Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339218

RESUMO

The previous publication identified that pyruvate dehydrogenase E1 (PDHE1) positively regulated the process of male reproduction in M. nipponense through affecting the expressions of insulin-like androgenic gland hormone. The present study aimed to identify the potential male-reproduction-related genes that were regulated by PDHE1 through performing the transcriptome profiling analysis in the testis and androgenic gland after the knockdown of the expressions of PDHE1 by the injection of dsPDHE1. Both RNA-Seq and qPCR analysis identified the significant decreases in PDHE1 expressions in the testis and androgenic gland in dsPDHE1-injected prawns compared to those in dsGFP-injected prawns, indicating the efficiency of dsPDHE1 in the present study. Transcriptome profiling analysis identified 56 and 127 differentially expressed genes (DEGs) in the testis and androgenic gland, respectively. KEGG analysis revealed that the energy-metabolism-related pathways represented the main enriched metabolic pathways of DEGs in both the testis and androgenic gland, including pyruvate metabolism, the Citrate cycle (TCA cycle), Glycolysis/Gluconeogenesis, and the Glucagon signaling pathway. Thus, it is predicted that these metabolic pathways and the DEGs from these metabolic pathways regulated by PDHE1 may be involved in the regulation of male reproduction in M. nipponense. Furthermore, four genes were found to be differentially expressed in both the testis and androgenic gland, of which ribosomal protein S3 was down-regulated and uncharacterized protein LOC113829596 was up-regulated in both the testis and androgenic gland in dsPDHE1-injected prawns. The present study provided valuable evidence for the establishment of an artificial technique to regulate the process of male reproduction in M. nipponense.


Assuntos
Palaemonidae , Animais , Masculino , Palaemonidae/genética , Testículo/metabolismo , Piruvato Desidrogenase (Lipoamida)/genética , Androgênios/metabolismo , Perfilação da Expressão Gênica/métodos , Reprodução , Transcriptoma
2.
Artigo em Inglês | MEDLINE | ID: mdl-37730160

RESUMO

BACKGROUND: The altered cellular metabolism is one of the hallmarks of the cancer cells, favoring the process of aerobic glycolysis, known as the Warburg effect. The pyruvate dehydrogenase (PDH) complex is one of the elements involved in this metabolic process. The present study aims to evaluate the relationship between the transcriptional expression of PDHB and the risk of local recurrence in patients with oral cavity carcinomas. METHODS: We determined the transcriptional expression of PDHB in biopsies from 41 patients with oral cavity carcinomas treated with surgery. The PDHB expression was categorized according to the local control of the disease with a recursive partitioning analysis. RESULTS: During the follow-up period 13 patients (31.7%) had a local recurrence of the tumor. Considering local disease control as the dependent variable, the recursive partitioning analysis classified the patients in two categories according to high (n=16, 39.0%) or low (n=25, 61.0%) PDHB expression. Five-year local recurrence-free survival for patients with high PDHB expression was 84.8% (95% CI: 65.2-100%), and for patients with low expression it was 54.3% (95% CI: 34.3-74.2 %) (P=0.034). The results of multivariate analysis showed that patients with a low PDHB expression had a 4.90 times higher risk of local recurrence of the tumor (95% CI: 1.02-22.68, P=0.042). CONCLUSION: There is a relationship between the metabolic characteristics of the tumor and its aggressiveness. According to our results, patients with oral cavity carcinomas with low transcriptional expression levels of PDHB have a significantly higher risk of local tumor recurrence.


