Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
Biomaterials ; 307: 122512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430646

RESUMO

Proteotoxic stress, caused by the accumulation of abnormal unfolded or misfolded cellular proteins, can efficiently activate inflammatory innate immune response. Initiating the mitochondrial proteotoxic stress might go forward to enable the cytosolic release of intramitochondrial DNA (mtDNA) for the immune-related mtDNA-cGAS-STING activation, which however is easily eliminated by a cell self-protection, i.e., mitophagy. In light of this, a nanoinducer (PCM) is reported to trigger mitophagy-inhibited cuproptotic proteotoxicity. Through a simple metal-phenolic coordination, PCMs reduce the original Cu2+ with the phenolic group of PEG-polyphenol-chlorin e6 (Ce6) into Cu+. Cu+ thereby performs its high binding affinity to dihydrolipoamide S-acetyltransferase (DLAT) and aggregates DLAT for cuproptotic proteotoxic stress and mitochondrial respiratory inhibition. Meanwhile, intracellular oxygen saved from the respiratory failure can be utilized by PCM-conjugated Ce6 to boost the proteotoxic stress. Next, PCM-loaded mitophagy inhibitor (Mdivi-1) protects proteotoxic products from being mitophagy-eliminated, which allows more mtDNA to be released in the cytosol and successfully stimulate the cGAS-STING signaling. In vitro and in vivo studies reveal that PCMs can upregulate the tumor-infiltrated NK cells by 24% and enhance the cytotoxic killing of effector T cells. This study proposes an anti-tumor immunotherapy through mitochondrial proteotoxicity.


Assuntos
DNA Mitocondrial , Neoplasias , Estresse Proteotóxico , Mitocôndrias , Nucleotidiltransferases , Imunoterapia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias/terapia
2.
Sci Adv ; 10(6): eadj6358, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324697

RESUMO

The Escherichia coli pyruvate dehydrogenase complex (PDHc) is a ~5 MDa assembly of the catalytic subunits pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). The PDHc core is a cubic complex of eight E2 homotrimers. Homodimers of the peripheral subunits E1 and E3 associate with the core by binding to the peripheral subunit binding domain (PSBD) of E2. Previous reports indicated that 12 E1 dimers and 6 E3 dimers bind to the 24-meric E2 core. Using an assembly arrested E2 homotrimer (E23), we show that two of the three PSBDs in the E23 dimerize, that each PSBD dimer cooperatively binds two E1 dimers, and that E3 dimers only bind to the unpaired PSBD in E23. This mechanism is preserved in wild-type PDHc, with an E1 dimer:E2 monomer:E3 dimer stoichiometry of 16:24:8. The conserved PSBD dimer interface indicates that PSBD dimerization is the previously unrecognized architectural determinant of gammaproteobacterial PDHc megacomplexes.


Assuntos
Di-Hidrolipoamida Desidrogenase , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Escherichia coli , Complexo Piruvato Desidrogenase , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/química , Di-Hidrolipoamida Desidrogenase/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Dimerização , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo
3.
Neurol Neuroimmunol Neuroinflamm ; 11(2): e200199, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181320

