Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.805
Filtrar
1.
Front Immunol ; 15: 1353336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533502

RESUMO

5,6-dimethylxanthenone-4-acetic acid (DMXAA) is a mouse-selective stimulator of interferon gene (STING) agonist exerting STING-dependent anti-tumor activity. Although DMXAA cannot fully activate human STING, DMXAA reached phase III in lung cancer clinical trials. How DMXAA is effective against human lung cancer is completely unknown. Here, we show that DMXAA is a partial STING agonist interfering with agonistic STING activation, which may explain its partial anti-tumor effect observed in humans, as STING was reported to be pro-tumorigenic for lung cancer cells with low antigenicity. Furthermore, we developed a DMXAA derivative-3-hydroxy-5-(4-hydroxybenzyl)-4-methyl-9H-xanthen-9-one (HHMX)-that can potently antagonize STING-mediated immune responses both in humans and mice. Notably, HHMX suppressed aberrant responses induced by STING gain-of-function mutations causing STING-associated vasculopathy with onset in infancy (SAVI) in in vitro experiments. Furthermore, HHMX treatment suppressed aberrant STING pathway activity in peripheral blood mononuclear cells from SAVI patients. Lastly, HHMX showed a potent therapeutic effect in SAVI mouse model by mitigating disease progression. Thus, HHMX offers therapeutic potential for STING-associated autoinflammatory diseases.


Assuntos
Neoplasias Pulmonares , Proteínas de Membrana , Xantonas , Humanos , Camundongos , Animais , Proteínas de Membrana/metabolismo , Leucócitos Mononucleares/metabolismo , Pulmão/metabolismo
2.
Drug Dev Res ; 85(2): e22170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481011

RESUMO

A four-step synthetic process has been developed to prepare 1,3,5,8-tetrahydroxyxanthone (2a) and its isomer 1,3,7,8-tetrahydroxyxanthone (2b). 25 more xanthones were also synthesized by a modified scheme. Xanthone 2a was identified as the most active inhibitor against both α-glucosidase and aldose reductase (ALR2), with IC50 values of 7.8 ± 0.5 µM and 63.2 ± 0.6 nM, respectively, which was far active than acarbose (35.0 ± 0.1 µM), and a little more active than epalrestat (67.0 ± 3.0 nM). 2a was also confirmed as the most active antioxidant in vitro with EC50 value of 8.9 ± 0.1 µM. Any structural modification including methylation, deletion, and position change of hydroxyl group in 2a will cause an activity loss in inhibitory and antioxidation. By applying a H2 O2 -induced oxidative stress nematode model, it was confirmed that xanthone 2a can be absorbed by Caenorhabditis elegans and is bioavailable to attenuate in vivo oxidative stress, including the effects on lifespan, superoxide dismutase, Catalase, and malondialdehyde. 2a was verified with in vivo hypoglycemic effect and mitigation of embryo malformations in high glucose. All our data support that xanthone 2a behaves triple roles and is a potential agent to treat diabetic mellitus, gestational diabetes mellitus, and diabetic complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Xantonas , Humanos , Relação Estrutura-Atividade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Complicações do Diabetes/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Xantonas/farmacologia , Xantonas/uso terapêutico , Simulação de Acoplamento Molecular , Diabetes Mellitus/tratamento farmacológico
3.
Bioorg Med Chem ; 103: 117655, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493728

RESUMO

Caged xanthones represent a class of natural secondary metabolites exhibiting significant potential as antitumor agents. These compounds are characterized by their distinct cage-like structures, which offer novel and compelling frameworks for drug design. Nonetheless, there exists a dearth of research focused on the structural modification of these compounds, particularly in relation to their cage-like architectures. This study aims to address this gap by introducing an innovative synthetic method for constructing a novel caged structure that incorporates a widely employed maleimide group. Drawing upon the well-established synthetic approach for dihydroxanthones previously developed within our research group, we successfully synthesized 13 new caged xanthones using the Diels-Alder reaction. Subsequently, we evaluated their anti-proliferative activity against HepG2, A549, and MDA-MB-231 cell lines. The results revealed that compound 10i exhibited IC50 values of 15.86 µM ± 1.29, 19.27 µM ± 1.58, and 12.96 µM ± 0.09 against these cell lines, respectively. Further investigations into the mechanism of action of 10i demonstrated its ability to induce G2/M cell cycle arrest and initiate mitochondria-mediated apoptosis in breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Xantonas , Humanos , Feminino , Xantonas/farmacologia , Xantonas/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
4.
Proc Natl Acad Sci U S A ; 121(14): e2318039121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536750

RESUMO

Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.


