Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.120
Filtrar
1.
Dis Aquat Organ ; 157: 107-112, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38546194

RESUMO

In the 1980s, a mass die-off of the long-spined sea urchin Diadema antillarum occurred on Florida and Caribbean coral reefs. D. antillarum populations largely did not recover, and in 2022, remaining populations experienced another mass mortality event. A ciliate most similar to Philaster apodigitiformis was identified as the causative agent of the 2022 event, which was named D. antillarum scuticociliatosis (DaSc). Here, we investigated possible treatments for this pathogen. We tested the efficacy of 10 compounds at final concentrations of 100, 50, 25, 12.5, 6.25, and 3.13 µM, or a 10-fold serial dilution series, against ciliates cultured from an infected D. antillarum specimen. Of the tested compounds, 8 induced 100% ciliate mortality at some dose after 24 h. The most effective (defined as those requiring the lowest dose to induce 100% ciliate mortality) were quinacrine and tomatine (both effective at 12.5 µM), followed by furaltadone and plumbagin (25 µM), bithionol sulfoxide and 2'4' dihydroxychalcone (50 µM), and oxyclozanide and carnidazole (100 µM). Toltrazuril and a commercially available anticiliate product containing naphthoquinones were not effective at any dose tested. Shortened (15 min) time trials were performed using ciliate cultures reared in natural seawater to better reflect natural environmental conditions, and revealed that 2 of the compounds (quinacrine and tomatine) induced 100% ciliate mortality at 100 µM, with tomatine also effective at 50 µM. This study identified several treatments effective against the causative agent of DaSc in vitro, but their toxicity and utility in vivo remain unknown.


Assuntos
Cilióforos , Tomatina , Animais , Ouriços-do-Mar , Recifes de Corais , Quinacrina
2.
Nanomedicine (Lond) ; 19(7): 581-596, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38293827

RESUMO

Aim: This study aimed to determine if quinacrine-gold hybrid nanoparticles (QAuNPs) + near-infrared (NIR) deregulate HSP-70/P300 complex-mediated H3K14 acetylation in estrogen receptor/progesterone receptor (ER/PR+) breast cancer stem cells (CSCs). Materials & methods: Various cells and mouse-based systems were used as models. Results: QAuNP + NIR treatment reduced the nuclear translocation of HSP-70, affected the histone acetyltransferase activity of P300 and specifically decreased H3K14 acetylation in ER/PR+ breast CSCs. Finally, HSP-70 knockdown showed a reduction in P300 histone acetyltransferase activity, decreased H3K14 acetylation and inhibited activation of the TGF-ß gene. Conclusion: This study revealed that QAuNP + NIR irradiation inhibits oncogenic activation of the TGF-ß gene by decreasing H3K14 acetylation mediated through the HSP-70/P300 nuclear complex in ER/PR+ breast CSCs.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Acetilação , Ouro , Histona Acetiltransferases , Células-Tronco Neoplásicas , Quinacrina/farmacologia , Fator de Crescimento Transformador beta , Humanos , Feminino
3.
Int Immunopharmacol ; 126: 111264, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016342

RESUMO

Acute Kidney Injury (AKI) is a major factor in sepsis-related mortality and may occur due to lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria that triggers a systemic acute inflammatory response. Quinacrine's (QC) renoprotective properties in sepsis and the underlying mechanism, however, are still not fully understood. This study was done to investigate the anti-inflammatory, antioxidative, and anti-apoptotic effects of QC, a phospholipase A2 (PLA2) inhibitor, against LPS-induced AKI. Rats were randomly divided into five groups: control group, QC30 group, LPS group, LPS+QC 10 group, and LPS+QC 30 group. The rats were administered intraperitoneally QC (10 and 30 mg/kg) for 3 days (once a day) prior to injection of LPS (3 mg/kg). Six hours after the LPS injection, the histopathological changes, oxidative stress, inflammation, and apoptosis in the collected kidney tissues were detected by hematoxylin and eosin staining, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and immunohistochemistry staining, respectively. QC pretreatment could successfully attenuate LPS-induced AKI, as evidenced by a decrease in tissue histopathological injury. Meanwhile, QC alleviated LPS-induced kidney oxidative stress; it reduced MDA levels and increased levels of SOD, CAT, GPX, and GSH. LPS-induced elevations in kidney TLR4, NF-κB, TNF-α, IL-1ß, IL-6, PLA2, caspase 3, and Bax contents were significantly attenuated in QC-treated groups. Our findings revealed a significant effect of QC: protecting against LPS-induced AKI through inhibition of PLA2 and decreasing inflammation, oxidative stress, and apoptosis. To treat LPS-induced AKI, QC may be an effective substance with an excellent protection profile.