RESUMO

BACKGROUND AND OBJECTIVES: This study aimed to identify disease-related autoantibodies in the serum of patients with immune-mediated neuropathies including chronic inflammatory demyelinating polyneuropathy (CIDP) and to investigate the clinical characteristics of patients with these antibodies. METHODS: Proteins extracted from mouse brain tissue were used to react with sera from patients with CIDP by western blotting (WB) to determine the presence of common bands. Positive bands were then identified by mass spectrometry and confirmed for reactivity with patient sera using enzyme-linked immunosorbent assay (ELISA) and WB. Reactivity was further confirmed by cell-based and tissue-based indirect immunofluorescence assays. The clinical characteristics of patients with candidate autoantibody-positive CIDP were analyzed, and their association with other neurologic diseases was also investigated. RESULTS: Screening of 78 CIDP patient sera by WB revealed a positive band around 60-70 kDa identified as dihydrolipoamide S-acetyltransferase (DLAT) by immunoprecipitation and mass spectrometry. Serum immunoglobulin G (IgG) and IgM antibodies' reactivity to recombinant DLAT was confirmed using ELISA and WB. A relatively high reactivity was observed in 29 of 160 (18%) patients with CIDP, followed by patients with sensory neuropathy (6/58, 10%) and patients with MS (2/47, 4%), but not in patients with Guillain-Barré syndrome (0/27), patients with hereditary neuropathy (0/40), and healthy controls (0/26). Both the cell-based and tissue-based assays confirmed reactivity in 26 of 33 patients with CIDP. Comparing the clinical characteristics of patients with CIDP with anti-DLAT antibodies (n = 29) with those of negative cases (n = 131), a higher percentage of patients had comorbid sensory ataxia (69% vs 37%), cranial nerve disorders (24% vs 9%), and malignancy (20% vs 5%). A high DLAT expression was observed in human autopsy dorsal root ganglia, confirming the reactivity of patient serum with mouse dorsal root ganglion cells. DISCUSSION: Reactivity to DLAT was confirmed in patient sera, mainly in patients with CIDP. DLAT is highly expressed in the dorsal root ganglion cells, and anti-DLAT antibody may serve as a biomarker for sensory-dominant neuropathies.


Assuntos
Síndrome de Guillain-Barré , Doenças do Sistema Imunitário , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Animais , Camundongos , Acetiltransferases , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Autoanticorpos
4.
Cell Death Dis ; 14(11): 733, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37949877

RESUMO

Cuproptosis caused by copper overload is mediated by a novel regulatory mechanism that differs from previously documented mechanisms regulating cell death. Cells dependent on mitochondrial respiration showed increased sensitivity to a copper ionophore elesclomol that induced cuproptosis. Maternal embryonic leucine zipper kinase(MELK) promotes tumorigenesis and tumor progression through the PI3K/mTOR pathway, which exerts its effects partly by targeting the pyruvate dehydrogenase complex(PDHc) and reprogramming the morphology and function of mitochondria. However, the role of MELK in cuproptosis remains unclear. Here, we validated that elevated MELK expression enhanced the activity of PI3K/mTOR signaling and subsequently promoted Dihydrolipoamide S-Acetyltransferase (DLAT) expression and stabilized mitochondrial function. This regulatory effect helped to improve mitochondrial respiration, eliminate excessive intracellular reactive oxygen species (ROS), reduce intracellular oxidative stress/damage and the possibility of mitochondria-induced cell fate alternations, and ultimately promote the progression of HCC. Meanwhile, elesclomol reduced translocase of outer mitochondrial membrane 20(TOM 20) expression and increased DLAT oligomers. Moreover, the above changes of MELK to HCC were abolished by elesclomol. In conclusion, MELK enhanced the levels of the cuproptosis-related signature(CRS) gene DLAT (especially the proportion of DLAT monomer) by activating the PI3K/mTOR pathway, thereby promoting elesclomol drug resistance, altering mitochondrial function, and ultimately promoting HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose
5.
Aging (Albany NY) ; 15(21): 12314-12329, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37938155

RESUMO

OBJECTIVE: Renal clear cell carcinoma (ccRCC) is the most common type of renal cancer. Here we aim to explore the prognosis and immunotherapeutic value of copper death-related gene Dihydrolipoamide S-acetyltransferase (DLAT) in ccRCC. METHODS: The mRNA and protein expressions and methylation level of DLAT, as well as the relation of DLAT to survival prognosis, clinical characteristics, biological function, and immune microenvironment and responses in patients with ccRCC were evaluated using multiple databases. In addition, 75 paired ccRCC tissue samples and 3 kinds of cell lines were tested for experimental validation. RESULTS: Bioinformatics analysis of multiple databases, qRT-PCR, and western blot verified that DLAT expression in ccRCC was lower than that in paracancerous tissues. Patients with low expression of DLAT had a lower survival rate, worse clinical prognosis, stronger immune cell infiltration and expression of immunosuppressive points, and higher tumor immune dysfunction and exclusion (TIDE) scores. CONCLUSIONS: DLAT was identified as an independent prognostic factor in ccRCC and was closely related to the prognosis and immune responses of patients with ccRCC.