Assuntos
Autofagia , Melanossomas , Melanossomas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xantonas , Melanoma Experimental , Animais , Camundongos
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428686

RESUMO

The abnormal proliferation, migration, and inflammation of vascular smooth muscle cells (VSMCs) play crucial roles in the development of neointimal hyperplasia and restenosis. Exposure to inflammatory cytokines such as platelet-derived growth factor (PDGF)-BB and tumour necrosis factor-alpha (TNF-α) induces the transformation of contractile VSMCs into abnormal synthetic VSMCs. Isoxanthohumol (IXN) has significant anti-inflammatory, antiproliferative, and antimigratory effects. This study aimed to explore the therapeutic impact and regulatory mechanism of IXN in treating neointimal hyperplasia. The present findings indicate that IXN effectively hinders the abnormal proliferation, migration, and inflammation of VSMCs triggered by PDGF or TNF-α. This inhibition is primarily achieved through the modulation of the apelin/AKT or AKT pathway, respectively. In an in vivo model, IXN effectively reduced neointimal hyperplasia in denuded femoral arteries. These results suggest that IXN holds promise as a potential and innovative therapeutic candidate for the treatment of restenosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Xantonas , Humanos , Hiperplasia/tratamento farmacológico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apelina , Movimento Celular , Becaplermina/farmacologia , Neointima/tratamento farmacológico , Neointima/metabolismo , Inflamação
6.
Drug Dev Res ; 85(1): e22141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349264

RESUMO

Colorectal cancer (CRC) is a major cause of mortality and morbidity. Gambogic acid (GA) is a promising antitumor drug for treating CRC. We aimed to elucidate its mechanism in CRC invasion/metastasis via tumor cell-derived extracellular vesicle (EV)-carried miR-21. Nude mice peritoneal carcinomatosis (PC) model was subjected to GA treatment liver collection, followed by observation/counting of metastatic liver tissues/liver metastatic nodules by hematoxylin and eosin staining. miR-21 expression in metastatic liver tissues/CD68 + CD86, CD68 + CD206 cell percentages and M2 macrophage marker CD206 level in tumor tissues/interleukin (IL)-12 and IL-10 levels were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR)/flow cytometry/enzyme-linked immunosorbent assay. HT-29 cells were treated with GA/miR-21 mimics/negative control for 48 h. miR-21 expression/cell proliferation/migration/invasion/apoptosis were assessed by RT-qPCR/cell counting kit-8/scratch assay/transwell assay/flow cytometry. EVs were extracted from HT-29 cells and identified by transmission electron microscope/nanoparticle tracking analysis/Western blot. IL-4/IL-13-induced macrophages/PC nude mice were treated with GA and EVs, with the internalization of EVs by macrophages assessed through the uptake test. After intraperitoneal injection of GA, PC nude mice exhibited decreased tumor cell density/irregular cell number/liver metastatic nodule number/miR-21 expression, and CRC cells manifested reduced CD68 + CD206 cells/IL-10/miR-21/proliferation/migration/invasion and increased CD68 + CD86 cells/IL-12/apoptosis, while these trends were opposite after miR-21 overexpression, implying that GA curbed CRC/cell invasion/metastasis and macrophage polarization by diminishing miR-21 levels. miR-21 was encapsulated in HT-29 cell-derived EVs. M2 polarization elevated CD206 cells/IL-10, which were decreased by simultaneous GA treatment. EVs could be uptaken by macrophages. CRC cell-EV-miR-21 annulled the suppression effects of GA on macrophage M2 polarization. GA suppressed macrophage M2 polarization by lessening tumor cell derived-EV-shuttled miR-21, thereby weakening CRC invasion/metastasis.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , MicroRNAs , Xantonas , Animais , Camundongos , Interleucina-10/genética , Camundongos Nus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , MicroRNAs/genética
7.
Molecules ; 29(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338348

