Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.075
Filtrar
1.
J Nutr ; 154(4): 1321-1332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582699

RESUMO

BACKGROUND: Obesity is a progressive metabolic disease that begins with lipid metabolism disorders. Aromatic amino acids (AAAs), including tryptophan, phenylalanine, and tyrosine, have diverse biological activities as nutrients. However, the underlying mechanisms by which AAAs affect lipid metabolism are unclear. OBJECTIVES: This study was designed to investigate the possible roles and underlying molecular mechanisms of AAA in the pathogenesis of lipid metabolism disorders. METHODS: We added an AAA mixture to the high-fat diet (HFD) of mice. Glucose tolerance test was recorded. Protein expression of hepatic bile acid (BA) synthase and mRNA expression of BA metabolism-related genes were determined. Hepatic BA profiles and gut microbial were also determined in mice. RESULTS: The results showed that AAA significantly increased body weight and white adipose tissue, aggravated liver injury, impaired glucose tolerance and intestinal integrity, and significantly increased hepatic BA synthesis by inhibiting intestinal farnesoid X receptor (FXR). Moreover, AAA increased the content of total BA in the liver and altered the hepatic BA profile, with elevated levels of lithocholic acid, glycochenodeoxycholic acid, and glycoursodeoxycholic acid. AAA markedly increased the levels of proteins involved in BA synthesis (cholesterol 7α-hydroxylase and oxysterol 7α-hydroxylase) and inhibited the intestinal FXR. Gut microbial composition also changed, reducing the abundance of some beneficial bacteria, such as Parvibacter and Lactobacillus. CONCLUSIONS: Under HFD conditions, AAAs stimulate BA synthesis in both the classical and alternative pathways, leading to aggravation of liver injury and fat deposition. Excessive intake of AAA disrupts BA metabolism and contributes to the development of lipid metabolism disorders, suggesting that AAA may be a causative agent of lipid metabolism disorders.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Metabolismo dos Lipídeos , Camundongos , Animais , Aminoácidos Aromáticos , Fígado/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BL
2.
Curr Microbiol ; 81(5): 137, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597994

RESUMO

Fermented foods have been recognized as a source of probiotic bacteria which can have a positive effect when administered to humans and animals. Discovering new probiotics in fermented food products poses a global economic and health importance. In this study, we investigated the antimicrobial and probiotic potential of lactobacilli isolated from fermented beverages produced traditionally by ethnic groups in Northeast India. Out of thirty Lactobacilli, fifteen exhibited strong antimicrobial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes with significant anti-biofilm and anti-quorum sensing activity. These isolates also showed characteristics associated with probiotic properties, such as tolerance to low pH and bile salts, survival in the gastric tract, auto-aggregation, and hydrophobicity without exhibiting hemolysis formation or resistance to certain antibiotics. The isolates were identified using gram staining, biochemical tests, and 16S rDNA sequencing. They exhibited probiotic potential, broad-spectrum of antibacterial activity, promising anti-biofilm, anti-quorum sensing activity, non-hemolytic, and tolerance to acidic pH and bile salts. Overall, four specific Lactobacillus isolates, Lactiplantibacillus plantarum BRD3A and Lacticaseibacillus paracasei RB10OW from fermented rice-based beverage, and Lactiplantibacillus plantarum RB30Y and Lacticaseibacillus paracasei MP11A from traditional local curd demonstrated potent antimicrobial and probiotic properties. These findings suggest that these lactobacilli isolates from fermented beverages have the potential to be used as probiotics with therapeutic benefits, highlighting the importance of traditional fermented foods for promoting gut health and infectious disease management.


Assuntos
Anti-Infecciosos , Lactobacillus , Animais , Humanos , Bebidas Fermentadas , Antibacterianos/farmacologia , Ácidos e Sais Biliares
3.
BMC Pregnancy Childbirth ; 24(1): 245, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582906