Assuntos
Injúria Renal Aguda , Sepse , Ratos , Animais , NF-kappa B , Fator de Necrose Tumoral alfa/farmacologia , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like , Quinacrina/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Rim/patologia , Inflamação/patologia , Sepse/patologia
4.
Chimia (Aarau) ; 77(9): 574-576, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38047832

RESUMO

Quinacrine, the main antimalarial drug during World War II, has had a chequered history that included the successful repurposing as an intrapleural sclerosant for the treatment of malignant pleural effusions, a non-surgical method of female sterilisation, and the use as an immunomodulatory drug in lupus erythematosus. While no longer used for these former indications, quinacrine (re)emerged as an indispensable second-line drug for the treatment of nitroimidazole-refractory Giardia duodenalis infections, and thus depicts an indispensable "orphan drug".


Assuntos
Anti-Infecciosos , Antimaláricos , Nitroimidazóis , Feminino , Humanos , Antimaláricos/farmacologia , Quinacrina/farmacologia , Antiparasitários/farmacologia
5.
Med Oncol ; 40(12): 351, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940725

RESUMO

The presence of cancer stem cells (CSCs) in the tumor microenvironment (TME) is majorly responsible for the development and recurrence of cancer. Earlier reports suggested that upon DNA damage, poly-(ADP-ribose) polymerase-1 (PARP-1) helps in chromatin modulation and DNA repair process, thereby promoting CSC survival. But whether a combination of DNA damaging agents along with PARP inhibitors can modulate chromatin assembly, inhibit DNA repair processes, and subsequently target CSCs is not known. Hence, we have investigated the effect of nontoxic bioactive compound quinacrine (QC) and a potent PARP inhibitor Talazoparib in patient-derived oral mucosa CSCs (OM-CSCs) and in vivo xenograft mice preclinical model systems. Data showed that QC + Talazoparib inhibited the PARP-1-mediated chromatin remodelers' recruitment and deregulated HAT activity of GCN5 (general control nonderepressible-5) and P300 at DNA damage site, thereby preventing the access of repair proteins to the damaged DNA. Additionally, this combination treatment inhibited topoisomerase activity, induced topological stress, and induced apoptosis in OM-CSCs. Similar results were observed in an in vivo xenograft mice model system. Collectively, the data suggested that QC + Talazoparib treatment inhibited BER pathway, induced genomic instability and triggered apoptosis in OM-CSCs through the deregulation of PARP-1-mediated chromatin remodelers (GCN5 and P300) activity. Schematic representation of QC + Talazoparib-induced apoptosis in oral mucosa CSCs. (1) Induction of DNA damage takes place after QC treatment (2) PARP1-mediated PARylation at the site of DNA damage, which recruits multiple chromatin remodelers (3) Acetylation at the histone tails relax the structure of chromatin and recruits the BER pathway proteins at the site of DNA damage. (4) BER pathway activated at the site of DNA damage. (5) CSCs survive after successful repair of DNA damage. (6) Treatment of QC-treated CSCs with PARP inhibitor Talazoparib (7) Inhibition of PARylation results in failure of chromatin remodelers to interact with PARP1. (8) Inhibition of acetylation status leads to chromatin compaction. (9) BER pathway proteins are not recruited at the site of DNA damage, resulting in inhibition of BER pathway and accumulation of unrepaired DNA damage, leading to apoptosis and cell death.


Assuntos
Antineoplásicos , Quinacrina , Humanos , Animais , Camundongos , Quinacrina/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Mucosa Bucal , Reparo do DNA , Antineoplásicos/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Dano ao DNA , Cromatina , DNA/farmacologia , Apoptose
6.
Phytomedicine ; 117: 154914, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321076

