients.


Assuntos
Quinazolinonas , Lesões do Sistema Vascular , Humanos , Camundongos , Animais , Hiperplasia/patologia , Lesões do Sistema Vascular/genética , 60645 , Movimento Celular , Músculo Liso Vascular/patologia , Neointima/metabolismo , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...