RESUMO

BACKGROUND AND AIMS: To investigate the impact of intrahepatic cholestasis of pregnancy (ICP) with hepatitis B virus (HBV) infection on pregnancy outcomes. METHODS: We selected 512 pregnant women, collected the data including maternal demographics, main adverse pregnancy outcomes and maternal HBV infected markers HBeAg and HBV-DNA loads status, then have a comparative analysis. RESULTS: There were 319 solitary ICP patients without HBV infection (Group I) and 193 ICP patients with HBV infection. Of the latter, there were 118 cases with abnormal liver function(Group II) and 80 cases with normal liver function(Group III). All HBV-infected pregnant women with ICP were divided into hepatitis Be antigen (HBeAg)-positive group (102 cases) and HBeAg-negative group (91 cases), according to the level of the serum HBeAg status; and into high viral load group (92 cases), moderate viral load group (46 cases) and low viral load group (55 cases) according to the maternal HBV-DNA level. Group II had a higher level of serum total bile acids, transaminase, bilirubin as well as a higher percentage of premature delivery, neonatal intensive care unit (NICU) admission and meconium-stained amniotic fluid (MSAF) compared with the other two groups(P < 0.05), but there were no significant differences in the above indicators between the Group I and Group III. Among the HBV-infected patients with ICP, HBeAg-positive group had a higher level of serum transaminase, bilirubin and bile acid as well as earlier gestational weeks of delivery, lower birth weight of new-borns and a higher rate of NICU admission than HBeAg-negative group (P < 0.05). Those with a high viral load (HBV-DNA > 106 IU/ml) had a higher level of transaminase, bilirubin, and bile acid as well as shorter gestational weeks of delivery, lower birth weight of new-borns and a higher rate of NICU admission compared with those with a low or moderate viral load (P < 0.05). CONCLUSION: HBV-infected pregnant women with ICP combined with abnormal liver function have more severe liver damage, a higher percentage of preterm birth and NICU admission. HBeAg-positive status and a high HBV-DNA load will increase the severity of conditions in HBV-infected pregnant women with ICP. HBV-infected patients with ICP who have abnormal liver function, HBeAg-positive or a high viral load should be treated more actively.


Assuntos
Colestase Intra-Hepática , Hepatite B , Complicações Infecciosas na Gravidez , Complicações na Gravidez , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Vírus da Hepatite B , Estudos Retrospectivos , Antígenos E da Hepatite B , Peso ao Nascer , DNA Viral , Antígenos de Superfície da Hepatite B , Nascimento Prematuro/epidemiologia , Hepatite B/complicações , Resultado da Gravidez/epidemiologia , Transaminases , Ácidos e Sais Biliares , Bilirrubina
4.
J Agric Food Chem ; 72(14): 8200-8213, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38560889

RESUMO

Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.


Assuntos
Ácidos e Sais Biliares , Zearalenona , Humanos , Ratos , Masculino , Feminino , Animais , Ácidos e Sais Biliares/metabolismo , Zearalenona/metabolismo , Fígado/metabolismo , Hipotálamo , Ingestão de Alimentos
5.
PLoS One ; 19(4): e0301824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578745

RESUMO

Biliary atresia is a neonatal disease characterized by damage, inflammation, and fibrosis of the liver and bile ducts and by abnormal bile metabolism. It likely results from a prenatal environmental exposure that spares the mother and affects the fetus. Our aim was to develop a model of fetal injury by exposing pregnant mice to low-dose biliatresone, a plant toxin implicated in biliary atresia in livestock, and then to determine whether there was a hepatobiliary phenotype in their pups. Pregnant mice were treated orally with 15 mg/kg/d biliatresone for 2 days. Histology of the liver and bile ducts, serum bile acids, and liver immune cells of pups from treated mothers were analyzed at P5 and P21. Pups had no evidence of histological liver or bile duct injury or fibrosis at either timepoint. In addition, growth was normal. However, serum levels of glycocholic acid were elevated at P5, suggesting altered bile metabolism, and the serum bile acid profile became increasingly abnormal through P21, with enhanced glycine conjugation of bile acids. There was also immune cell activation observed in the liver at P21. These results suggest that prenatal exposure to low doses of an environmental toxin can cause subclinical disease including liver inflammation and aberrant bile metabolism even in the absence of histological changes. This finding suggests a wide potential spectrum of disease after fetal biliary injury.


Assuntos
Benzodioxóis , Atresia Biliar , Doenças da Vesícula Biliar , Gravidez , Feminino , Animais , Camundongos , Atresia Biliar/metabolismo , Fígado/metabolismo , Ductos Biliares/patologia , Doenças da Vesícula Biliar/complicações , Inflamação/patologia , Fibrose , Ácidos e Sais Biliares
6.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613030

RESUMO

Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.