Assuntos
Apoptose , Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Biomarcadores , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Imunoterapia , Neoplasias Renais/genética , Neoplasias Renais/terapia , Prognóstico , Microambiente Tumoral/genética , Cobre
6.
Sci Rep ; 13(1): 17295, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828099

RESUMO

Cuproptosis is a new mechanism of cell death that differs from previously identified regulatory cell death mechanisms. Cuproptosis induction holds promise as a new tumour treatment. Therefore, we investigated the value of cuproptosis-related genes in the management of hepatocellular carcinoma (HCC). The cuproptosis-related gene Dihydrolipoamide S-Acetyltransferase (DLAT) were significantly upregulated in liver cancer tissues. High levels of DLAT were an independent prognostic factor for shorter overallsurvival (OS) time. DLAT and its related genes were mainly involved in cell metabolism, tumor progression and immune regulation. DLAT was significantly associated with the level of immune cell infiltration and immune checkpoints in HCC. HCC with high DLAT expression was predicted to be more sensitive to sorafenib treatment. The risk prognostic signature established based on DLAT and its related genes had a good prognostic value. The cuproptosis-related gene DLAT is a promising independent prognostic marker and therapeutic target in HCC. The new prognostic signature can effectively predict the prognosis of HCC patients.


Assuntos
Carcinoma Hepatocelular , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Prognóstico , Sorafenibe/uso terapêutico
7.
FASEB J ; 37(9): e23145, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584654

RESUMO

Cuproptosis, a newly discovered programmed cell death induced by copper ions, is associated with the progression and drug resistance of various tumors. Docetaxel plays a vital role as a first-line chemotherapeutic agent for advanced prostate cancer; however, most patients end up with prostate cancer progression because of inherent or acquired resistance. Herein, we examined the role of cuproptosis in the chemotherapeutic resistance of prostate cancer to docetaxel. We treated prostate cancer cell lines with elesclomol-CuCl2 , as well as with docetaxel. We performed analyses of CCK8, colony formation tests, cell cycle flow assay, transmission electron microscopy, and mTOR signaling in treated cells, and treated a xenograft prostate cancer model with elesclomol-CuCl2 and docetaxel in vivo, and performed immunohistochemistry and Western blotting analysis in treated tumors. We found that elesclomol-CuCl2 could promote cell death and enhance chemosensitivity to docetaxel. Elesclomol-CuCl2 induced cell death and inhibited the growth of prostate cancer cells relying on copper ions-induced cuproptosis, not elesclomol. In addition, dihydrolipoamide S-acetyltransferase (DLAT) was involved in cuproptosis-enhanced drug sensitivity to docetaxel. Mechanistically, upregulated DLAT by cuproptosis inhibited autophagy, promoted G2/M phase retention of cells, and enhanced the sensitivity to docetaxel chemotherapy in vitro and in vivo via the mTOR signaling pathway. Our findings demonstrated that the cuproptosis-regulated DLAT/mTOR pathway inhibited autophagy and promoted cells in G2/M phase retention, thus enhancing the chemosensitivity to docetaxel. This discovery may provide an effective therapeutic option for treating advanced prostate cancer by inhibiting the chemotherapeutic resistance to docetaxel.