RESUMO

Chronic inflammation plays a crucial role in the development and progression of numerous chronic diseases. To search for anti-inflammatory metabolites from endophytic fungi isolated from plants growing in Thai mangrove areas, a chemical investigation of those fungi was performed. Five new oxygenated isocoumarins, setosphamarins A-E (1-5) were isolated from the EtOAc extract of an endophytic fungus Setosphaeria rostrata, along with four known isocoumarins and one xanthone. Their structures were determined by extensive spectroscopic analysis. The absolute configurations of the undescribed compounds were established by comparative analysis between experimental and calculated circular dichroism (ECD) spectroscopy. All the compounds were evaluated for their anti-inflammatory activity by monitoring nitric oxide inhibition in lipopolysaccharide-induced macrophage J774A.1 cells. Only a xanthone, ravenelin (9), showed potent activity, with an IC50 value of 6.27 µM, and detailed mechanistic study showed that it suppressed iNOS and COX-2 expression.


Assuntos
Ascomicetos , Xantonas , Isocumarinas/química , Tailândia , Ascomicetos/química , Anti-Inflamatórios/farmacologia , Xantonas/farmacologia , Estrutura Molecular
8.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396802

RESUMO

Cancer is a complex disease characterized by several alterations, which confer, to the cells, the capacity to proliferate uncontrollably and to resist cellular death. Multiresistance to conventional chemotherapy drugs is often the cause of treatment failure; thus, the search for natural products or their derivatives with therapeutic action is essential. Chiral derivatives of xanthones (CDXs) have shown potential inhibitory activity against the growth of some human tumor cell lines. This work reports the screening of a library of CDXs, through viability assays, in different cancer cell lines: A375-C5, MCF-7, NCI-H460, and HCT-15. CDXs' effect was analyzed based on several parameters of cancer cells, and it was also verified if these compounds were substrates of glycoprotein-P (Pgp), one of the main mechanisms of resistance in cancer therapy. Pgp expression was evaluated in all cell lines, but no expression was observed, except for HCT-15. Also, when a humanized yeast expressing the human gene MDR1 was used, no conclusions could be drawn about CDXs as Pgp substrates. The selected CDXs did not induce significant differences in the metabolic parameters analyzed. These results show that some CDXs present promising antitumor activity, but other mechanisms should be triggered by these compounds.


Assuntos
Aminoácidos , Xantonas , Humanos , Xantonas/farmacologia , Xantonas/química , Linhagem Celular Tumoral , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética
9.
Eur J Med Chem ; 268: 116274, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408389

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Here, a series of novel isoxanthohumol-amine conjugates were synthesized as antibacterials. After bioactivity evaluation, a compound E2 was obtained, which showed excellent antibacterial activity against S. aureus and clinical MRSA isolates (MICs = 0.25-1 µg/mL), superior to vancomycin, and with negligible hemolysis and good membrane selectivity. Additionally, E2 exhibited fast bacterial killing, less susceptible to resistance, relatively low cytotoxicity, and good plasma stability. Mechanism investigation revealed that E2 can disrupt bacterial membranes by specifically binding to phosphatidylglycerol on the bacterial membrane, thus causing elevated intracellular ROS and leakage of DNA and proteins, and ultimately killing bacteria. Noticeably, E2 displayed a good in vivo safety profile and better in vivo therapeutic efficacy than the same dose of vancomycin, allowing it to be a potential antibacterial to conquer MRSA infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Xantonas , Humanos , Vancomicina , Staphylococcus aureus , Aminas/uso terapêutico , Antibacterianos/química , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico
10.
Microbiol Spectr ; 12(4): e0409523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376363