Assuntos
Carcinoma , Piruvato Desidrogenase (Lipoamida) , Humanos , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Boca/metabolismo , Piruvatos
3.
Exp Neurol ; 363: 114368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863478

RESUMO

Key metabolic enzymes not only regulate Glucose, lipid, amino acid metabolism to serve the cellular energy needs, but also modulate noncanonical or nonmetabolic signaling pathway such as gene expression, cell-cycle progression, DNA repair, apoptosis and cell proliferation in regulating the pathologic progression of disease. However, the role of glycometabolism in peripheral nerve axon regeneration is little known. In this study, we investigated the expression of Pyruvate dehydrogenase E1(PDH), a key enzyme linking glycolysis and the tricarboxylic acid (TCA) cycle, with qRT-PCR and found that pyruvate dehydrogenase beta subunit (Pdhb) is up-regulated at the early stage during peripheral nerve injury. The knockdown of Pdhb inhibits neurite outgrowth of primary DRG neurons in vitro and restrains axon regeneration of sciatic nerve after crush injury. Pdhb overexpression promoting axonal regeneration is reversed by knockdown of Monocarboxylate transporter 2(Mct2), a transporter involved in the transport and metabolism of lactate, indicating Pdhb promoting axon regeneration depends on lactate for energy supply. Given the nucleus-localization of Pdhb, further analysis revealed that Pdhb enhances the acetylation of H3K9 and affecting the expression of genes involved in arachidonic acid metabolism and Ras signaling pathway, such as Rsa-14-44 and Pla2g4a, thereby promoting axon regeneration. Collectively, our data indicates that Pdhb is a positive dual modulator of energy generation and gene expression in regulating peripheral axon regeneration.


Assuntos
Axônios , Regeneração Nervosa , Axônios/patologia , Regeneração Nervosa/fisiologia , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Expressão Gênica , Lactatos/metabolismo , Piruvatos/metabolismo
4.
Org Biomol Chem ; 21(8): 1755-1763, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723268

RESUMO

Suppression of pyruvate dehydrogenase complex (PDHc) is a mechanism for cancer cells to manifest the Warburg effect. However, recent evidence suggests that whether PDHc activity is suppressed or activated depends on the type of cancer. The PDHc E1 subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme, catalysing the first and rate-limiting step of PDHc; thus, there is a need for selective PDH E1 inhibitors. There is, however, inadequate understanding of the structure-activity relationship (SAR) and a lack of inhibitors specific for mammalian PDH E1. Our group have reported TPP analogues as TPP-competitive inhibitors to study the family of TPP-dependent enzymes. Most of these TPP analogues cannot be used to study PDHc in cells because (a) they inhibit all members of the family and (b) they are membrane-impermeable. Here we report derivatives of thiamine/TPP analogues that identify elements distinctive to PDH E1 for selectivity. Based on our SAR findings, we developed a series of furan-based thiamine analogues as potent, selective and membrane-permeable inhibitors of mammalian PDH E1. We envision that our SAR findings and inhibitors will aid work on using chemical inhibition to understand the oncogenic role of PDHc.


Assuntos
Tiamina Pirofosfato , Tiamina , Animais , Tiamina Pirofosfato/metabolismo , Relação Estrutura-Atividade , Piruvato Desidrogenase (Lipoamida)/metabolismo , Difosfatos , Piruvatos , Complexo Piruvato Desidrogenase/metabolismo , Mamíferos/metabolismo
5.
Zh Nevrol Psikhiatr Im S S Korsakova ; 122(9. Vyp. 2): 27-31, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36170095

RESUMO

Deficiency of the pyruvate dehydrogenase complex E1-alpha subunit is a rare genetic disease with X-linked dominant inheritance. The clinical spectrum of the disease is extremely wide: from lethal forms in children of the first year of life with lactic acidosis to chronic neurological manifestations with structural changes in the central nervous system without increasing the level of lactate in the blood. The authors report a case of this disease in a preschool child and present the results of laboratory and instrumental studies. The importance of early diagnosis of the disease is emphasized.


Assuntos
Epilepsia , Transtornos dos Movimentos , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Pré-Escolar , Epilepsia/complicações , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Lactatos , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/complicações , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
6.
J Cell Mol Med ; 26(19): 5078-5094, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071546

