Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.768
Filtrar
1.
Se Pu ; 42(4): 327-332, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38566421

RESUMO

The physical and chemical properties of chiral drugs are very similar. However, their pharmacological and toxicological effects vary significantly. For example, one enantiomer may have favorable properties whereas the other may be ineffective or even have toxic side effects. Hence, exploring innovative strategies to improve enantiomeric resolution is of great importance. Metoprolol (MET) is a ß-receptor blocker used to treat hypertension, stable angina pectoris, and supraventricular tachyarrhythmia. Establishing chiral separation and analysis methods of MET enantiomers is important for enhancing the quality of chiral drugs. Capillary electrophoresis (CE) has the advantages of a small sample size, simple operation, high separation efficiency, and many alternative modes; therefore it is widely used in the field of chiral drug separation. The chiral selectors commonly used for CE-based chiral separation include cyclodextrin (CD) and its derivatives, polysaccharides, proteins, and macrocyclic antibiotics. CD is one of the most commonly used and effective chiral selectors for CE. The relatively hydrophobic structure inside the cavity and the relatively hydrophilic structure outside the cavity of CD enable it and chiral molecules to form inclusion compounds with different binding constants, thus achieving chiral separation. However, the use of CD alone as a chiral selector does not always yield satisfactory separation results. Hence, the addition of other additives, such as ionic liquids and deep eutectic solvents (DESs) to assist CD-based chiral separation systems has received extensive attention. Previous studies on the enantiomeric separation of MET by CE have focused on the addition of CD and its derivatives alone for separation. Few studies have been conducted on the synergistic addition of auxiliary additives to CD to improve the enantiomeric resolution of MET. In this study, three DESs, namely, choline chloride-D-glucose, choline chloride-D-fructose, and lactate-D-glucose, were used for the CE-based chiral separation of MET for the first time, and the synergistic effect of the DESs on the separation of MET enantiomers by CD-based capillary zone electrophoresis was speculated. For this purpose, an uncoated fused silica capillary with inner diameter of 50 µm, total length of 50 cm and effective length of 41.5 cm was used as the separation column. First, the effects of CD type, CD concentration, buffer pH, and buffer concentration on MET separation were investigated, and the optimal conditions (15 mmol/L carboxymethyl-ß-cyclodextrin (CM-ß-CD), pH=3.0, and 40 mmol/L phosphate buffer) were obtained. Other CE conditions were as follows: UV detection at 230 nm, applied voltage of 25 kV. All operations were carried out at 20 ℃. Next, three types of DESs were prepared as auxiliary additives via a mixed-heating method. The DESs were mixed in a 50 mL round-bottomed flask at a certain molar ratio and then heated in a water bath at 80 ℃ for 3 h until a clear and transparent liquid was obtained. The effects of different DESs and their mass fraction on chiral separation were subsequently studied. The optimal choline chloride-D-fructose mass fraction was ultimately determined to be 1.5%. The resolution of MET increased from 1.30 without DES to 2.61 with 1.5% choline chloride-D-fructose, thereby achieving baseline separation. Finally, the separation effect and mechanism were speculated. The MET chiral separation method established in this study is of great significance for improving the quality of chiral compounds and ensuring the safety and effectiveness of clinical drugs. Furthermore, it may be useful in the research and development of CE-based chiral separation techniques using CD derivatives with DESs.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Metoprolol , Solventes Eutéticos Profundos , beta-Ciclodextrinas/química , Eletroforese Capilar/métodos , Colina , Frutose , Glucose , Estereoisomerismo
2.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612886

RESUMO

Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.


Assuntos
Ciclodextrinas , Polímeros Responsivos a Estímulos , Humanos , Benzeno , Materiais Biocompatíveis , Eletricidade , Água
3.
Int J Biol Macromol ; 265(Pt 1): 130742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492704

RESUMO

In this work, soybean lecithin (LC) was used to modify ß-cyclodextrin (ß-CD) with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified ß-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of ß-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between ß-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.