Assuntos
Cobre , Neoplasias da Próstata , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/farmacologia , Cobre/farmacologia , Taxoides/farmacologia , Taxoides/uso terapêutico , Neoplasias da Próstata/metabolismo , Serina-Treonina Quinases TOR , Apoptose , Autofagia , Linhagem Celular Tumoral
8.
Redox Biol ; 65: 102841, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566945

RESUMO

Lipopolysaccharide (LPS) is a known inducer of inflammatory signaling which triggers generation of reactive oxygen species (ROS) and cell death in responsive cells like THP-1 promonocytes and freshly isolated human monocytes. A key LPS-responsive metabolic pivot point is the 9 MDa mitochondrial pyruvate dehydrogenase complex (PDC), which provides pyruvate dehydrogenase (E1), lipoamide-linked transacetylase (E2) and lipoamide dehydrogenase (E3) activities to produce acetyl-CoA from pyruvate. While phosphorylation-dependent decreases in PDC activity following LPS treatment or sepsis have been deeply investigated, redox-linked processes have received less attention. Data presented here demonstrate that LPS-induced reversible oxidation within PDC occurs in PDCE2 in both THP-1 cells and primary human monocytes. Knockout of PDCE2 by CRISPR and expression of FLAG-tagged PDCE2 in THP-1 cells demonstrated that LPS-induced glutathionylation is associated with wild type PDCE2 but not mutant protein lacking the lipoamide-linking lysine residues. Moreover, the mitochondrially-targeted electrophile MitoCDNB, which impairs both glutathione- and thioredoxin-based reductase systems, elevates ROS similar to LPS but does not cause PDCE2 glutathionylation. However, LPS and MitoCDNB together are highly synergistic for PDCE2 glutathionylation, ROS production, and cell death. Surprisingly, the two treatments together had differential effects on cytokine production; pro-inflammatory IL-1ß production was enhanced by the co-treatment, while IL-10, an important anti-inflammatory cytokine, dropped precipitously compared to LPS treatment alone. This new information may expand opportunities to understand and modulate PDC redox status and activity and improve the outcomes of pathological inflammation.


Assuntos
Lipopolissacarídeos , Estresse Oxidativo , Humanos , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação , Piruvatos , Citocinas/metabolismo
9.
Curr Med Sci ; 43(3): 526-538, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286711

RESUMO

OBJECTIVE: Cuproptosis is a novel cell death pathway that was newly discovered in early 2022. However, cuproptosis is still in its infancy in many respects and warrants further research in hepatocellular carcinoma (HCC). This study aimed to analyze the mechanism of cuprptosis in HCC. METHODS: Herein, the tumor microenvironment infiltration landscape of molecular subtypes was illustrated using GSVA, ssGSEA, TIMER, CIBERSORT, and ESTIMATE algorithms based on the expression profile of cuproptosis-related genes (CRGs) from TCGA and GEO databases. Then, the least absolute shrinkage and selection operator regression method was applied to construct a cuproptosis signature to quantify the cuproptosis profile of HCC. Further, we explored the expression of three hub CRGs in cell lines and clinical patient tissues of HCC by Western blotting, qRT-PCR and immunohistochemistry. Finally, we examined the function of dihydrolipoamide S-acetyltransferase (DLAT) in cuproptosis in HCC by loss-of-function strategy, Western blotting and CCK8 assay. RESULTS: Three distinct molecular subtypes were identified. Cluster 2 had the greatest infiltration of immune cells with best prognosis. The cuproptosis signature was indicative of tumor subtype, immunity, and prognosis for HCC, and specifically, a low cuproptosis score foreshadowed good prognosis. DLAT was highly expressed in liver cancer cell lines and HCC tissues and positively correlated with clinical stage and grade. We also found that potent copper ionophore elesclomol could induce cuproptosis in a copper-dependent manner. Selective Cu++ chelator ammonium tetrathiomolybdate and downregulating DLAT expression by siRNA could effectively inhibit cuproptosis. CONCLUSION: Cuproptosis and DLAT as a promising biomarker could help to determine the prognosis of HCC and may offer novel insights for effective treatment.