RESUMO

BACKGROUND: Breast cancer stem cells (BCSCs) have a critical role in progression of breast cancer by inducing angiogenesis. Several therapeutic strategies have been designed for the treatment of breast cancer by specifically preventing angiogenesis. But there is a dearth of study regarding the treatment procedure which can specifically target and kill the BCSCs and cause lesser harm to healthy cells of the body. A plant-based bioactive compound Quinacrine (QC) specifically kills cancer stem cells (CSCs) without harming healthy cells and also inhibits cancer angiogenesis but the detailed mechanistic study of its anti-CSCs and anti-angiogenic activity is yet to explore. HYPOTHESIS: Earlier report showed that both cMET and ABCG2 play an essential role in cancer angiogenesis. Both are present on the cell surface of CSCs and share an identical ATP-binding domain. Interestingly, QC a plant based and bioactive compound which was found to inhibit the function of CSCs marker cMET and ABCG2. These relevant evidence led us to hypothesize that cMET and ABCG2 may interact with each other and induce the production of angiogenic factors, resulting in activation of cancer angiogenesis and QC might disrupt the interaction between them to stop this phenomena. METHODS: Co-immunoprecipitation assay, immunofluorescence assay, and western blotting were performed by using ex vivo patient-derived breast cancer-stem-cells (PDBCSCs) and human umbilical vein endothelial cells (HUVECs). In silico study was carried out to check the interaction between cMET and ABCG2 in presence or absence of QC. Tube formation assay using HUVECs and in ovo Chorioallantoic membrane (CAM) assay using chick fertilized eggs were performed to monitor angiogenesis. In vivo patient-derived xenograft (PDX) mice model was used to validate in silico and ex vivo results. RESULTS: Data revealed that in a hypoxic tumor microenvironment (TME), cMET and ABCG2 interact with each other and upregulate HIF-1α/VEGF-A axis to induce breast cancer angiogenesis. In silico and ex vivo study showed that QC disrupted the interaction between cMET and ABCG2 to inhibit the angiogenic response in endothelial cells by reducing the secretion of VEGF-A from PDBCSCs within the TME. Knockdown of cMET, ABCG2 or both, significantly downregulated the expression of HIF-1α and reduced the secretion of pro-angiogenic factor VEGF-A in the TME of PDBCSCs. Additionally, when PDBCSCs were treated with QC, similar experimental results were obtained. CONCLUSION: In silico, in ovo, ex vivo and in vivo data confirmed that QC inhibited the HIF-1α/VEGF-A mediated angiogenesis in breast cancer by disrupting the interaction between cMET and ABCG2.


Assuntos
Neoplasias da Mama , Quinacrina , Humanos , Animais , Camundongos , Feminino , Quinacrina/farmacologia , Quinacrina/metabolismo , Quinacrina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias da Mama/patologia , Células Endoteliais/metabolismo , Células-Tronco Neoplásicas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo
7.
Biomed Pharmacother ; 163: 114865, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37187020

RESUMO

Malignant melanoma is one of the most aggressive and lethal skin cancer. At present, the treatment methods for melanoma have shortcomings. Glucose is the primary energy source of cancer cells. However, it is unclear whether glucose deprivation can be used to treat melanoma. Herein, we first found glucose played an essential role in melanoma proliferation. We then further found a drug combination of niclosamide and quinacrine could inhibit melanoma proliferation and glucose intake. Thirdly, we revealed the mechanism of anti-melanoma effect of the drug combination, which suppressed the Akt pathway. In addition, the first-rate limiting enzyme HK2 of glucose metabolism was inhibited. This work also disclosed that the decrease of HK2 inhibited cyclin D1 by reducing the activity of transcription factor E2F3, which further suppressed the proliferation of melanoma cells. The drug combination treatment also resulted in significant tumor regression in the absence of obvious morphologic changes in primary organ in vivo. In summary, our study demonstrated that the drug combination treatment created glucose deprivation to inactive the Akt/HK2/cyclin D1 axis, thereby inhibited the proliferation of melanoma cells, providing a potential anti-melanoma strategy.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Glucose/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinacrina/farmacologia , Transdução de Sinais
8.
Nanomedicine (Lond) ; 18(1): 19-33, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916388

RESUMO

Aim: This study aimed to explore the antiangiogenic mechanism of quinacrine-gold hybrid nanoparticle (QAuNP) and near-infrared (NIR) radiation in patient-derived primary breast cancer stem cells. Materials & methods: Various cell-based in ovo angiogenesis and in vivo patient-derived xenograft mouse systems were used as models for the study. Results: The experimental results showed that QAuNP + NIR treatment deregulated the HSP-70/TGF-ß physical interaction in primary breast cancer stem cells. Reduced TGF-ß secretion in the tumor microenvironment inhibited angiogenesis activation in endothelial cells by deregulating the TGF-ß-mediated PI3K/AKT/mTOR cascade. Conclusion: This study revealed that QAuNP + NIR irradiation downregulated HSP-70 expression, inhibited the HSP-70/TGF-ß interaction, reduced the secretion of TGF-ß in the tumor microenvironment and ultimately inhibited TGF-ß-mediated angiogenesis.