Assuntos
Ciclodextrinas , Nanopartículas , beta-Ciclodextrinas , Vitamina E/química , Lecitinas , beta Caroteno/química , Soja , Emulsões/química , beta-Ciclodextrinas/química , Excipientes , Digestão , Tamanho da Partícula
4.
J Nanobiotechnology ; 22(1): 119, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494523

RESUMO

BACKGROUND: Acute lung injury (ALI) is a fatal respiratory disease caused by overreactive immune reactions (e.g., SARS-CoV-2 infection), with a high mortality rate. Its treatment is often compromised by inefficient drug delivery barriers and insufficient potency of the currently used drugs. Therefore, developing a highly effective lung-targeted drug delivery strategy is a pressing clinical need. RESULTS: In this study, the micro-sized inclusion cocrystal of asiatic acid/γ-cyclodextrin (AA/γCD, with a stoichiometry molar ratio of 2:3 and a mean size of 1.8 µm) was prepared for ALI treatment. The dissolution behavior of the AA/γCD inclusion cocrystals followed a "spring-and-hover" model, which meaned that AA/γCD could dissolve from the cocrystal in an inclusion complex form, thereby promoting a significantly improved water solubility (nine times higher than free AA). This made the cyclodextrin-based inclusion cocrystals an effective solid form for enhanced drug absorption and delivery efficiency. The biodistribution experiments demonstrated AA/γCD accumulated predominantly in the lung (Cmax = 50 µg/g) after systemic administration due to the micron size-mediated passive targeting effect. The AA/γCD group showed an enhanced anti-inflammatory therapeutic effect, as evidenced by reduced levels of pro-inflammatory cytokines in the lung and bronchoalveolar lavage fluids (BALF). Histological examination confirmed that AA/γCD effectively inhibited inflammation reactions. CONCLUSION: The micro-sized inclusion cocrystals AA/γCD were successfully delivered into the lungs by pulmonary administration and had a significant therapeutic effect on ALI.


Assuntos
Lesão Pulmonar Aguda , Ciclodextrinas , Triterpenos Pentacíclicos , Humanos , Ciclodextrinas/química , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Lesão Pulmonar Aguda/tratamento farmacológico , Solubilidade
5.
Carbohydr Res ; 537: 109067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442683

RESUMO

Taste, especially unpleasant taste, can be key for patient compliance. In the formulation development process, drug-cyclodextrin (CD) inclusion complexes are often used to improve the solubility of a drug and/or mask its bitterness. This study aimed to evaluate the bitter masking effect of CDs on different drugs using NMR-ROESY analysis, human sensory tests, and e-tongue measurements. The strength of inclusion complex formation between drugs and CDs was investigated by NMR-ROSEY, and these results were compared to human sensory test results. In the sensory test, participants identified which drug-CD inclusion complexes were not bitter. NMR-ROSEY results aligned with the sensory tests; short magnetization transfer times corresponded to masked bitterness. The electrical tongue was not able to detect the taste of any of the drug-CD inclusion complexes. Additionally, we used NMR-ROSEY to determine which drug-CD inclusion complex formed in a system with multiple drug substances present. This research offers valuable insights into the bitter masking effect of CDs on different drugs and presents a comprehensive evaluation approach using various methods. This knowledge has significant implications for the pharmaceutical industry, clinical practice, and patient care, contributing to improved patient compliance and satisfaction with bitter medications.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Humanos , Paladar , Solubilidade
6.
Brain Dev ; 46(5): 207-212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448301

RESUMO

BACKGROUND AND OBJECTIVES: Niemann-Pick type C (NPC) is a rare lysosomal storage disease characterized by hepatosplenomegaly and progressive neurological deterioration due to abnormal intracellular cholesterol transport. Cyclic oligosaccharide 2-hydroxypropyl-ß-cyclodextrin (HPBCD) is an effective treatment for NPC; however, few reports have shown its long-term efficacy and safety. To demonstrate long-term efficacy and safety of intrathecal HPBCD (IT-HPBCD) treatment for NPC, we herein reports five patients with NPC treated using IT-HPBCD for 4-11 years. CASES AND RESULTS: Patients' ages at the onset ranged from 1.5 to 20 years. Notably, all patients showed rapid disease progression despite treatment with miglustat before IT-HPBCD treatment. Similarly, some patients showed transient improvement; however, all patients' conditions stabilized after long-term IT-HPBCD therapy. Mild-to-moderate hearing loss was observed in three patients. Furthermore, long-term treatment with IT-HPBCD may suppress neurological deterioration in patients with NPC; however, patients still experience some disease progression. CONCLUSIONS: Long-term treatment with IT-HPBCD may suppress neurological deterioration in patients with NPC; however, the treatment outcome is dependent on the neurological status at the time of diagnosis, and disease progression is not completely inhibited. Awareness of the disease and newborn screening is needed for earlier disease detection. In addition, further optimization of the treatment protocol and additional treatments are needed to improve patient outcomes.