Assuntos
Apoptose , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Cobre , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Microambiente Tumoral
10.
BMC Cancer ; 23(1): 560, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330494

RESUMO

BACKGROUND: Cuproptosis is a regulated cell death form associated with tumor progression, clinical outcomes, and immune response. However, the role of cuproptosis in pancreatic adenocarcinoma (PAAD) remains unclear. This study aims to investigate the implications of cuproptosis-related genes (CRGs) in PAAD by integrated bioinformatic methods and clinical validation. METHODS: Gene expression data and clinical information were downloaded from UCSC Xena platform. We analyzed the expression, mutation, methylation, and correlations of CRGs in PAAD. Then, based on the expression profiles of CRGs, patients were divided into 3 groups by consensus clustering algorithm. Dihydrolipoamide acetyltransferase (DLAT) was chosen for further exploration, including prognostic analysis, co-expression analysis, functional enrichment analysis, and immune landscape analysis. The DLAT-based risk model was established by Cox and LASSO regression analysis in the training cohort, and then verified in the validation cohort. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) assays were performed to examine the expression levels of DLAT in vitro and in vivo, respectively. RESULTS: Most CRGs were highly expressed in PAAD. Among these genes, increased DLAT could serve as an independent risk factor for survival. Co-expression network and functional enrichment analysis indicated that DLAT was engaged in multiple tumor-related pathways. Moreover, DLAT expression was positively correlated with diverse immunological characteristics, such as immune cell infiltration, cancer-immunity cycle, immunotherapy-predicted pathways, and inhibitory immune checkpoints. Submap analysis demonstrated that DLAT-high patients were more responsive to immunotherapeutic agents. Notably, the DLAT-based risk score model possessed high accuracy in predicting prognosis. Finally, the upregulated expression of DLAT was verified by RT-qPCR and IHC assays. CONCLUSIONS: We developed a DLAT-based model to predict patients' clinical outcomes and demonstrated that DLAT was a promising prognostic and immunological biomarker in PAAD, thereby providing a new possibility for tumor therapy.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Prognóstico , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Biomarcadores , Cobre , Apoptose , Neoplasias Pancreáticas
11.
Front Immunol ; 14: 1145080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180167

RESUMO

Background: The role of copper in cancer treatment is multifaceted, with copper homeostasis-related genes associated with both breast cancer prognosis and chemotherapy resistance. Interestingly, both elimination and overload of copper have been reported to have therapeutic potential in cancer treatment. Despite these findings, the exact relationship between copper homeostasis and cancer development remains unclear, and further investigation is needed to clarify this complexity. Methods: The pan-cancer gene expression and immune infiltration analysis were performed using the Cancer Genome Atlas Program (TCGA) dataset. The R software packages were employed to analyze the expression and mutation status of breast cancer samples. After constructing a prognosis model to separate breast cancer samples by LASSO-Cox regression, we examined the immune statement, survival status, drug sensitivity and metabolic characteristics of the high- and low-copper related genes scoring groups. We also studied the expression of the constructed genes using the human protein atlas database and analyzed their related pathways. Finally, copper staining was performed with the clinical sample to investigate the distribution of copper in breast cancer tissue and paracancerous tissue. Results: Pan-cancer analysis showed that copper-related genes are associated with breast cancer, and the immune infiltration profile of breast cancer samples is significantly different from that of other cancers. The essential copper-related genes of LASSO-Cox regression were ATP7B (ATPase Copper Transporting Beta) and DLAT (Dihydrolipoamide S-Acetyltransferase), whose associated genes were enriched in the cell cycle pathway. The low-copper related genes scoring group presented higher levels of immune activation, better probabilities of survival, enrichment in pathways related to pyruvate metabolism and apoptosis, and higher sensitivity to chemotherapy drugs. Immunohistochemistry staining showed high protein expression of ATP7B and DLAT in breast cancer samples. The copper staining showed copper distribution in breast cancer tissue. Conclusion: This study displayed the potential impacts of copper-related genes on the overall survival, immune infiltration, drug sensitivity and metabolic profile of breast cancer, which could predict patients' survival and tumor statement. These findings may serve to support future research efforts aiming at improving the management of breast cancer.