Assuntos
Camellia sinensis , Hiperlipidemias , Humanos , Chá , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/prevenção & controle , Fermentação , Ácidos e Sais Biliares
7.
Nutrients ; 16(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38613095

RESUMO

The relationship between bile acids (BAs) and adverse cardiovascular events following acute coronary syndrome (ACS) have been little investigated. We aimed to examine the associations of BAs with the risk of cardiovascular events and all-cause mortality in ACS. We conducted a prospective study on 309 ACS patients who were followed for 10 years. Plasma BAs were quantified by liquid chromatography coupled to tandem mass spectrometry. Cox regression analyses with elastic net penalties were performed to associate BAs with MACE and all-cause mortality. Weighted scores were computed using the 100 iterated coefficients corresponding to each selected BA, and the associations of these scores with these adverse outcomes were assessed using multivariable Cox regression models. A panel of 10 BAs was significantly associated with the increased risk of MACE. The hazard ratio of MACE per SD increase in the estimated BA score was 1.35 (95% CI 1.12-1.63). Furthermore, four BAs were selected from the elastic net model for all-cause mortality, although their weighted score was not independently associated with mortality. Our findings indicate that primary and secondary BAs may play a significant role in the development of MACE. This insight holds potential for developing strategies to manage ACS and prevent adverse outcomes.


Assuntos
Síndrome Coronariana Aguda , Sistema Cardiovascular , Humanos , Estudos Prospectivos , Ácidos e Sais Biliares , Cromatografia Líquida
8.
Food Res Int ; 184: 114255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609233

RESUMO

Bile Salts (BS) are responsible for stimulating lipid digestion in our organism. Gut microbiota are responsible for the deconjugation process of primary conjugated to secondary unconjugated BS. We use two structurally distinct BS and characterize the rate of lipolysis as a compound parameter. A static in-vitro digestion model as well as meta-analysis of literature data has been performed to determine the most influential factors affecting the lipid digestion process. The results demonstrate that lipolysis of emulsions using conjugated BS (NaTC, FFA = 60.0 %, CMC in SIF = 5.58 mM, MSR of linoleic acid = 0.21, rate of adsorption = -0.057 mN/m.s) enhances the release of FFA compared to deconjugated BS (NaDC, FFA = 49.5 %, CMC in SIF = 2.49 mM, MSR of linoleic acid = 0.16 rate of adsorption = -0.064 mN/m.s). These results indicate that conjugation plays an important role in controlling the rate of lipolysis in our organism which can be in turn, tuned by the microflora composition of our gut, ultimately controlling the rate of deconjugation of the BS.


Assuntos
Bile , Ácido Linoleico , Emulsões , Lipólise , Fenômenos Químicos , Ácidos e Sais Biliares
9.
AAPS J ; 26(3): 46, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609650

RESUMO

Patients with ß-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.


Assuntos
Acetato de Desoxicorticosterona , Hemocromatose , Humanos , Desferroxamina , Ácido Hialurônico , Ácidos e Sais Biliares
10.
Ecotoxicol Environ Saf ; 275: 116285, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564866

RESUMO

Mounting evidence has shown that the gut microbiota plays a key role in human health. The homeostasis of the gut microbiota could be affected by many factors, including environmental chemicals. Aldicarb is a carbamate insecticide used to control a variety of insects and nematode pests in agriculture. Aldicarb is highly toxic and its wide existence has become a global public health concern. In our previous study, we have demonstrated that aldicarb disturbed the gut microbial community structure and composition. However, the impacts of aldicarb on gut microbiota-derived metabolites, bile acids, remain elusive. In present study, we performed targeted metabolomics analysis to explore the effects of aldicarb exposure on bile acids, as well as steroid hormones and oxylipins in the serum, feces and liver of C57BL/6 J mice. Our results showed that aldicarb exposure disturbed the level of various bile acids, steroid hormones and oxylipins in the serum and feces of C57BL/6 J mice. In the liver, the level of cortisol was decreased, meanwhile 15,16-dihydroxyoctadeca-9,12-dienoic acid was increased in aldicarb-treated mice. Metagenomic sequencing analysis showed that the relative abundance of a bile salt hydrolase, choloylglycine hydrolase (EC:3.5.1.24) and a sulfatase enzyme involved in steroid hormone metabolism, arylsulfatase, was significantly increased by aldicarb exposure. Furthermore, correlations were found between gut microbiota and various serum metabolites. The results from this study are helpful to improve the understanding of the impact of carbamate insecticides on host and microbial metabolism.


Assuntos
Aldicarb , Inseticidas , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Oxilipinas , Camundongos Endogâmicos C57BL , Hormônios , Homeostase
11.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587078

RESUMO

Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Ácidos e Sais Biliares , Colesterol/metabolismo , Glucose , Obesidade/metabolismo
12.
Immunity ; 57(4): 834-836, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599174

RESUMO

Various microbial metabolites promote cell transformation. In this issue of Immunity, Cong et al. show that deoxycholic acid (DCA), a microbial metabolite of bile, promotes tumor growth by suppressing antitumor CD8+ T cell responses via dysregulation of calcium efflux.