Assuntos
Ciclodextrinas , Doença de Niemann-Pick Tipo C , Recém-Nascido , Humanos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Ciclodextrinas/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Resultado do Tratamento , Progressão da Doença
7.
Int J Biol Macromol ; 265(Pt 2): 131019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513906

RESUMO

Na-l-Thyroxine (Na-l-Thy) is a frequently prescribed synthetic hormone for hypothyroidism treatment. Despite its efficacy, its hydrophobic nature poses a challenge for achieving optimal bioavailability. To address this, researchers explored various delivery methods, including micro-formulations and nano-formulations, for precise and prolonged release of hydrophobic and hydrophilic drugs. In this study, we developed micro-formulations with cyclodextrin and chitosan. Docking studies identified γ-cyclodextrin as the preferred option for forming a stable complex with Na-l-Thyroxine compared to α, and ß-cyclodextrins. Two micro-formulations were prepared compared: Na-l-Thyroxine loaded on chitosan (CS + Na-l-Thy) and Na-l-Thyroxine and γ-cyclodextrin inclusion complex (IC) loaded on chitosan (CS + IC). CS + IC exhibited superior encapsulation efficiency (91.25 %) and loading capacity (18.62 %) compared to CS + Na-l-Thy (encapsulation efficiency: 70.24 %, loading capacity: 21.18 %). Characterization using FTIR, SEM, and TGA validated successful encapsulation of Na-l-Thy in spherical microparticles with high thermal stability. In-vitro release studies at pH 1.2 and 7.4 showed that the CS + IC microparticles displayed gradual, consistent drug release compared to CS + Na-l-Thy -Thy. Both formulations showed faster release at pH 1.2 than at pH 7.4. Reaction kinetics analysis of release studies of CS + Na-l-Thy and CS + IC were best described by Higuchi kinetic model and Korsemeyer-Peppas kinetic model respectively. This study suggests that the CS + IC microparticles are an effective and stable delivery system for sustained release of hydrophobic Na-l-Thy.


Assuntos
Quitosana , Ciclodextrinas , Nanopartículas , gama-Ciclodextrinas , Quitosana/química , Tiroxina , Preparações Farmacêuticas , Portadores de Fármacos/química , Nanopartículas/química
8.
Int J Pharm ; 654: 123976, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38452831

RESUMO

As cancer being the most difficult disease to treat, different kinds of medications and therapeutic approaches have been prominently developed by scientists. For certain families of drugs, such as immuno-therapeutics or antibody-drug conjugates, efficient delivery systems are required during administration to protect the drugs from chemical degradation or biological inactivation. Delivery systems with the ability to carry different therapeutics or diagnostic agents or both, hold promising potential to tackle the abnormalities behind cancer. In this context, this review provides updated insights on how cyclodextrin-based polymeric nanosystems have become an effective treatment approach against cancer. Cyclodextrins (CDs) are natural oligosaccharides that are famously exploited in pharmaceutical research due to their exceptional quality of entrapping water-insoluble molecules inside their hydrophobic core and providing enhanced solubility with the help of their hydrophilic exterior. Combining the properties of CDs with polymeric nanoparticles (PNPs) brings out excellent versatile and tunable profiles, thanks to the submicron-sized PNPs. By introducing the significance of CD as a delivery system, a collective discussion on different binding approaches and release mechanisms of CD-drug complexation, followed by their characterization studies has been done in this review. Further, in light of recent studies, the article majorly focuses on conveying how promoting CD to a polymeric and nanoscale elevates the multifunctional advantages against cancer that can be successfully applied in combination therapy and theranostics. Moreover, CD-based delivery systems including CALAA-01, CRLX101, and CRLX301, have demonstrated improved tumor targeting, reduced side effects, and prolonged drug release in preclinical studies and clinical trials.