This study discovered that the formation of blood vessels in breast cancer is significantly reduced when hybrid nanoparticles and infrared laser therapy are used to treat breast cancer stem cells. The secretory cytokines in the tumor microenvironment primarily responsible for developing blood vessels in the tumor are dramatically reduced by treatment. As a result, the tumor's blood vessel growth is reduced, making it difficult for the cancer cells to get the nutrients and oxygen they need to survive.


Assuntos
Neoplasias da Mama , Nanopartículas , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Ouro , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases , Quinacrina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Espectroscopia de Luz Próxima ao Infravermelho , Proteínas de Choque Térmico HSP70/metabolismo
9.
Eur J Pharmacol ; 938: 175432, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36460132

RESUMO

Obesity, a global epidemic chronic metabolic disease, urgently demands novel therapies. As an antimalarial drug, quinacrine has not been reported for its anti-obesity effect to our knowledge. This study aimed to explore the ability of quinacrine to attenuate obesity. In an in vitro adipogenic model, quinacrine exhibited an outstanding suppression on adipogenesis of 3T3-L1 cells, mainly by activating the AMPK (Adenosine 5'-monophosphate (AMP)-activated protein kinase) signaling pathway to regulate preadipocytes differentiation and lipid accumulation. In addition, C57BL/6N female mice were fed with high-fat diet and high-fructose water for 14 weeks to establish an obesity model, followed by oral administration of quinacrine or orlistat. After 9 weeks of treatment, quinacrine significantly reduced the body weight and energy intake, ameliorated the impaired glucose tolerance and restored the homeostasis of serum lipids. Also, quinacrine improved lipid profile and optimized the expression of AMPK signaling pathway related proteins in livers and adipose tissues of obese mice. Quinacrine reverses obesity through activating AMPK phosphorylation to down-regulate adipogenesis, along with lowering the risk of type 2 diabetes and atherosclerosis. It should be a novel application for the treatment of obesity and its associated diseases.


Assuntos
Fármacos Antiobesidade , Diabetes Mellitus Tipo 2 , Feminino , Camundongos , Animais , Adipogenia , Proteínas Quinases Ativadas por AMP/metabolismo , Quinacrina/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Adipócitos , Camundongos Endogâmicos C57BL , Células 3T3-L1 , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fármacos Antiobesidade/farmacologia , Transdução de Sinais , Lipídeos
10.
J Cancer Res Ther ; 19(7): 1988-1997, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376308

RESUMO

BACKGROUND: Cisplatin and platinum-based compounds have been used successfully to treat various cancers. However, their use is often restricted due to the acquired resistance by cancer cells. Over-expression of p53 and inhibition of NF-kB sensitize several cancer cells towards cisplatin-induced apoptosis. Quinacrine, a cytotoxic drug with predictable safety revealed to concurrently suppress NF-kB and activate p53, which may be an attractive adjuvant in cisplatin chemotherapy. Therefore, the objective of the present study was to establish the role of quinacrine as an adjuvant in lowering the dose of cisplatin during cancer therapy to circumvent its toxic effects. MATERIALS AND METHODS: The colon cancer (HCT-8) cells were cultured and cell survival assays were performed using standard procedures. Cell cycle arrest and the extent of apoptosis were determined using a muse cell analyzer. Cancer survival proteins were analyzed using western blotting techniques. RESULTS AND CONCLUSION: We demonstrated that concomitant use of quinacrine with cisplatin increased cell apoptosis, suppressed cell proliferation and inhibited colony formation in a colorectal cancer cell line. Moreover, cell cycle arrest in the G0/G1 and G2/M phases and upregulation of p53 expression were observed. There was also downregulation of NF-kB and Bcl-xL protein expressions, both of which are associated with enhanced cell apoptosis and an increase in the sensitivity of cancer cells to cisplatin, overcoming its chemoresistance. Overall, the results of the present study and available literature clearly indicate that the use of quinacrine as an adjuvant with cisplatin may enhance its anti-cancer activity and reduce chemoresistance.