Assuntos
Ácido Desoxicólico , Neoplasias , Humanos , Bile , Apoptose , Ácidos e Sais Biliares
13.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Assuntos
Colestase Intra-Hepática , Colestase , Polygala , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , 1-Naftilisotiocianato/toxicidade , China , Fígado/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Colestase/metabolismo , Colestase Intra-Hepática/induzido quimicamente , Isotiocianatos/efeitos adversos , Isotiocianatos/metabolismo , Ácidos e Sais Biliares/metabolismo
14.
Gut Microbes ; 16(1): 2340487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626129

RESUMO

Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1ß (IL-1ß) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Pediátrica , Prevotella , Humanos , Criança , Animais , Camundongos , Insulina , Ácidos e Sais Biliares/farmacologia , Glicemia , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
15.
BMC Microbiol ; 24(1): 110, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570789

RESUMO

BACKGROUND: All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS: Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS: Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.


Assuntos
Ácidos e Sais Biliares , Enterococcus faecium , Ácidos e Sais Biliares/farmacologia , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Ácido Desoxicólico/farmacologia , Proteômica , Ácido Cólico , Ácido Quenodesoxicólico/metabolismo , Enterococcus
16.
Mol Nutr Food Res ; 68(7): e2300731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480985

RESUMO

SCOPE: Gut microbiota (GM) dysbiosis and dysregulated bile acids (BAs) metabolism have been linked to ulcerative colitis (UC) pathogenesis. The possibility of utilizing live probiotics with a defined BAs-metabolizing capability to modify the composition BAs for UC treatment remains unexplored. METHODS AND RESULTS: In this study, Strain GR-4 is sourced from traditional Chinese fermented food, "Jiangshui," and demonstrated the ability to deconjugate two common conjugated BAs by over 69% and 98.47%, respectively. It administers strain GR-4 to dextran sulfate sodium (DSS)-induced UC mice, and observes an overall alleviation of UC symptoms, as evidence by improved colon morphology, reduces inflammation and oxidative stress, and restores intestinal barrier function. Importantly, these effects are reliant on an intact commensal microbiota, as depletion of GM mitigated GR-4s efficacy. Metabolomics analysis unveils a decline in conjugated BAs and an increase in secondary BAs following GR-4 administration. GM analysis indicates that GR-4 selectively enriches bacterial taxa linked to BAs metabolism, enhancing GM's capacity to modify BAs. CONCLUSION: This research demonstrates the potential for natural fermented foods and probiotics to effectively manipulate BAs composition, including conjugated and secondary BAs, to alleviate UC symptoms, underscoring the benefits of these approaches for gut health.


Assuntos
Colite Ulcerativa , Colite , Probióticos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Metabolismo dos Lipídeos , Esteroides , Probióticos/uso terapêutico , Ácidos e Sais Biliares , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
17.
J Agric Food Chem ; 72(13): 6833-6849, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517334

RESUMO

Although cholesterol plays a key role in many physiological processes, its dysregulation can lead to several metabolic diseases. Statins are a group of drugs widely used to lower cholesterol levels and cardiovascular risk but may lead to several side effects in some patients. Therefore, the development of a plant-based therapeutic adjuvant with cholesterol-lowering activity is desirable. The maintenance of cholesterol homeostasis encompasses multiple steps, including biosynthesis and metabolism, uptake and transport, and bile acid metabolism; issues arising in any of these processes could contribute to the etiology of cholesterol-related diseases. An increasing body of evidence strongly indicates the benefits of phytochemicals for cholesterol regulation; traditional Chinese medicines prove beneficial in some disease models, although more scientific investigations are needed to confirm their effectiveness. One of the main functions of cholesterol is bile acid biosynthesis, where most bile acids are recycled back to the liver. The composition of bile acid is partly modulated by gut microbes and could be harmful to the liver. In this regard, the reshaping effect of phytochemicals on gut microbiota has been widely reported in the literature for its significance. Therefore, we reviewed studies conducted over the past 5 years elucidating the regulatory effects of phytochemicals or herbal medicines on cholesterol metabolism. In addition, their effects on the recomposition of gut microbiota and bile acid metabolism due to modulation are discussed. This review aims to provide novel insights into the treatment of cholesterol dysregulation and the anticipated development of natural-based compounds in the near and far future.