Assuntos
Neoplasias da Mama , ATPases Transportadoras de Cobre , Cobre , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Humanos , Cobre/análise , Cobre/metabolismo , Perfilação da Expressão Gênica , Análise de Sobrevida , ATPases Transportadoras de Cobre/análise , ATPases Transportadoras de Cobre/genética , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/análise , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Prognóstico , Resistencia a Medicamentos Antineoplásicos , Modelos Biológicos
12.
Aging (Albany NY) ; 15(10): 4269-4287, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37199628

RESUMO

Lipoylated dihydrolipoamide S-acetyltransferase (DLAT), the component E2 of the multi-enzyme pyruvate dehydrogenase complex, is one of the key molecules of cuproptosis. However, the prognostic value and immunological role of DLAT in pan-cancer are still unclear. Using a series of bioinformatics approaches, we studied combined data from different databases, including the Cancer Genome Atlas, Genotype Tissue-Expression, the Cancer Cell Line Encyclopedia, Human Protein Atlas, and cBioPortal to investigate the role of DLAT expression in prognosis and tumor immunity response. We also reveal the potential correlations between DLAT expression and gene alterations, DNA methylation, copy number variation (CNV), tumor mutational burden (TMB), microsatellite instability (MSI), tumor microenvironment (TME), immune infiltration levels, and various immune-related genes across different cancers. The results show that DLAT displays abnormal expression within most malignant tumors. Through gene set enrichment analysis (GSEA), we found that DLAT was significantly associated with immune-related pathways. Further, the expression of DLAT was also confirmed to be correlated with the tumor microenvironment and diverse infiltration of immune cells, especially tumor-associated macrophages (TAMs). In addition, we found that DLAT is co-expressed with genes encoding major histocompatibility complex (MHC), immunostimulators, immune inhibitors, chemokines, and chemokine receptors. Meanwhile, we demonstrate that DLAT expression is correlated with TMB in 10 cancers and MSI in 11 cancers. Our study reveals that DLAT plays an essential role in tumorigenesis and cancer immunity, which may be used to function as a prognostic biomarker and potential target for cancer immunotherapy.


Assuntos
Apoptose , Variações do Número de Cópias de DNA , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias , Humanos , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico , Microambiente Tumoral/genética , Cobre
13.
PeerJ ; 11: e15019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949759

RESUMO

Background: Studies have shown that the expressions and working mechanisms of Dihydrolipoamide S-acetyltransferase (DLAT) in different cancers vary. It is necessary to analyze the expressions and regulatory roles of DLAT in tumors systematically. Methods: Online public-platform literature on the relationships between DLAT expression levels and tumor prognosis, methylation status, genetic alteration, drug sensitivity, and immune infiltration has been reviewed. The literature includes such documents as The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), Tumor Immune Estimation Resource 2.0 (TIMER2.0), Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Receiver Operating Characteristic plotter (ROC plotter). The molecular mechanisms of DLAT were explored with the Gene Set Enrichment Analysis (GSEA). The relationship between down-regulated DLAT and autophagy in two liver hepatocellular carcinoma (LIHC) cell lines was confirmed with the western blot method, colony formation assay, and transmission electron microscopy. Tissue microarrays were validated through the immunohistochemical staining of DLAT. Results: DLAT is upregulated in the LIHC, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and stomach adenocarcinoma (STAD) tumors but is down-regulated in the head and neck squamous cell carcinoma (HNSC) and kidney renal clear cell carcinoma (KIRC) tumors in comparison with normal tissues. For LIHC patients treated with 5-Fluorouracil and Lenvatinib, the DLAT levels of those in the drug-resistant group are significantly high. In LIHC cells, autophagy will be inhibited, and cell death will be induced when DLAT breaks down. Moreover, there exist positive correlations between DLAT expression levels and infiltration of B cells, DC cells, Tregs, and CD8+ T cells in kidney chromophobe (KICH), breast invasive carcinoma (BRCA), prostate adenocarcinoma (PRAD), LIHC and HPV+ HNSC. In LIHC, markers of Tregs are positively correlated with DLAT. Compared with those of normal tissues, the staining intensity of DLAT and the amount of Tregs marker CD49d in LIHC increase. Conclusions: Through this study, the expressions of DLAT in various cancer types can be understood comprehensively. It suggests that DLAT may be a prognostic marker for LIHC, LUAD, LUSC, STAD and KIRC. A high DLAT expression in LIHC may promote tumorigenesis by stimulating autophagy and inhibiting anti-tumor immunity.