Assuntos
Neoplasias do Colo , Radiossensibilizantes , Humanos , Cisplatino/farmacologia , Quinacrina/farmacologia , NF-kappa B , Proteína Supressora de Tumor p53/genética , Antineoplásicos Alquilantes , Apoptose , Linhagem Celular
11.
Arq Neuropsiquiatr ; 80(8): 837-844, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36252593

RESUMO

BACKGROUND: The Creutzfeldt-Jakob disease (CJD) is a spongiform encephalopathy that manifests as a rapidly progressive dementia syndrome. Currently, CJD has no cure, and many patients die within the first year, but some drugs are being studied as options for managing this condition. OBJECTIVE: To evaluate the effectiveness of pharmacological treatments offered to patients with CJD as a means to increase survival and reduce cognitive deterioration. METHODS: A systematic review of the literature was performed using 4 independent reviewers and 1 extra reviewer to resolve possible divergences in the search and analysis of papers indexed in MedLINE (PubMed), SciELO and Lilacs databases. The Medical Subject Heading (MeSH) terms used were: prion diseases, Creutzfeldt-Jakob disease, pharmacologic therapy, therapeutics, quinacrine, doxycycline, flupirtine, and pentosan polysulfate, with the Boolean operators AND and OR. This search included controlled clinical trials, uncontrolled clinical trials, and case series published from the year 2000 onwards, in the English language. RESULTS: A total of 85 papers were found using the descriptors used. At the end of the selection analyses, 9 articles remained, which were analyzed fully and individually. CONCLUSIONS: None of the drugs evaluated proved significantly effective in increasing survival in patients with CJD. Flupirtine appears to have a beneficial effect in reducing cognitive deterioration in patients with CJD. However, additional studies are needed to establish better evidence and therapeutic options for the management of patients with CJD.


ANTECEDENTES: A doença de Creutzfeldt-Jakob (DCJ) é uma encefalopatia espongiforme que se manifesta como síndrome demencial rapidamente progressiva. Atualmente, a DCJ não possui cura e muitos pacientes morrem no primeiro ano de doença, mas alguns medicamentos vêm sendo estudados como opções no manejo desta condição. OBJETIVO: Avaliar a eficácia dos tratamentos farmacológicos oferecidos aos pacientes com DCJ no aumento de sobrevida e na redução da deterioração cognitiva. MéTODOS: Foi realizada uma revisão sistemática da literatura utilizando 4 revisores independentes e 1 extra para resolver divergências eventuais na busca e na análise de trabalhos indexados nas bases de dados MedLINE (via PubMed), SciELO e Lilacs. Os termos Medical Subjects Heading (MeSH) utilizados foram: prion diseases, creutzfeldt jakob disease, pharmacologic therapy, therapeutics, quinacrine, doxycycline, flupirtine e pentosan polysulfate, com os operadores booleanos AND e OR. Essa pesquisa incluiu ensaios clínicos controlados, não controlados e séries de casos, publicados a partir do ano 2000 no idioma inglês. RESULTADOS: Ao todo, foram encontrados 85 trabalhos através dos descritores utilizados. Ao final das análises de seleção, restaram 9 artigos, que foram analisados na íntegra individualmente. CONCLUSõES: Nenhuma das drogas avaliadas se mostrou significativamente eficaz no aumento da sobrevida dos pacientes com DCJ. A flupirtina parece ter um efeito benéfico na redução da deterioração cognitiva dos pacientes com DCJ. Entretanto, estudos adicionais são necessários para o estabelecimento de melhores evidências e opções terapêuticas para o manejo dos pacientes com DCJ.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Aminopiridinas , Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Síndrome de Creutzfeldt-Jakob/psicologia , Doxiciclina/uso terapêutico , Humanos , Poliéster Sulfúrico de Pentosana/uso terapêutico , Quinacrina/uso terapêutico
12.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080326

RESUMO

Topo II and Hsp90 are promising targets. In this study, we first verified the structural similarities between Topo IIα ATPase and Hsp90α N-ATPase. Subsequently, 720 compounds from the Food and Drug Administration (FDA) drug library and kinase library were screened using the malachite green phosphate combination with the Topo II-mediated DNA relaxation and MTT assays. Subsequently, the antimalarial drug quinacrine was found to be a potential dual-target inhibitor of Topo II and Hsp90. Mechanistic studies showed that quinacrine could specifically bind to the Topo IIα ATPase domain and inhibit the activity of Topo IIα ATPase without impacting DNA cleavage. Furthermore, our study revealed that quinacrine could bind Hsp90 N-ATPase and inhibit Hsp90 activity. Significantly, quinacrine has broad antiproliferation activity and remains sensitive to the multidrug-resistant cell line MCF-7/ADR and the atypical drug-resistant tumor cell line HL-60/MX2. Our study identified quinacrine as a potential dual-target inhibitor of Topo II and Hsp90, depending on the ATP-binding domain, positioning it as a hit compound for further structural modification.