RESUMO

Candida albicans, one of the most prevalent human fungal pathogens, causes diverse diseases extending from superficial infections to deadly systemic mycoses. Currently, only three major classes of antifungal drugs are available to treat systemic infections: azoles, polyenes, and echinocandins. Alarmingly, the efficacy of these antifungals against C. albicans is hindered both by basal tolerance toward the drugs and the development of resistance mechanisms such as alterations of the drug's target, modulation of stress responses, and overexpression of efflux pumps. Thus, the need to identify novel antifungal strategies is dire. To address this challenge, we screened 3,049 structurally-diverse compounds from the Boston University Center for Molecular Discovery (BU-CMD) chemical library against a C. albicans clinical isolate and identified 17 molecules that inhibited C. albicans growth by >80% relative to controls. Among the most potent compounds were CMLD013360, CMLD012661, and CMLD012693, molecules representing two distinct chemical scaffolds, including 3-hydroxyquinolinones and a xanthone natural product. Based on structural insights, CMLD013360, CMLD012661, and CMLD012693 were hypothesized to exert antifungal activity through metal chelation. Follow-up investigations revealed all three compounds exerted antifungal activity against non-albicans Candida, including Candida auris and Candida glabrata, with the xanthone natural product CMLD013360 also displaying activity against the pathogenic mould Aspergillus fumigatus. Media supplementation with metallonutrients, namely ferric or ferrous iron, rescued C. albicans growth, confirming these compounds act as metal chelators. Thus, this work identifies and characterizes two chemical scaffolds that chelate iron to inhibit the growth of the clinically relevant fungal pathogen C. albicansIMPORTANCEThe worldwide incidence of invasive fungal infections is increasing at an alarming rate. Systemic candidiasis caused by the opportunistic pathogen Candida albicans is the most common cause of life-threatening fungal infection. However, due to the limited number of antifungal drug classes available and the rise of antifungal resistance, an urgent need exists for the identification of novel treatments. By screening a compound collection from the Boston University Center for Molecular Discovery (BU-CMD), we identified three compounds representing two distinct chemical scaffolds that displayed activity against C. albicans. Follow-up analyses confirmed these molecules were also active against other pathogenic fungal species including Candida auris and Aspergillus fumigatus. Finally, we determined that these compounds inhibit the growth of C. albicans in culture through iron chelation. Overall, this observation describes two novel chemical scaffolds with antifungal activity against diverse fungal pathogens.


Assuntos
Produtos Biológicos , Micoses , Xantonas , Humanos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Farmacorresistência Fúngica , Quelantes/farmacologia , Quelantes/uso terapêutico , Aspergillus fumigatus , Ferro , Xantonas/uso terapêutico , Testes de Sensibilidade Microbiana
11.
J Nat Prod ; 87(2): 238-251, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38354306

RESUMO

Xanthone-chromanone homo- or heterodimers are regarded as a novel class of topoisomerase (Topo) inhibitors; however, limited information about these compounds is currently available. Here, 14 new (1-14) and 6 known tetrahydroxanthone chromanone homo- and heterodimers (15-20) are reported as isolated from Penicillium chrysogenum C-7-2-1. Their structures and absolute configurations were unambiguously demonstrated by a combination of spectroscopic data, single-crystal X-ray diffraction, modified Mosher's method, and electronic circular dichroism analyses. Plausible biosynthetic pathways are proposed. For the first time, it was discovered that tetrahydroxanthones can convert to chromanones in water, whereas chromone dimerization does not show this property. Among them, compounds 5, 7, 8, and 16 exhibited significant cytotoxicity against H23 cell line with IC50 values of 6.9, 6.4, 3.9, and 2.6 µM, respectively.


Assuntos
Antineoplásicos , Cromonas , Penicillium chrysogenum , Penicillium , Xantonas , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores da Topoisomerase , Xantonas/farmacologia , Xantonas/química , Penicillium/química
12.
Nutrients ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38201999