RESUMO

Abnormal nuclear structure caused by dysregulation of skeletal proteins is a common phenomenon in tumour cells. However, how skeletal proteins promote tumorigenesis remains uncovered. Here, we revealed the mechanism by which skeletal protein Emerin (EMD) promoted glucose metabolism to induce lung adenocarcinoma (LUAD). Firstly, we identified that EMD was highly expressed and promoted the malignant phenotypes in LUAD. The high expression of EMD might be due to its low level of ubiquitination. Additionally, the ISGylation at lysine 37 of EMD inhibited lysine 36 ubiquitination and upregulated EMD stability. We further explored that EMD could inhibit aerobic oxidation and stimulate glycolysis. Mechanistically, via its ß-catenin interaction domain, EMD bound with PDHA, stimulated serine 293 and 300 phosphorylation and inhibited PDHA expression, facilitated glycolysis of glucose that should enter the aerobic oxidation pathway, and EMD ISGylation was essential for EMD-PDHA interaction. In clinical LUAD specimens, EMD was negatively associated with PDHA, while positively associated with EMD ISGylation, tumour stage and diameter. In LUAD with higher glucose level, EMD expression and ISGylation were higher. Collectively, EMD was a stimulator for LUAD by inhibiting aerobic oxidation via interacting with PDHA. Restricting cancer-promoting role of EMD might be helpful for LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Glucose , Humanos , Neoplasias Pulmonares/patologia , Lisina , Proteínas de Membrana , Proteínas Nucleares , Piruvato Desidrogenase (Lipoamida) , Serina , beta Catenina
7.
Br J Biomed Sci ; 79: 10382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996497

RESUMO

Pyruvate dehydrogenase (PDH) deficiency is caused by a number of pathogenic variants and the most common are found in the PDHA1 gene. The PDHA1 gene encodes one of the subunits of the PDH enzyme found in a carbohydrate metabolism pathway involved in energy production. Pathogenic variants of PDHA1 gene usually impact the α-subunit of PDH causing energy reduction. It potentially leads to increased mortality in sufferers. Potential treatments for this disease include dichloroacetate and phenylbutyrate, previously used for other diseases such as cancer and maple syrup urine disease. However, not much is known about their efficacy in treating PDH deficiency. Effective treatment for PDH deficiency is crucial as carbohydrate is needed in a healthy diet and rice is the staple food for a large portion of the Asian population. This review analysed the efficacy of dichloroacetate and phenylbutyrate as potential treatments for PDH deficiency caused by PDHA1 pathogenic variants. Based on the findings of this review, dichloroacetate will have an effect on most PDHA1 pathogenic variant and can act as a temporary treatment to reduce the lactic acidosis, a common symptom of PDH deficiency. Phenylbutyrate can only be used on patients with certain pathogenic variants (p.P221L, p.R234G, p.G249R, p.R349C, p.R349H) on the PDH protein. It is hoped that the review would provide an insight into these treatments and improve the quality of lives for patients with PDH deficiency.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Fenilbutiratos/uso terapêutico , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
8.
J Chem Inf Model ; 62(14): 3463-3475, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35797142

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. The E1 component of the mitochondrial multienzyme PDC (PDC-E1) is a symmetric dimer of heterodimers (αß/α'ß') encoded by the PDHA1 and PDHB genes, with two symmetric active sites each consisting of highly conserved phosphorylation loops A and B. PDHA1 mutations are responsible for 82-88% of cases. Greater than 85% of E1α residues with disease-causing missense mutations (DMMs) are solvent-inaccessible, with ∼30% among those involved in subunit-subunit interface contact (SSIC). We performed molecular dynamics simulations of wild-type (WT) PDC-E1 and E1 variants with E1α DMMs at R349 and W185 (residues involved in SSIC), to investigate their impact on human PDC-E1 structure. We evaluated the change in E1 structure and dynamics and examined their implications on E1 function with the specific DMMs. We found that the dynamics of phosphorylation Loop A, which is crucial for E1 biological activity, changes with DMMs that are at least about 15 Å away. Because communication is essential for PDC-E1 activity (with alternating active sites), we also investigated the possible communication network within WT PDC-E1 via centrality analysis. We observed that DMMs altered/disrupted the communication network of PDC-E1. Collectively, these results indicate allosteric effect in PDC-E1, with implications for the development of novel small-molecule therapeutics for specific recurrent E1α DMMs such as replacements of R349 responsible for ∼10% of PDC deficiency due to E1α DMMs.