Assuntos
Apoptose , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias , Humanos , Masculino , Adenocarcinoma de Pulmão/genética , Autofagia , Neoplasias da Mama/genética , Carcinoma Hepatocelular/genética , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Renais/genética , Carcinoma de Células Escamosas/genética , Cobre , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Neoplasias Renais/genética , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias Gástricas/genética
14.
Plant J ; 111(6): 1780-1800, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35899410

RESUMO

The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Acetilação , Carbono/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Lisina/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo
15.
Science ; 375(6586): 1254-1261, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298263

RESUMO

Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms.


Assuntos
Ciclo do Ácido Cítrico , Cobre/metabolismo , Cobre/toxicidade , Morte Celular Regulada , Animais , Respiração Celular , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Degeneração Hepatolenticular/metabolismo , Homeostase , Humanos , Hidrazinas/toxicidade , Ionóforos/toxicidade , Proteínas Ferro-Enxofre/metabolismo , Lipoilação , Redes e Vias Metabólicas , Camundongos , Mitocôndrias/metabolismo
16.
Hepatology ; 75(2): 266-279, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34608663

RESUMO

BACKGROUND AND AIMS: The increased frequency of urinary tract infections in patients with primary biliary cholangitis (PBC) and the cross-reactivity between the lipoyl domains (LD) of human pyruvate dehydrogenase complex (hPDC-E2) and Escherichia coli PDC-E2 (ePDC-E2) have long suggested a role of E. coli in causality of PBC. This issue, however, has remained speculative. We hypothesized that by generating specific constructs of human and E. coli PDC-E2, we would be able to assess the specificity of autoantibody responses and define whether exposure to E. coli in susceptible hosts is the basis for the antimitochondrial antibody (AMA) response. APPROACH AND RESULTS: Importantly, the reactivity of hPDC-E2 LD (hPDC-E2LD) affinity-purified antibodies against hPDC-E2LD could only be removed by prior absorption with hPDC-E2LD and not ePDC-E2, suggesting the presence of unique human PDC-E2 epitopes distinct from E. coli PDC-E2. To identify the autoepitope(s) present in hPDC-E2LD, a more detailed study using a variety of PDC-E2 constructs was tested, including the effect of lipoic acid (LA) on ePDC-E2 conformation and AMA recognition. Individual recombinant ePDCE2 LD domains LD1, LD2 and LD3 did not react with either AMA or antibodies to LA (anti-LA), but in contrast, anti-LA was readily reactive against purified recombinant LD1, LD2, and LD3 expressed in tandem (LP); such reactivity increased when LP was precultured with LA. Moreover, when the three LD (LD1, LD2, LD3) domains were expressed in tandem in pET28a or when LD1 was expressed in another plasmid pGEX, they were lipoylated and reactive to PBC sera. CONCLUSIONS: In conclusion, our data are consistent with an exposure to E. coli that elicits specific antibody to ePDC-E2 resulting in determinant spreading and the classic autoantibody to hPDC-E2LD. We argue this is the first step to development of human PBC.


Assuntos
Autoantígenos/imunologia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/imunologia , Infecções por Escherichia coli/complicações , Escherichia coli/imunologia , Cirrose Hepática Biliar/microbiologia , Mitocôndrias/imunologia , Proteínas Mitocondriais/imunologia , Autoanticorpos/sangue , Estudos de Casos e Controles , Reações Cruzadas/imunologia , Epitopos/imunologia , Escherichia coli/enzimologia , Hepatite Autoimune/sangue , Humanos , Lipoilação , Conformação Molecular/efeitos dos fármacos , Ácido Tióctico/imunologia , Ácido Tióctico/farmacologia
17.
Sci Rep ; 11(1): 21649, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737337