RESUMO

Pre-exercise mangiferin-quercetin may enhance athletic performance. This study investigated the effect of mangiferin-quercetin supplementation on high-level male basketball players during a basketball exercise simulation test (BEST) comprising 24 circuits of 30 s activities with various movement distances. The participants were divided into two groups (EXP = 19 and CON = 19) and given a placebo one hour before the BEST (PRE-condition). The following week, the EXP group received mangiferin-quercetin (84 mg/140 mg), while the CON group received a placebo (POST-condition) before the BEST in a double-blind, cross-over design. The mean heart rate (HR) and circuit and sprint times (CT and ST) during the BEST were measured, along with the capillary blood lactate levels (La-), the subjective rating of muscle soreness (RPMS), and the perceived exertion (RPE) during a resting state prior to and following the BEST. The results showed significant interactions for the mean CT (p = 0.013) and RPE (p = 0.004); a marginal interaction for La- (p = 0.054); and non-significant interactions for the mean HR, mean ST, and RPMS. Moreover, the EXP group had significantly lower values in the POST condition for the mean CT (18.17 ± 2.08 s) and RPE (12.42 ± 1.02) compared to the PRE condition (20.33 ± 1.96 s and 13.47 ± 1.22, respectively) and the POST condition of the CON group (20.31 ± 2.10 s and 13.32 ± 1.16, respectively) (p < 0.05). These findings highlight the potential of pre-game mangiferin-quercetin supplementation to enhance intermittent high-intensity efforts in sports such as basketball.


Assuntos
Basquetebol , Xantonas , Humanos , Masculino , Estudos Cross-Over , Suplementos Nutricionais , Quercetina , Método Duplo-Cego
13.
ACS Infect Dis ; 10(2): 527-540, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38294409

RESUMO

Gram-negative bacterial infections are difficult to manage as many antibiotics are ineffective owing to the presence of impermeable bacterial membranes. Polymicrobial infections pose a serious threat due to the inadequate efficacy of available antibiotics, thereby necessitating the administration of antibiotics at higher doses. Antibiotic adjuvants have emerged as a boon as they can augment the therapeutic potential of available antibiotics. However, the toxicity profile of antibiotic adjuvants is a major hurdle in clinical translation. Here, we report the design, synthesis, and biological activities of xanthone-derived molecules as potential antibiotic adjuvants. Our SAR studies witnessed that the p-dimethylamino pyridine-derivative of xanthone (X8) enhances the efficacy of neomycin (NEO) against Escherichia coli and Pseudomonas aeruginosa and causes a synergistic antimicrobial effect without any toxicity against mammalian cells. Biochemical studies suggest that the combination of X8 and NEO, apart from inhibiting protein synthesis, enhances the membrane permeability by binding to lipopolysaccharide. Notably, the combination of X8 and NEO can disrupt the monomicrobial and polymicrobial biofilms and show promising therapeutic potential against a murine wound infection model. Collectively, our results unveil the combination of X8 and NEO as a suitable adjuvant therapy for the inhibition of the Gram-negative bacterial infections.


Assuntos
Infecções por Bactérias Gram-Negativas , Xantonas , Animais , Camundongos , Antibacterianos/farmacologia , Biofilmes , Escherichia coli , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Mamíferos , Neomicina/farmacologia , Xantonas/farmacologia
14.
J Nat Prod ; 87(2): 266-275, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38251859

RESUMO

Four cytotoxic heptacyclic caged-xanthones [gambogefic acids B-E (1-4)], a cytotoxic hexacyclic caged-xanthone [garcilatelic acid (5)], and four biphenyl derivatives [garcilatelibiphenyls A-D (6-9)] were newly isolated in a phytochemical study of a 50% MeOH/CH2Cl2 extract of Garcinia lateriflora (Clusiaceae). The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines including a vincristine-resistant line. The new caged-xanthones displayed potent activity with IC50 values from 0.5 to 6.7 µM against all tested tumor cell lines.


Assuntos
Antineoplásicos Fitogênicos , Garcinia , Xantonas , Humanos , Compostos de Bifenilo , Linhagem Celular Tumoral , Xantonas/farmacologia , Estrutura Molecular , Antineoplásicos Fitogênicos/farmacologia
15.
J Pharm Pharmacol ; 76(2): 106-114, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38166170