Assuntos
Antineoplásicos , Neoplasias , Adenosina Trifosfatases/metabolismo , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , Reposicionamento de Medicamentos , Proteínas de Choque Térmico HSP90 , Quinacrina/farmacologia
14.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807473

RESUMO

Introduction: Safranal, which endows saffron its unique aroma, causes vasodilatation and has a hypotensive effect in animal studies, but the mechanisms of these effects are unknown. In this study, we investigated the mechanisms of safranal vasodilation. Methods: Isolated rat endothelium-intact or -denuded aortic rings were precontracted with phenylephrine and then relaxed with safranal. To further assess the involvement of nitric oxide, prostaglandins, guanylate cyclase, and phospholipase A2 in safranal-induced vasodilation, aortic rings were preincubated with L-NAME, indomethacin, methylene blue, or quinacrine, respectively, then precontracted with phenylephrine, and safranal concentration-response curves were established. To explore the effects of safranal on Ca2+ influx, phenylephrine and CaCl2 concentration-response curves were established in the presence of safranal. Furthermore, the effect of safranal on aortic rings in the presence of ouabain, a Na+-K+ ATPase inhibitor, was studied to explore the contribution of Na+/Ca2+ exchanger to this vasodilation. Results: Safranal caused vasodilation in endothelium-intact and endothelium-denuded aortic rings. The vasodilation was not eliminated by pretreatment with L-NAME, indomethacin, methylene blue, or quinacrine, indicating the lack of a role for NO/cGMP. Safranal significantly inhibited the maximum contractions induced by phenylephrine, or by CaCl2 in Ca2+-free depolarizing buffer. Safranal also relaxed contractions induced by ouabain, but pretreatment with safranal totally abolished the development of ouabain contractions. Discussion/Conclusion: Inhibition of Na+-K+ ATPase by ouabain leads to the accumulation of Na+ intracellularly, forcing the Na+/Ca2+ exchanger to work in reverse mode, thus causing a contraction. Inhibition of the development of this contraction by preincubation with safranal indicates that safranal inhibited the Na+/Ca2+ exchanger. We conclude that safranal vasodilation is mediated by the inhibition of calcium influx from extracellular space through L-type Ca2+ channels and by the inhibition of the Na+/Ca2+ exchanger.


Assuntos
Trocador de Sódio e Cálcio , Vasodilatação , Adenosina Trifosfatases , Animais , Aorta Torácica , Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Cicloexenos , Endotélio Vascular/metabolismo , Indometacina/farmacologia , Azul de Metileno/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Ouabaína/farmacologia , Fenilefrina/farmacologia , Quinacrina/farmacologia , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/farmacologia , Terpenos , Vasodilatadores/farmacologia
15.
Toxicol In Vitro ; 83: 105420, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35724837

RESUMO

The poor prognosis of glioblastoma requires new innovative treatment strategies. We and others have shown that targeting tumor as well as angiogenesis in glioblastoma are effective therapeutic strategies. In line with these efforts, this work reveals that Quinacrine, an antimalarial drug, is a dual inhibitor of angiogenesis and glioblastoma. Using multiple glioblastoma cell lines, we found that Quinacrine inhibited proliferation and induced apoptosis in these cells, and acted in synergy with Temozolomide. Quinacrine potently inhibited tubular structure formations of glioblastoma microvascular endothelial cell (GMVEC) isolated from glioblastoma patients, especially for early stage tubular structure formation. Although Quinacrine induces apoptosis in GMVEC, the anti-angiogenic activity of Quinacrine is independent of its pro-apoptotic activity in GMVECs. Quinacrine inhibits glioblastoma angiogenesis and growth in vivo, and acts synergistically with Temozolomide in inhibiting glioblastoma growth in mice. Mechanistically, we found that Quinacrine acts on glioblastoma through inducing oxidative stress, impairing mitochondrial function and activating AMP-activated protein kinase (AMPK). Our work is the first to demonstrate the anti-angiogenic activity of Quinacrine. Our findings highlight Quinacrine as an attractive candidate to support treatment of glioblastoma.


Assuntos
Glioblastoma , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Camundongos , Neovascularização Patológica/tratamento farmacológico , Estresse Oxidativo , Quinacrina/farmacologia , Quinacrina/uso terapêutico , Temozolomida/farmacologia
16.
Mini Rev Med Chem ; 22(21): 2769-2798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546777