Assuntos
Piruvato Desidrogenase (Lipoamida) , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Mitocôndrias , Mutação , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/genética , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
9.
J Clin Endocrinol Metab ; 107(9): 2556-2570, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35731579

RESUMO

CONTEXT: Nephropathy is a severe complication of type 1 diabetes (T1DM). However, the interaction between the PDHA1-regulated mechanism and CD4+ T cells in the early stage of kidney tubular injury remains unknown. OBJECTIVE: To evaluate the role of PDHA1 in the regulation of tubular cells and CD4+ T cells and further to study its interaction in tubular cell injury in T1DM. METHODS: Plasma and total RNA were collected from T cells of T1DM patients (n = 35) and healthy donors (n = 33) and evaluated for neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1, PDHA1, and biomarkers of CD4+ T cells including T helper 1 cells (Th1) and regulatory T cells (Treg) markers. HK-2 cells cocultured with CD4+ T cells from T1DM patients or healthy donors (HDs) to evaluate the interaction with CD4+ T cells. RESULTS: Increased PDHA1 gene expression levels in CD4+ T cells were positively associated with the plasma level of NGAL in T1DM patients and HDs. Our data demonstrated that the Th1/Treg subsets skewed Th1 in T1DM. Knockdown of PDHA1 in kidney tubular cells decreased ATP/ROS production, NAD/NADH ratio, mitochondrial respiration, and cell apoptosis. Furthermore, PDHA1 depletion induced impaired autophagic flux. Coculture of tubular cells and T1DM T cells showed impaired CPT1A, upregulated FASN, and induced kidney injury. CONCLUSION: Our findings indicate that Th1 cells induced tubular cell injury through dysregulated metabolic reprogramming and autophagy, thereby indicating a new therapeutic approach for kidney tubular injury in T1DM.


Assuntos
Diabetes Mellitus Tipo 1 , Autofagia , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Rim/metabolismo , Túbulos Renais/metabolismo , Lipocalina-2 , Piruvato Desidrogenase (Lipoamida) , Linfócitos T
11.
Sci Rep ; 12(1): 2283, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145193

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary arterial hypertension (PAH) are two forms of pulmonary hypertension (PH) characterized by obstructive vasculopathy. Endothelial dysfunction along with metabolic changes towards increased glycolysis are important in PAH pathophysiology. Less is known about such abnormalities in endothelial cells (ECs) from CTEPH patients. This study provides a systematic metabolic comparison of ECs derived from CTEPH and PAH patients. Metabolic gene expression was studied using qPCR in cultured CTEPH-EC and PAH-EC. Western blot analyses were done for HK2, LDHA, PDHA1, PDK and G6PD. Basal viability of CTEPH-EC and PAH-EC with the incubation with metabolic inhibitors was measured using colorimetric viability assays. Human pulmonary artery endothelial cells (HPAEC) were used as healthy controls. Whereas PAH-EC showed significant higher mRNA levels of GLUT1, HK2, LDHA, PDHA1 and GLUD1 metabolic enzymes compared to HPAEC, CTEPH-EC did not. Oxidative phosphorylation associated proteins had an increased expression in PAH-EC compared to CTEPH-EC and HPAEC. PAH-EC, CTEPH-EC and HPAEC presented similar HOXD macrovascular gene expression. Metabolic inhibitors showed a dose-dependent reduction in viability in all three groups, predominantly in PAH-EC. A different metabolic profile is present in CTEPH-EC compared to PAH-EC and suggests differences in molecular mechanisms important in the disease pathology and treatment.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Embolia Pulmonar/genética , Embolia Pulmonar/metabolismo , Adulto , Idoso , Células Cultivadas , Doença Crônica , Feminino , Expressão Gênica , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Glicólise/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Fosforilação Oxidativa , Artéria Pulmonar/citologia , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo
12.
J Inherit Metab Dis ; 45(3): 557-570, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35038180