RESUMO

OBJECTIVES: The diuretic and kidney protective effect of the 3-demethyl-2-geranyl-4-prenylbellidifoline (DGP) were evaluated in rats. METHODS: The normotensive (NTR) and spontaneously hypertensive rats (SHR) received, once a day for 7 days, oral treatment with DGP (0.1 mg/kg), hydrochlorothiazide (10 mg/kg), or vehicle (10 ml/kg). Urine, blood, and kidney samples were collected for further analysis. KEY FINDINGS: The urine and Na+ elimination content were significantly higher in the groups that received DGP. Furthermore, a Ca2+-sparing action was detected in the urine of DGP-treated groups, which was consistent with the reduction in calcium oxalate crystal formation. Relevantly, the treatment did not change the parameters examined in the blood. Concerning the renal analyses, DGP treatment recovered the morphological damages of the kidney corpuscle area of SHR. In addition to the differences observed between the NTR and SHR vehicle groups, DGP augmented the amount of reduced glutathione and the activity of glutathione S-transferase GST while reducing the catalase and N-acetyl-ß-D-glucosaminidase activity and nitrite levels. CONCLUSION: Together, this study displayed the prolonged diuretic action of DGP and its natriuretic, Ca2+-sparing, and antiurolytic effects. The antioxidative and anti-inflammatory effects of DGP were evidenced in SHR kidneys, opening perspectives for further studies regarding the benefits of this xanthone.


Assuntos
Hipertensão , Xantonas , Ratos , Animais , Diuréticos/farmacologia , Hipertensão/tratamento farmacológico , Cálcio , Rim , Ratos Endogâmicos SHR , Pressão Sanguínea , Xantonas/farmacologia
16.
Talanta ; 270: 125615, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169275

RESUMO

Putrescine (Butane-1,4-diamine) has been regarded as a vital marker of spoiling protein-rich foods, especially meat and seafood. The detection of putrescine in food is considered a convenient and powerful method for evaluating the degree of spoilage of protein-rich foods. Herein, a novel rhodol-based fluorescent probe RSMA (formyl-rhodol Schiff base with methoxyaniline) was developed to detect putrescine. RSMA exhibited excellent linearity (R2 = 0.9912) in the concentration range of 0-45 µM of putrescine with a detection limit as low as 0.45 µM. Although RSMA had moderate responses to some aliphatic diamines, the selectivity of RSMA for putrescine was one of the best reported in the literature so far. Moreover, RSMA was successfully fabricated to solid-state sensors for on-site detection of putrescine in shrimp, that demonstrated its application in monitoring food spoilage.


Assuntos
Putrescina , Xantonas , Diaminas , Carne/análise
17.
Phytomedicine ; 124: 155282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176266

RESUMO

BACKGROUND: Ferroptosis is a crucial contributor to impaired osteoblast function in osteoporosis. Mangiferin, a xanthonoid glucoside isolated from mangoes, exhibits anti-osteoporosis effects. However, its potential mechanism is not fully understood. PURPOSE: This study explores the potencies of mangiferin on osteoblastic ferroptosis and deciphers its direct target in the context of solute carrier family 7-member 11 (SLC7A11)/glutathione peroxidases 4 (GPX4) pathway. METHODS: In vivo models include bilateral ovariectomy induced osteoporosis mice, iron-dextran induced iron-overloaded mice, and nuclear factor-erythroid 2-related factor 2 (Nrf2)-knockout mice. Mice are orally administrated mangiferin (10, 50 or 100 mg.kg-1.d-1) for 12 weeks. In vitro osteoblast models include iron-dextran induced iron-overloaded cells, erastin induced ferroptosis cells, and gene knockout cells. RNA sequencing is applied for investigating the underlying mechanisms. The direct target of mangiferin is studied using a cellular thermal shift assay, silico docking, and surface plasmon resonance. RESULTS: Mangiferin promotes bone formation and inhibits ferroptosis in vivo models (osteoporosis mice, iron-overloaded mice) and in vitro models (ferroptosis osteoblast, iron-overloaded osteoblasts). Mechanismly, mangiferin directly binds to the kelch-like ECH-associated protein 1 (Keap1) and activates the downstream Nrf2/SLC7A11/GPX4 pathway in both the in vivo and in vitro models. Mangiferin failed to restore the osteoporosis and ferroptosis in Nrf2-knockout mice. Silencing Nrf2, SLC7A11 or GPX4 abolished the anti-ferroptosis effect of mangiferin in erastin-induced cells. Addition of the ferroptosis agonist RSL-3 also blocked the protective effects of mangiferin on iron-overloaded cells. Furthermore, mangiferin had better effects on osteogenesis than the ferroptosis inhibitor (ferrostatin-1) and the Nrf2 agonists (sulforaphane, dimethyl fumarate, and bardoxolone). CONCLUSIONS: We identify for the first time mangiferin as a ferroptosis inhibitor and a direct Keap1 conjugator that promotes bone formation and alleviates osteoporosis. This work also provides a potentially practical pharmacological approach for treating ferroptosis-driven diseases.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Xantonas , Feminino , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Dextranos , Camundongos Knockout , Ferro
18.
Sci Rep ; 14(1): 2258, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278839