Assuntos
Ciclodextrinas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Medicina de Precisão , Polímeros/química , Neoplasias/tratamento farmacológico , Ciclodextrinas/química
9.
Food Chem ; 447: 138926, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471278

RESUMO

4-Terpineol (4-TA), a typical monocyclic monoterpene essential oil compound with important biological activities, poor stability and solubility severely hamper its biological activities. To date, ß-cyclodextrin (ß-CD) encapsulating essential oil to form inclusion complexes (ICs) is considered as a satisfactory treatment. Nevertheless, the detailed inclusion mechanism of ß-CD for 4-TA especially the behavior of 4-TA during inclusion formation have not available yet. Herein, 4-TA/ß-CD ICs were successfully synthesized by the co-precipitation method, and hydrogen bonds and hydrophobic interactions played a key role in the formation of ICs, and the isopropyl of 4-TA entered the cavity through the wide rim of ß-CD. Moreover, the release profile demonstrated that high RH (85 % and 99 %) triggered the release of TA from ICs. This study suggests the great potential of cyclodextrin inclusion strategy for improving the stability and sustained release of 4-TA in food preservation application.


Assuntos
Ciclodextrinas , Óleos Voláteis , beta-Ciclodextrinas , Umidade , beta-Ciclodextrinas/química , Ciclodextrinas/química , Óleos Voláteis/química , Solubilidade
10.
Colloids Surf B Biointerfaces ; 237: 113841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492412

RESUMO

Geraniol (Ger) is an essential oil molecule with excellent biological activity. High hydrophobicity and volatility limit its practical application. Cyclodextrins (CDs) are water-soluble cyclic oligosaccharides with hydrophobic cavities. Physical encapsulation of CDs to improve the solubility and stability of essential oil molecules is not satisfactory. Therefore, this study synthesized the γ-CD derivative (γ-CD-Ger) by grafting Ger onto γ-CD using a bromide-mediated method. Compared to the inclusion complexes (γ-CD/Ger) formed by both, the derivatives exhibit better solubility and thermal stability. The derivative has better antibacterial activity when the ratio of γ-CD to Ger was 1:2. In addition, the derivatives did not exhibit cytotoxic and hemolytic properties. These results indicate that this research provides a water-soluble antibacterial agent with a wide range of promising applications and offers new ideas for the application of alcohol hydrophobic molecules in aqueous systems.


Assuntos
Monoterpenos Acíclicos , Ciclodextrinas , Óleos Voláteis , gama-Ciclodextrinas , gama-Ciclodextrinas/farmacologia , gama-Ciclodextrinas/química , Solubilidade , Antibacterianos/farmacologia , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Água/química
11.
Int J Pharm ; 655: 124053, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537922

RESUMO

Sildenafil citrate (SIL) as a first-line treatment for erectile dysfunction is currently reported to have poor solubility and bioavailability. Moreover, SIL undergoes first-pass metabolism when taken orally and its injection can lead to discomfort. In this study, we introduce a novel transdermal delivery system that integrates hydrogel-forming microneedles with the inclusion complex tablet reservoir. The hydrogel-forming microneedle was prepared from a mixture of polymers and crosslinkers through a crosslinking process. Importantly, the formulations showed high swelling capacity (>400 %) and exhibited adequate mechanical and penetration properties (needle height reduction < 10 %), penetrating up to five layers of Parafilm® M (assessed to reach the dermis layer). Furthermore, to improve the solubility of SIL in the reservoir, the SIL was pre-complexed with ß-cyclodextrin. Molecular docking analysis showed that SIL was successfully encapsulated into the ß-cyclodextrin cavity and was the most suitable conformation compared to other CD derivatives. Moreover, to maximize SIL delivery, sodium starch glycolate was also added to the reservoir formulation. As a proof of concept, in vivo studies demonstrated the effectiveness of this concept, resulting in a significant increase in AUC (area under the curve) compared to that obtained after administration of pure SIL oral suspension, inclusion complex, and Viagra® with relative bioavailability > 100 %. Therefore, the approach developed in this study could potentially increase the efficacy of SIL in treating erectile dysfunction by being non-invasive, safe, avoiding first-pass metabolism, and increasing drug bioavailability.