RESUMO

Pyruvate dehydrogenase complex deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. PDHA1 mutations are responsible for >82% of cases. The E1 component of PDC is a symmetric dimer of heterodimers (αß/α'ß') encoded by PDHA1 and PDHB. We measured solvent accessibility surface area (SASA), utilized nearest-neighbor analysis, incorporated sequence changes using mutagenesis tool in PyMOL, and performed molecular modeling with SWISS-MODEL, to investigate the impact of residues with disease-causing missense variants (DMVs) on E1 structure and function. We reviewed 166 and 13 genetically resolved cases due to PDHA1 and PDHB, respectively, from variant databases. We expanded on 102 E1α and 13 E1ß nonduplicate DMVs. DMVs of E1α Arg112-Arg224 stretch (exons 5-7) and of E1α Arg residues constituted 40% and 39% of cases, respectively, with invariant Arg349 accounting for 22% of arginine replacements. SASA analysis showed that 86% and 84% of residues with nonduplicate DMVs of E1α and E1ß, respectively, are solvent inaccessible ("buried"). Furthermore, 30% of E1α buried residues with DMVs are deleterious through perturbation of subunit-subunit interface contact (SSIC), with 73% located in the Arg112-Arg224 stretch. E1α Arg349 represented 74% of buried E1α Arg residues involved in SSIC. Structural perturbations resulting from residue replacements in some matched neighboring pairs of amino acids on different subunits involved in SSIC at 2.9-4.0 Å interatomic distance apart, exhibit similar clinical phenotype. Collectively, this work provides insight for future target-based advanced molecular modeling studies, with implications for development of novel therapeutics for specific recurrent DMVs of E1α.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Mutação , Mutação de Sentido Incorreto , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Solventes
13.
J Inherit Metab Dis ; 45(2): 248-263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873726

RESUMO

The vast clinical and radiological spectrum of pyruvate dehydrogenase complex (PDHc) deficiency continues to pose challenges both in diagnostics and disease monitoring. Prompt diagnosis is important to enable early initiation of ketogenic diet. The patients were recruited from an ongoing population-based study in Sweden. All patients with a genetically confirmed diagnosis who had been investigated with an MRI of the brain were included. Repeated investigations were assessed to study the evolution of the MRI changes. Sixty-two MRI investigations had been performed in 34 patients (23 females). The genetic cause was mutations in PDHA1 in 29, PDHX and DLAT in 2 each, and PDHB in 1. The lesions were prenatal developmental in 16, prenatal clastic in 18, and postnatal clastic in 15 individuals. Leigh-like lesions with predominant involvement of globus pallidus were present in 12, while leukoencephalopathy was present in 6 and stroke-like lesions in 3 individuals. A combination of prenatal developmental and clastic lesions was present in 15 individuals. In addition, one male with PDHA1 also had postnatal clastic lesions. The most common lesions found in our study were agenesis or hypoplasia of corpus callosum, ventriculomegaly, or Leigh-like lesions. Furthermore, we describe a broad spectrum of other MRI changes that include leukoencephalopathy and stroke-like lesions. We argue that a novel important clue, suggesting the possibility of PDHc deficiency on MRI scans, is the simultaneous presence of multiple lesions on MRI that have occurred during different phases of brain development.


Assuntos
Leucoencefalopatias , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Acidente Vascular Cerebral , Encéfalo/patologia , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Gravidez , Piruvato Desidrogenase (Lipoamida)/genética , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Acidente Vascular Cerebral/patologia
14.
Front Endocrinol (Lausanne) ; 12: 752501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790171