RESUMO

Acridine derivatives have been thoroughly investigated and discovered to have multitarget qualities, inhibiting topoisomerase enzymes that regulate topological changes in DNA and interfering with DNA's vital biological function. This article discusses current progress in the realm of novel 9-substituted acridine heterocyclic compounds, including the structure and structure- activity connection of the most promising molecules. The IC50 values of the new compounds against several human cancer cell lines will also be presented in the publication. The review also looks into the inhibition of topoisomerase by polycyclic aromatic compounds. BACKGROUND: Acridine rings can be found in molecules used in many different areas, including industry and medicine. Nowadays, acridines with anti-bacterial activity are of research interest due to decreasing bacterial resistance. Some acridine derivatives showed antimalarial or antiviral activity. Acridine derivatives were also investigated for anti-tumor activity due to the interaction with topoisomerase II and DNA base pairs. Considering these possible uses of acridine derivatives, this work overviewed all significant structure performances for the specific action of these compounds. OBJECTIVE: The objective of this study is to review the activity of acridines as anti-proliferative agents. METHODS: This review is designed as acridines acting as topoisomerase I and II inhibitors/ poison, Acridines on the G-quadraplux interaction, Acridines with metal complexes, Acridines with quinacrine scaffold, Acridines with sulphur moiety. CONCLUSION: Although introduced in the 19th century, acridine derivatives are still of scientific interest. In this review, acridine derivatives with various biological activities (antiparasitic, antiviral, anti-bacterial, and antiproliferative) and their structure-activity relationship analyses are presented. Although several mechanisms of their action are known, the only important are discussed here. It can be concluded that the dominant mechanisms are DNA intercalation and interaction with enzymes.


Assuntos
Antimaláricos , Antineoplásicos , Complexos de Coordenação , Venenos , Acridinas/química , Acridinas/farmacologia , Antimaláricos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Complexos de Coordenação/metabolismo , DNA/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Humanos , Venenos/farmacologia , Quinacrina , Relação Estrutura-Atividade , Enxofre/metabolismo
17.
Arthritis Rheumatol ; 74(10): 1687-1698, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35583812

RESUMO

OBJECTIVE: The pathogenesis of cutaneous lupus erythematosus (CLE) is multifactorial, and CLE is difficult to treat due to the heterogeneity of inflammatory processes among patients. Antimalarials such as hydroxychloroquine (HCQ) and quinacrine (QC) have long been used as first-line systemic therapy; however, many patients do not respond to treatment with antimalarials and require systemic immunosuppressants that produce undesirable side effects. Given the complexity and the unpredictability of responses to antimalarial treatments in CLE patients, we sought to characterize the immunologic profile of patients with CLE stratified by subsequent treatment outcomes to identify potential biomarkers of inducible response. METHODS: We performed mass cytometry imaging of multiple immune cell types and inflammation markers in treatment-naive skin biopsy samples from 48 patients with CLE to identify baseline immunophenotypes that may predict the response to antimalarial therapy. Patients were stratified according to their response to treatment with antimalarials, as HCQ responders, QC responders, or nonresponders. RESULTS: HCQ responders demonstrated increased CD4+ T cells compared to the QC responder group. Patients in the nonresponder group were found to have decreased Treg cells compared to QC responders and increased central memory T cells compared to HCQ responders. QC responders expressed increased phosphorylated stimulator of interferon genes (pSTING) and interferon-κ (IFNκ) compared to HCQ responders. Phosphorylated STING and IFNκ were found to be localized to conventional dendritic cells (cDCs), and the intensity of pSTING and IFNκ staining was positively correlated with the number of cDCs on a tissue and cellular level. Neighborhood analysis revealed decreased regulatory cell interactions in nonresponder patients. Hierarchical clustering revealed that nonresponder patients could be further differentiated based on expression of pSTAT2, pSTAT3, pSTAT4, pSTAT5, phosphorylated interferon regulatory factor 3 (pIRF3), granzyme B, pJAK2, interleukin-4 (IL-4), IL-17, and IFNγ. CONCLUSION: These findings indicate differential immune cell compositions between patients with CLE, offering guidance for future research on precision-based medicine and treatment response.


Assuntos
Antimaláricos , Lúpus Eritematoso Cutâneo , Lúpus Eritematoso Sistêmico , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Granzimas , Humanos , Hidroxicloroquina/efeitos adversos , Imunossupressores/uso terapêutico , Fator Regulador 3 de Interferon , Interferons , Interleucina-17 , Interleucina-4 , Lúpus Eritematoso Cutâneo/tratamento farmacológico , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Quinacrina/farmacologia , Quinacrina/uso terapêutico
18.
Langmuir ; 38(20): 6411-6424, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35561255

RESUMO

Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as in vitro models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for in vitro drug screening.