Assuntos
Ciclodextrinas , Disfunção Erétil , beta-Ciclodextrinas , Masculino , Humanos , Citrato de Sildenafila/uso terapêutico , Hidrogéis/uso terapêutico , Disponibilidade Biológica , Disfunção Erétil/tratamento farmacológico , Ciclodextrinas/uso terapêutico , Simulação de Acoplamento Molecular
12.
J Mol Model ; 30(4): 113, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546892

RESUMO

CONTEXT: Hydroxypropyl-ß-cyclodextrin (HPßCD) is one of the derivatized cyclodextrins most widely used as an excipient in the pharmaceutical industry, for its capacity to improve certain drugs properties. Different configurations of HPßCD are possible depending on the number and location of the 2-hydroxypropyl groups substituted on the glucose rings. Rifampicin has become the most commonly clinically used antibiotic against tuberculosis in recent years, despite its low solubility and variable bioavailability. Different techniques and materials have been proposed to enhance the properties of rifampicin: cyclodextrin complexation is one of them. The van der Waals term was the main contribution to the interaction energy, which then decisively conditioned the complex configurations. The size of rifampicin did not allow the whole molecule to fit into the host. Moreover, interaction energy was much greater when the guest was located near each rim of HPßCD, where rifampicin was partially included in the cavity and formed inclusion complexes. The piperazine tail of rifampicin was included inside the host in minimum energy structures and the guest was situated near the primary rim of HPßCD in most cases, although the complex configurations depended on the degree of substitution. METHODS: A molecular mechanics simulation based on the GROMOS 53A6 force field was applied in this work to study the inclusion complexes formed by twelve configurations of HPßCD, with different degrees of substitution and rifampicin in water solution. We determined the penetration potential, the complex structures with minimum energies, the possibility of forming inclusion complexes other than those of minimum energies and potential energy surfaces.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , beta-Ciclodextrinas/química , Rifampina , Água/química , Ciclodextrinas/química , Solubilidade
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124091, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447439

RESUMO

We prepared a naturally occurring flavanoid namely quercetin from tea leaves and analyzed by Absorption, Emission, FT-IR, 1H, 13C nmr spectra and ESI-MS analysis. The inclusion behavior of quercetin in cyclodextrins like α-, ß-, γ-, per-6-ABCD and mono-6-ABCD cavities were supported such as UV-vis., Emission, FT-IR and ICD spectra and energy minimization studies. From the absorption and emission results, the type of complexes formed were found to depend on stoichiometry of Host:Guest. FT-IR data of CD complexes of quercetin supported inclusion complex formation of the substrate with α-, ß- and γ-CDs. The inclusion of host-guest complexation of quercetin with α-, ß-, γ-CDs, per-6-ABCD and mono-6-ABCDs provides very valuable information about the CD:quercetin complexes, the study also shows that ß-CD complexation improves water solubility, chemical stability and bioavailability of quercetin. Besides, phase solubility studies also supported the formation of 1:1 drug-CD soluble complexes. All these spectral results provide insight into the binding behavior of substrate into CD cavity in the order per-6-ABCD > Mono-6-ABCD > γ-CD > ß-CD > α-CD. The proposed model also finds strong support from the fact with excess CD this exciton coupling disappears indicates the formation of only 1:1 complex.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Quercetina/química , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química , Modelos Moleculares , Ciclodextrinas/química , Solubilidade
14.
Int J Biol Macromol ; 263(Pt 2): 130523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428771

RESUMO

As a natural pH-sensing colorant, purple sweet potato anthocyanins (PSPAs) have demonstrated great potential in colorimetric film for freshness monitoring. However, the photothermal instability of PSPAs is still a challengeable issue. Herein, γ-cyclodextrin metal-organic framework (CD-MOF) loaded with PSPAs (PSPAs@CD-MOF, i.e., PM) and eugenol (EUG) were incorporated in cellulose acetate (CA) matrix for developing a smart active colorimetric film of CA/PM/EUG, where PM and EUG were hydrogen-bonded with CA. Attentions were focused on the photothermal colorimetric stability, colorimetric response, and antibacterial activity of the films. The presence of PM and EUG endowed the film outstanding UV-blocking performance and enhanced the barrier against water vapor and oxygen. Target film of CA/PM15/EUG10 had good photothermal colorimetric stability due to the protection of CD-MOF on PSPAs and the color changes with pH-stimuli were sensitive and reversible. In addition to antioxidant activity, CA/PM15/EUG10 had antibacterial activity against Escherichia coli and Staphylococcus aureus. The application trial results indicated that the CA/PM15/EUG10 was valid to indicate pork freshness and extended the shelf-life by 100 % at 25 °C, which has demonstrated a good perspective on smart active packaging for freshness monitoring and shelf-life extension.