RESUMO

The E2 component of the mitochondrial pyruvate dehydrogenase complex (PDC) is the key autoantigen in primary biliary cholangitis (PBC) and STAT3 is an inflammatory modulator that participates in the pathogenesis of many liver diseases. This study investigated whether PDC-E2 interacts with STAT3 in human cholangiocytes (NHC) and hepatocytes (Hep-G2) under cholestatic conditions induced by glyco-chenodeoxycholic acid (GCDC). GCDC induced PDC-E2 expression in the cytoplasmic and nuclear fraction of NHC, whereas in Hep-G2 cells PDC-E2 expression was induced only in the cytoplasmic fraction. GCDC-treatment stimulated phosphorylation of STAT3 in the cytoplasmic fraction of NHC. siRNA-mediated gene silencing of PDC-E2 reduced the expression of pY-STAT3 in NHC but not in HepG2 cells. Immunoprecipitation and a proximity ligation assay clearly demonstrated that GCDC enhanced pY-STAT3 binding to PDC-E2 in the nuclear and cytoplasmic fraction of NHC cells. Staining with Mitotracker revealed mitochondrial co-localization of PDC-E2/pS-STAT3 complexes in NHC and Hep-G2 cells. In cirrhotic PBC livers the higher expression of both PDC-E2 and pY-STAT3 was observed. The immunoblot analysis demonstrated the occurrence of double bands of PDC-E2 protein in control livers, which was associated with a lower expression of pY-STAT3. Our data indicate the interaction between PDC-E2 and phosphorylated STAT3 under cholestatic conditions, which may play a role in the development of PBC.


Assuntos
Autoantígenos/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Fator de Transcrição STAT3/metabolismo , Autoantígenos/fisiologia , Ductos Biliares/patologia , Linhagem Celular , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/fisiologia , Células Epiteliais/metabolismo , Ácido Glicoquenodesoxicólico/farmacologia , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Immunoblotting/métodos , Imunoprecipitação/métodos , Fígado/patologia , Cirrose Hepática Biliar/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Complexo Piruvato Desidrogenase/fisiologia , Fator de Transcrição STAT3/fisiologia
18.
Nat Commun ; 12(1): 5277, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489474

RESUMO

The pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle by converting pyruvate into acetyl-coenzyme A. PDHc encompasses three enzymatically active subunits, namely pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Dihydrolipoyl transacetylase is a multidomain protein comprising a varying number of lipoyl domains, a peripheral subunit-binding domain, and a catalytic domain. It forms the structural core of the complex, provides binding sites for the other enzymes, and shuffles reaction intermediates between the active sites through covalently bound lipoyl domains. The molecular mechanism by which this shuttling occurs has remained elusive. Here, we report a cryo-EM reconstruction of the native E. coli dihydrolipoyl transacetylase core in a resting state. This structure provides molecular details of the assembly of the core and reveals how the lipoyl domains interact with the core at the active site.


Assuntos
Proteínas de Escherichia coli/química , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Domínios Proteicos , Complexo Piruvato Desidrogenase/isolamento & purificação , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Ácido Tióctico/metabolismo
19.
Cell Metab ; 33(3): 565-580.e7, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657393

RESUMO

Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Floroglucinol/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Termogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sítios de Ligação , Temperatura Baixa , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Humanos , Hypericum/química , Hypericum/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Floroglucinol/química , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Terpenos/química , Terpenos/metabolismo , Terpenos/uso terapêutico , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Nat Rev Gastroenterol Hepatol ; 17(2): 93-110, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31819247

RESUMO

Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.


Assuntos
Autoimunidade/imunologia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/imunologia , Cirrose Hepática Biliar/imunologia , Imunidade Adaptativa/imunologia , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/uso terapêutico , Antiportadores de Cloreto-Bicarbonato/genética , Colagogos e Coleréticos/uso terapêutico , Progressão da Doença , Exposição Ambiental , Epigênese Genética , Humanos , Imunidade Inata/imunologia , Cirrose Hepática , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/metabolismo , MicroRNAs/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Simportadores/antagonistas & inibidores , Ácido Ursodesoxicólico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...