Assuntos
Colesterol , Fígado , Humanos , Colesterol/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo , Ácidos e Sais Biliares/metabolismo
18.
FASEB J ; 38(6): e23541, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498341

RESUMO

Several observational studies have suggested that proton-pump inhibitor (PPI) use might increase diabetes risk, but the mechanism remains unclear. This study aimed to investigate the effects of PPI use on gut microbiota and bile acids (BAs) profiles, and to explore whether these changes could mediate the association of PPIs use with fasting blood glucose (FBG) levels and insulin resistance (IR) in Chinese population. A cross-sectional study was conducted in Shenzhen, China, from April to August 2021, enrolled 200 eligible patients from the local hospital. Participants completed a questionnaire and provided blood and stool samples. Gut microbiome was measured by16S rRNA gene sequencing, and bile acids were quantified by UPLC-MS/MS. Insulin resistance (IR) was assessed using the Homeostasis Model Assessment 2 (HOMA2-IR). PPI use was positively associated with higher levels of FBG and HOMA2-IR after controlling for possible confounders. PPI users exhibited a decreased Firmicutes and an increase in Bacteroidetes phylum, alongside higher levels of glycoursodeoxycholic acid (GUDCA) and taurochenodeoxycholic acid (TCDCA). Higher abundances of Bacteroidetes and Fusobacterium as well as higher levels of TCDCA in PPI users were positively associated with elevated FBG or HOMA2-IR. Mediation analyses indicated that the elevated levels of FBG and HOMA2-IR with PPI use were partially mediated by the alterations in gut microbiota and specific BAs (i.e., Fusobacterium genera and TCDCA). Long-term PPI use may increase FBG and HOMA2-IR levels, and alterations in gut microbiota and BAs profiles may partially explain this association.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Ácidos e Sais Biliares , Cromatografia Líquida , Estudos Transversais , Espectrometria de Massas em Tandem , Bacteroidetes , Glucose/farmacologia
19.
Biochem Biophys Res Commun ; 705: 149670, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38442444

RESUMO

Cholestasis is characterized by impaired bile secretion and flow, leading to the accumulation of toxic bile acids in the liver, further causing inflammatory reaction, fibrosis, and ultimately liver transplantation. Although first-line clinical agents such as Ursodeoxycholic acid (UDCA) and Obeticholic acid (OCA) are available, serious side effects still exist. Therefore, pharmacologic treatment of cholestatic liver disease remains challenging. Here, we used a murine model of cholestasis treated with or without intraperitoneal injection of baicalein and found that baicalein could attenuate 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammatory response, ductular reaction, liver fibrosis, and bile acid metabolism disorders. Furthermore, the therapeutic effect of baicalein was hampered in the presence of Guggulsterone (GS), an Farnesoid X receptor (FXR) antagonist. These results indicated that baicalein alleviated DDC diet-induced cholestatic liver injury in an FXR-dependent manner.


Assuntos
Colestase Intra-Hepática , Colestase , Flavanonas , Animais , Camundongos , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/tratamento farmacológico , Colestase/tratamento farmacológico , Ácidos e Sais Biliares
20.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38506708

RESUMO

Innate lymphoid cells (ILCs) can promote host defense, chronic inflammation, or tissue protection and are regulated by cytokines and neuropeptides. However, their regulation by diet and microbiota-derived signals remains unclear. We show that an inulin fiber diet promotes Tph1-expressing inflammatory ILC2s (ILC2INFLAM) in the colon, which produce IL-5 but not tissue-protective amphiregulin (AREG), resulting in the accumulation of eosinophils. This exacerbates inflammation in a murine model of intestinal damage and inflammation in an ILC2- and eosinophil-dependent manner. Mechanistically, the inulin fiber diet elevated microbiota-derived bile acids, including cholic acid (CA) that induced expression of ILC2-activating IL-33. In IBD patients, bile acids, their receptor farnesoid X receptor (FXR), IL-33, and eosinophils were all upregulated compared with controls, implicating this diet-microbiota-ILC2 axis in human IBD pathogenesis. Together, these data reveal that dietary fiber-induced changes in microbial metabolites operate as a rheostat that governs protective versus pathologic ILC2 responses with relevance to precision nutrition for inflammatory diseases.


Assuntos
Imunidade Inata , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Interleucina-33 , Inulina , Linfócitos , Fibras na Dieta , Ácidos e Sais Biliares , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...