RESUMO

Pyruvate dehydrogenase E1 (PDHE1) is thought to play essential roles in energy metabolism, and a previous study suggested that it also has potential regulatory roles in male sexual development in the oriental river prawn, Macrobrachium nipponense. In this study, we used rapid amplification of cDNA ends, quantitative polymerase chain reaction (qPCR), in situ hybridization, western blotting, RNA interference (RNAi), and histological analyses to assess the potential functions of Mn-PDHE1 in the sexual development of male M. nipponense. The full cDNA sequence of Mn-PDHE1 was 1,614 base pairs long, including a 1,077 base pair open reading frame that encodes 358 amino acids. qPCR analysis revealed the regulatory functions of PDHE1 in male sexual development in M. nipponense and in the metamorphosis process. In situ hybridization and western blot results indicated that PDHE1 was involved in testis development, and RNAi analysis showed that PDHE1 positively regulated the expression of insulin-like androgenic gland factor in M. nipponense. Compared with the cell types in the testes of control prawns, histological analysis showed that the number of sperm was dramatically lower after test subjects were injected with Mn-PDHE1 dsRNA, whereas the numbers of spermatogonia and spermatocytes were higher. Sperm constituted only 1% of cells at 14 days after injection in the RNAi group. This indicated that knockdown of the expression of PDHE1 delayed testis development. Thus, PDHE1 has positive effects on male sexual development in M. nipponense. This study highlights the functions of PDHE1 in M. nipponense and its essential roles in the regulation of testis development.


Assuntos
Palaemonidae/metabolismo , Piruvato Desidrogenase (Lipoamida)/genética , Animais , DNA Complementar/biossíntese , DNA Complementar/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metamorfose Biológica/genética , Fases de Leitura Aberta/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Interferência de RNA , Caracteres Sexuais , Maturidade Sexual , Espermatócitos/metabolismo , Espermatogônias/metabolismo , Testículo/enzimologia , Testículo/crescimento & desenvolvimento
15.
Oncogene ; 40(49): 6692-6702, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34667275

RESUMO

Calcineurin is a calcium- and calmodulin-dependent serine/threonine protein phosphatase that connects the Ca2+-dependent signalling to multiple cellular responses. Calcineurin inhibitors (CNIs) have been widely used to suppress immune response in allograft patients. However, CNIs significantly increase cancer incidence in transplant recipients compared with the general population. Accumulating evidence suggests that CNIs may promote the malignant transformation of cancer cells in addition to its role in immunosuppression, but the underlying mechanisms remain poorly understood. Here, we show that calcineurin interacts with pyruvate dehydrogenase complex (PDC), a mitochondrial gatekeeper enzyme that connects two key metabolic pathways of cells, glycolysis and the tricarboxylic acid cycle. Mitochondrial-localized calcineurin dephosphorylates PDHA1 at Ser232, Ser293 and Ser300, and thus enhances PDC enzymatic activity, remodels cellular glycolysis and oxidative phosphorylation, and suppresses cancer cell proliferation. Hypoxia attenuates mitochondrial translocation of calcineurin to promote PDC inactivation. Moreover, CNIs promote metabolic remodelling and the Warburg effect by blocking calcineurin-mediated PDC activation in cancer cells. Our findings indicate that calcineurin is a critical regulator of mitochondrial metabolism and suggest that CNIs may promote tumorigenesis through inhibition of the calcineurin-PDC pathway.


Assuntos
Calcineurina/metabolismo , Glioblastoma/patologia , Glicólise , Fosforilação Oxidativa , Domínios e Motivos de Interação entre Proteínas , Piruvato Desidrogenase (Lipoamida)/metabolismo , Apoptose , Calcineurina/química , Calcineurina/genética , Inibidores de Calcineurina/farmacologia , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Fosforilação , Piruvato Desidrogenase (Lipoamida)/antagonistas & inibidores , Piruvato Desidrogenase (Lipoamida)/genética , Células Tumorais Cultivadas
16.
BMB Rep ; 54(11): 563-568, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34488935

RESUMO

Cancer cells predominantly generate energy via glycolysis, even in the presence of oxygen, to support abnormal cell proliferation. Suppression of PDHA1 by PDK1 prevents the conversion of cytoplasmic pyruvate into Acetyl-CoA. Several PDK inhibitors have been identified, but their clinical applications have not been successful for unclear reasons. In this study, endogenous PDHA1 in A549 cells was silenced by the CRISPR/Cas9 system, and PDHA1WT and PDHA13SD were transduced. Since PDHA13SD cannot be phosphorylated by PDKs, it was used to evaluate the specific activity of PDK inhibitors. This study highlights that PDHA1WT and PDHA13SD A549 cells can be used as a cell-based PDK inhibitor-distinction system to examine the relationship between PDH activity and cell death by established PDK inhibitors. Leelamine, huzhangoside A and otobaphenol induced PDH activity-dependent apoptosis, whereas AZD7545, VER-246608 and DCA effectively enhanced PDHA1 activity but little toxic to cancer cells. Furthermore, the activity of phosphomimetic PDHA1 revealed the complexity of its regulation, which requires further in-depth investigation. [BMB Reports 2021; 54(11): 563-568].