RESUMO

Fridericia formosa (Bureau) L.G. Lohmann (Bignonaceae) is a neotropical liana species found in the Cerrado biome in Brazil. It has been of great interest to the scientific community due to its potential as a source of new antivirals, including xanthones derived from mangiferin. In this context, the present study aimed to characterize and quantify the xanthones present in the ethanol extract of this species using high performance liquid chromatography. Additionally, the antiviral activity against Chikungunya, Zika, and Mayaro viruses was evaluated. The chromatographic analyses partially identified twenty-six xanthones, among which only fourteen had already been described in the literature. The xanthones mangiferin, 2'-O-trans-caffeoylmangiferin, and 2'-O-trans-coumaroylmangiferin, are present in higher quantities in the extract, at concentrations of 9.65%, 10.68%, and 3.41% w/w, respectively. In antiviral assays, the extract inhibited the multiplication cycle only for the Mayaro virus with a CE50 of 36.1 µg/mL. Among the isolated xanthones, 2'-O-trans-coumaroylmangiferin and 2'-O-trans-cinnamoylmangiferin inhibited the viral cytopathic effect with CE50 values of 180.6 and 149.4 µg/mL, respectively. Therefore, the extract from F. formosa leaves, which has a high content of xanthones, has antiviral potential and can be a source of new mangiferin derivatives.


Assuntos
Bignoniaceae , Xantonas , Infecção por Zika virus , Zika virus , Taiwan , Xantonas/farmacologia , Xantonas/química , Extratos Vegetais/química , Etanol , Antivirais/farmacologia
19.
Phytochemistry ; 219: 113963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171409

RESUMO

An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 µg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 µg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 µg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Assuntos
Neurospora , Pseudotsuga , Traqueófitas , Xantonas , Staphylococcus aureus , Fungos , Xantonas/química , Estrutura Molecular , Testes de Sensibilidade Microbiana
20.
Mol Immunol ; 166: 110-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280829

RESUMO

Th17 cell, an important subpopulation of helper T cell, plays an important role in the development of inflammatory bowel disease (IBD) and is thought to be a potential target for the treatment of IBD. In our previous study, we demonstrated that α-mangostin could relieve lupus nephritis via inhibiting Th17 cell function. In our preliminary study, we obtained four derivatives by adding chemical modification of α-mangostin which could also inhibit Th17 cell differentiation in vitro. In this study, we constructed a chronic IBD mouse model and demonstrated the therapeutic effects of α-mangostin and its derivatives as therapeutic agents for IBD. In compounds treating groups, intestinal inflammation showed significant improvement in symptoms which included weight loss, high disease activity index, colon length shorten and the change of intestinal flora. We also found that compounds could effectively either suppress the number of Th17 cell or increase the number of Treg cell detected by flow cytometry, thus reducing the Th17/Treg ratio and suppressing the level of intestinal inflammation. Notably, IL17-F levels, rather than IL17-A, were reduced in the colon of mice of compounds treating groups. Thus, α-mangostin and its derivatives ameliorate DSS-induced chronic colitis in mice by regulating Th17/Treg balance to alleviate intestinal inflammation and can modulate the intestinal microbial community. These results suggest that α-mangostin and its derivatives may be the new therapeutic option for chronic colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Xantonas , Camundongos , Animais , Células Th17 , Linfócitos T Reguladores , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Inflamação , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...