Assuntos
Bicamadas Lipídicas , Quinacrina , Membrana Celular/metabolismo , Colesterol/química , Espectroscopia Dielétrica , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Quinacrina/farmacologia
19.
Lupus ; 31(4): 472-481, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35258358

RESUMO

BACKGROUND: Antimalarials are first-line systemic therapy for cutaneous lupus erythematosus (CLE). While some patients unresponsive to hydroxychloroquine (HCQ) alone benefit from the addition of quinacrine (QC), a subset of patients is refractory to both antimalarials. METHODS: We classified CLE patients as HCQ-responders, HCQ+QC-responders, or HCQ+QC-nonresponders to compare immune profiles. Immunohistochemistry, immunofluorescence, and qRT-PCR were used to characterize inflammatory cells and cytokines in lesional skin. RESULTS: Immunohistochemistry showed that CD69+ T cells were higher in HCQ+QC-nonresponders compared to HCQ- and HCQ+QC-responders (p < 0.05). Immunofluorescence further identified these cells as CD69+CCR7+ circulating activated T cells. Myeloid dendritic cells were significantly higher in HCQ+QC-responders compared to both HCQ-responders and HCQ+QC-nonresponders. Plasmacytoid dendritic cells were significantly increased in HCQ-responders compared to HCQ- and HCQ+QC-nonresponders. No differences were found in the number of autoreactive T cells, MAC387+ cells, and neutrophils among the groups. CLASI scores of the HCQ+QC-nonresponder group positively correlated with CD69+CCR7+ circulating activated T cells (r = 0.6335, p < 0.05) and MAC387+ cells (r = 0.5726, p < 0.05). IL-17 protein expression was higher in HCQ+QC-responders compared to HCQ-responders or HCQ+QC-nonresponders, while IL-22 protein expression did not differ. mRNA expression demonstrated increased STAT3 expression in a subset of HCQ+QC-nonresponders. CONCLUSION: An increased number of CD69+CCR7+ circulating activated T cells and a strong correlation with CLASI scores in the HCQ+QC-nonresponders suggest these cells are involved in antimalarial-refractory skin disease. STAT3 is also increased in HCQ+QC-nonresponders and may also be a potential target for antimalarial-refractory skin disease.


Assuntos
Lúpus Eritematoso Cutâneo/tratamento farmacológico , Receptores CCR7 , Fator de Transcrição STAT3 , Antígenos CD , Antígenos de Diferenciação de Linfócitos T , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Feminino , Imunofluorescência , Humanos , Hidroxicloroquina/uso terapêutico , Imuno-Histoquímica , Lectinas Tipo C , Lúpus Eritematoso Cutâneo/imunologia , Masculino , Pessoa de Meia-Idade , Quinacrina/uso terapêutico , Receptores CCR7/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linfócitos T , Resultado do Tratamento
20.
Toxicol Appl Pharmacol ; 436: 115860, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998856

RESUMO

PARP inhibitors emerged as clinically effective anti-tumor agents in combination with DNA damaging agents but the toxicity of DNA damaging agents and their off-target effects caused serious problems in cancer therapy. They confer cytotoxicity in cancer cells both by catalytic inhibition and trapping of PARP-1 at the DNA damage site. There is a lack of direct evidence to quantitatively determine the trapped PARP-1 in cellular DNA. Here, we have precisely evaluated the mechanism of PARP trapping mediated anti-cancer action of Quinacrine (QC), BMN-673, and their combination (QC + BMN-673) in breast cancer cells. We introduced a strategy to measure the cellular PARP trapping potentiality of BMN-673 in QC pretreated cells using a fluorescence-based assay system. It was found that QC+ BMN-673 induced apoptosis by triggering DNA damage in breast cancer cells. Treatment with QC + BMN-673 stimulated the expression of PARP-1 in the chromatin compared to that of PARP-2 and PARP-3. QC + BMN-673 treatment also caused a dose-dependent and time-dependent accumulation of PARP-1 and inhibition of PARylation in the chromatin. Upregulation of BER components (pol-ß and FEN-1), an unchanged HR and NHEJ pathway proteins, and reduction of luciferase activity of the cells transfected with R-p21-P (LP-BER) were noted in combined drug-treated cells. Interestingly, silencing of pol-ß resulted in unchanged PARP-1 trapping and PAR activity in the chromatin with increasing time after QC + BMN-673 treatment without altering APC and FEN-1 expression. Thus, our data suggested that the QC + BMN-673 augmented breast cancer cell death by pol-ß mediated repair inhibition primarily through trapping of PARP-1 besides PARP-1 catalytic inhibition.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Cromatina/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Dano ao DNA/efeitos dos fármacos , Feminino , Endonucleases Flap/metabolismo , Humanos , Células MCF-7 , Quinacrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...