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Avaliação de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/patologia , Piruvato Desidrogenase (Lipoamida)/antagonistas & inibidores , Células A549 , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Inibidores Enzimáticos/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Fosforilação
17.
Life Sci ; 284: 119885, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34384830

RESUMO

AIMS: Pyruvate dehydrogenase E1A (PDH-E1A) is one of the key regulators of metabolic pathways that determines pyruvate entry into the citric acid cycle or glycolysis. When PDH-E1A is phosphorylated (P-PDH-E1A), it loses its activity, shifting the metabolism towards glycolysis. Breast cancer (BC) is a highly heterogeneous disease by which different breast cancer subtypes acquire distinct metabolic profiles. Assessing PDH-E1A and P-PDH-E1A expressions among BC subtypes might reveal their association with the distinct molecular profiles of BCs. METHODS: The expressions of PDH-E1A and P-PDH-E1A were investigated in BC cell lines and 115 BC tissues using Western blot and immunohistochemistry, respectively. Besides, PDHE1A mRNA expression was assessed in 1084 BCE patients' transcriptomics data retrieved from Cancer Genome Atlas database. Statistical analyses were performed to assess the correlation of PDH-E1A and P-PDH-E1A expressions with patients' clinicopathological characteristics. Kaplan-Meier method was used to evaluate their prognostic value. KEY FINDINGS: Multivariate analysis revealed a significant association between PDH-E1A/P-PDH-E1A expressions and the molecular subtype, histological type, and tumor size of breast cancer tissues. The hormonal receptors (ER and PR), HER-2, and Ki67 protein expressions were significantly associated with PDH-E1A and P-PDH-E1A protein expressions. Similar findings were observed when PDHA1 mRNA expression was assessed. The increased protein expression of PDH-E1A could be an independent prognostic factor for unfavorable overall survival (OS). In contrast, high PDHA1 mRNA expression had better OS. SIGNIFICANCE: This study revealed the differential expression of PDH-E1A and P-PDH-E1A among breast cancer subtypes and suggested PDH-E1A expression as a prognostic factor for BC patients' OS.


Assuntos
Neoplasias da Mama/enzimologia , Piruvato Desidrogenase (Lipoamida)/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/metabolismo , Transcriptoma/genética
18.
Nutrients ; 13(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34371916

RESUMO

White adipose tissue (WAT) is a dynamic endocrine organ that can play a significant role in thermoregulation. WAT has the capacity to adopt structural and functional characteristics of the more metabolically active brown adipose tissue (BAT) and contribute to non-shivering thermogenesis under specific stimuli. Non-shivering thermogenesis was previously thought to be uncoupling protein 1 (UCP1)-dependent however, recent evidence suggests that UCP1-independent mechanisms of thermogenesis exist. Namely, futile creatine cycling has been identified as a contributor to WAT thermogenesis. The purpose of this study was to examine the efficacy of creatine supplementation to alter mitochondrial markers as well as adipocyte size and multilocularity in inguinal (iWAT), gonadal (gWAT), and BAT. Thirty-two male and female Sprague-Dawley rats were treated with varying doses (0 g/L, 2.5 g/L, 5 g/L, and 10 g/L) of creatine monohydrate for 8 weeks. We demonstrate that mitochondrial markers respond in a sex and depot specific manner. In iWAT, female rats displayed significant increases in COXIV, PDH-E1alpha, and cytochrome C protein content. Male rats exhibited gWAT specific increases in COXIV and PDH-E1alpha protein content. This study supports creatine supplementation as a potential method of UCP1-independant thermogenesis and highlights the importance of taking a sex-specific approach when examining the efficacy of browning therapeutics in future research.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Creatina/farmacologia , Suplementos Nutricionais , Mitocôndrias/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Masculino , Mitocôndrias/metabolismo , Piruvato Desidrogenase (Lipoamida) , Ratos Sprague-Dawley , Fatores Sexuais , Proteína Desacopladora 1/metabolismo
19.
J Cell Mol Med ; 25(17): 8201-8214, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34418283