Assuntos
Celulose/análogos & derivados , Ciclodextrinas , Ipomoea batatas , Estruturas Metalorgânicas , Carne de Porco , Carne Vermelha , Suínos , Animais , Antocianinas/farmacologia , Colorimetria , Eugenol , Antibacterianos/farmacologia , Escherichia coli , Embalagem de Alimentos , Concentração de Íons de Hidrogênio
15.
Molecules ; 29(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542982

RESUMO

This comprehensive review explores the utilization of chiral stationary phases (CSPs) in the context of single-column simultaneous chiral-achiral high-performance liquid chromatography (HPLC) separation methods. While CSPs have traditionally been pivotal for enantioselective drug analysis, contemporary CSPs often exhibit notable chemoselective properties. Consequently, there is a discernible trend towards the development of methodologies that enable simultaneous enantio- and chemoselective separations utilizing a single CSP-based chromatographic column. This review provides an exhaustive overview of reported HPLC methods in this domain, with a focus on four major CSP types: cyclodextrin-, glycopeptide antibiotic-, protein-, and polysaccharide-based CSPs. This article delves into the diverse applications of CSPs, encompassing various chromatographic modes such as normal phase (NP), reverse phase (RP), and polar organic (PO). This review critically discusses method development, emphasizing the additional chemoselective separation mechanisms of CSPs. It also explores possibilities for method optimization and development, concluding with future perspectives on this evolving field. Despite the inherent challenges in understanding the retention mechanisms involved in chemoselective separations, this review highlights promising trends and anticipates a growing number of simultaneous enantio- and chemoselective methods in pharmaceutical analyses, pharmacokinetic studies, and environmental sample determinations.


Assuntos
Antibacterianos , Ciclodextrinas , Cromatografia Líquida de Alta Pressão/métodos , Antibacterianos/química , Glicopeptídeos/química , Estereoisomerismo
16.
Carbohydr Polym ; 334: 122018, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553217

RESUMO

Sugammadex, marketed as Bridion™, is an approved cyclodextrin (CD) based drug for the reversal of neuromuscular blockade in adults undergoing surgery. Sugammadex forms an inclusion complex with the neuromuscular blocking agent (NMBA) rocuronium, allowing rapid reversal of muscle paralysis. In silico methods have been developed for studying CD inclusion complexes, aimed at accurately predicting their structural, energetic, dynamic, and kinetic properties, as well as binding constants. Here, a computational study aimed at characterizing the sugammadex-rocuronium system from the perspective of docking calculations, free molecular dynamics (MD) simulations, and biased metadynamics simulations with potential of mean force (PMF) calculations is presented. The aim is to provide detailed information about this system, as well as to use it as a model system for validation of the methods. This method predicts results in line with experimental evidence for both the optimal structure and the quantitative value for the binding constant. Interestingly, there is a less profound preference for the orientation than might be assumed based on electrostatic interactions, suggesting that both orientations may exist in solution. These results show that this technology can efficiently analyze CD inclusion complexes and could be used to facilitate the development and optimization of novel applications for CDs.


Assuntos
Ciclodextrinas , Fármacos Neuromusculares não Despolarizantes , gama-Ciclodextrinas , Humanos , Adulto , Sugammadex , Rocurônio , gama-Ciclodextrinas/química , Simulação de Dinâmica Molecular , Fármacos Neuromusculares não Despolarizantes/química , Androstanóis/química
17.
Carbohydr Polym ; 334: 122058, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553243

RESUMO

Global public health is seriously threatened by thrombotic disorders because of their high rates of mortality and disability. Most thrombolytic agents, especially protein-based pharmaceuticals, have a short half-life in circulation, reducing their effectiveness in thrombolysis. The creation of an intelligent drug delivery system that delivers medication precisely and releases it under regulated conditions at nearby thrombus sites is essential for effective thrombolysis. In this article, we present a unique medication delivery system (MCRUA) that selectively targets platelets and releases drugs by stimulation from the thrombus' microenvironment. The thrombolytic enzyme urokinase-type plasminogen-activator (uPA) and the anti-inflammatory medication Aspirin (acetylsalicylic acid, ASA) are both loaded onto pH-sensitive CaCO3/cyclodextrin crosslinking metal-organic frameworks (MC) that make up the MCRUA system. c(RGD) is functionalized on the surface of MC, which is functionalized by RGD to an esterification reaction. Additionally, the thrombus site's acidic microenvironment causes MCRUA to disintegrate to release uPA for thrombolysis and aiding in vessel recanalization. Moreover, cyclodextrin-encapsulated ASA enables the treatment of the inflammatory environment within the thrombus, enhancing the antiplatelet aggregation effects and promoting cooperative thrombolysis therapy. When used for thrombotic disorders, our drug delivery system (MCRUA) promotes thrombolysis, suppresses rethrombosis, and enhances biosafety with fewer hemorrhagic side effects.


Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , Trombose , Humanos , Terapia Trombolítica , Ciclodextrinas/uso terapêutico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Trombose/tratamento farmacológico , Aspirina/farmacologia , Oligopeptídeos
18.
Carbohydr Polym ; 333: 121985, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494236

RESUMO

Sodium Sulfobutylether-ß-cyclodextrin (SBE-ß-CD) is a derivative of ß-cyclodextrin, characterized by its stereo structure, which closely resembles a truncated cone with a hydrophobic internal cavity. The solubility of insoluble substances within the hydrophobic cavity is significantly enhanced, reducing contact between the guest and the environment. Consequently, SBE-ß-CD is frequently employed as a co-solvent and stabilizer. As the research progresses, it has been observed that the inclusion of SBE-ß-CD is reversible and competitive. Besides, some inclusion complexes undergo distinct physicochemical property alterations compared to the guests. Additionally, certain guests exhibit varying inclusions with SBE-ß-CD at different concentrations. These features have contributed to the expanding applications. SBE-ß-CD finds widespread application in pharmaceutics as a protective agent and pKa regulator, in pharmaceutical analysis as a chiral substance separator, and in biomedical engineering for encapsulating dyes and modifying sensors. The article will elaborate in detail on the physicochemical properties of SBE-ß-CD, encapsulation principles, and factors influencing the formation of inclusion complexes. Furthermore, the review focuses on the application of SBE-ß-CD through encapsulation in pharmaceutics, pharmaceutical analysis, and biomedical engineering. Finally, the prospects and potential applications of SBE-ß-CD are discussed.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Excipientes , Solubilidade , Ciclodextrinas/química
19.
J Agric Food Chem ; 72(12): 6491-6499, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38500439

RESUMO

Efficient production of cyclodextrins (CDs) has always been challenging. CDs are primarily produced from starch via cyclodextrin glycosyltransferase (CGTase), which acts on α-1,4 glucosidic bonds; however, α-1,6 glucosidic bonds in starch suppress the enzymatic production of CDs. In this study, a glycogen debranching enzyme from Saccharolobus solfataricus STB09 (SsGDE) was utilized to promote the production of ß-CD by hydrolyzing α-1,6 glucosidic bonds. The addition of SsGDE (750 U/g of starch) at the liquefaction stage remarkably improved the ß-CD yield, with a 43.9% increase. Further mechanism exploration revealed that SsGDE addition could hydrolyze specific branches with less generation of byproducts, thereby promoting CD production. The chain segments of a degree of polymerization ≥13 produced by SsGDE debranching could also be utilized by ß-CGTase to convert into CDs. Overall, these findings proposed a new approach of combining SsGDE with ß-CGTase to enhance the CD yield.


Assuntos
Ciclodextrinas , Sistema da Enzima Desramificadora do Glicogênio , beta-Ciclodextrinas , Ciclodextrinas/química , Amido/química , Glucosiltransferases/química
20.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542499

RESUMO

Cyclodextrin-based nanosponges (CDNSs) are complex macromolecular structures composed of individual cyclodextrins (CDs) and nanochannels created between cross-linked CD units and cross-linkers. Due to their unique structural and physicochemical properties, CDNSs can possess even more beneficial pharmaceutical features than single CDs. In this comprehensive review, various aspects related to CDNSs are summarized. Particular attention was paid to overviewing structural properties, methods of synthesis, and physicochemical analysis of CDNSs using various analytical methods, such as DLS, PXRD, TGA, DSC, FT-IR, NMR, and phase solubility studies. Also, due to the significant role of CDNSs in pharmaceutical research and industry, aspects such as drug loading, drug release studies, and kinetics profile evaluation of drug-CDNS complexes were carefully reviewed. The aim of this paper is to find the relationships between the physicochemical features and to identify crucial characteristics that are influential for using CDNSs as convenient drug delivery systems.


Assuntos
Ciclodextrinas , Nanoestruturas , Ciclodextrinas/química , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Nanoestruturas/química , Sistemas de Liberação de Medicamentos/métodos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...