RESUMO

Hydrogen sulphide (H2 S) inhibits vascular smooth muscle cell (VSMC) proliferation induced by hyperglycaemia and hyperlipidaemia; however, the mechanisms are unclear. Here, we observed lower H2 S levels and higher expression of the proliferation-related proteins PCNA and cyclin D1 in db/db mouse aortae and vascular smooth muscle cells treated with 40 mmol/L glucose and 500 µmol/L palmitate, whereas exogenous H2 S decreased PCNA and cyclin D1 expression. The nuclear translocation of mitochondrial pyruvate dehydrogenase complex-E1 (PDC-E1) was significantly increased in VSMCs treated with high glucose and palmitate, and it increased the level of acetyl-CoA and histone acetylation (H3K9Ac). Exogenous H2 S inhibited PDC-E1 translocation from the mitochondria to the nucleus because PDC-E1 was modified by S-sulfhydration. In addition, PDC-E1 was mutated at Cys101. Overexpression of PDC-E1 mutated at Cys101 increased histone acetylation (H3K9Ac) and VSMC proliferation. Based on these findings, H2 S regulated PDC-E1 S-sulfhydration at Cys101 to prevent its translocation from the mitochondria to the nucleus and to inhibit VSMC proliferation under diabetic conditions.


Assuntos
Núcleo Celular , Diabetes Mellitus , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias , Proteínas Mitocondriais/metabolismo , Piruvato Desidrogenase (Lipoamida)/metabolismo , Animais , Técnicas de Cultura de Células , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso
20.
Cell Biol Int ; 45(10): 2140-2149, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34288231

RESUMO

Ovarian cancer (OC) is a common reason for gynecologic cancer death. Standard treatments of OC consist of surgery and chemotherapy. However, chemoresistance should be considered. Exosomal miR-21-5p has been shown to regulate the chemosensitivity of cancer cells through regulating pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1). However, the role of miR-21-5p/PDHA1 in OC is unclear. The levels of miR-21-5p and PDHA1 in clinical samples and cells were investigated. Exosomes derived from SKOV3/cisplatin (SKOV3/DDP) cells (DDP-Exos) were isolated and used to treat SKOV3 cells to test DDP-Exos effects on SKOV3 cells. Extracellular acidification rate and oxygen consumption rate were tested with a Seahorse analyzer. Cell apoptosis was analyzed by a flow cytometer. PDHA1 was overexpressed and miR-21-5p was silenced in SKOV3 cells to study the underlying mechanism of miR-21-5p in OC. Quantitative real-time PCR and immunoblots were applied to measure gene expression at mRNA and protein levels. The levels of PDHA1 in DDP-resistant SKOV3 or tumor tissues were significantly decreased while the levels of miR-21-5p were remarkably upregulated. miR-21-5p in DDP-Exos was sharply increased compared to that of Exos. Data also indicated that DDP-Exos treatment suppressed the sensitivity of SKOV3 cells to DDP and promoted cell viability and glycolysis of SKOV3 cells through inhibiting PDHA1 by exosomal miR-21-5p. miR-21-5p derived from DDP-resistant SKOV3 OC cells promotes glycolysis and inhibits chemosensitivity of its progenitor SKOV3 cells by targeting PDHA1. Our data highlights the important role of miR-21-5p/PDHA1 axis in OC and sheds light on new therapeutic development.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Exossomos/genética , Glicólise , MicroRNAs/genética , Neoplasias Ovarianas/tratamento farmacológico , Piruvato Desidrogenase (Lipoamida)/metabolismo , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Piruvato Desidrogenase (Lipoamida)/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...