Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.795
Filtrar
1.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612966

RESUMO

Relative to carbohydrate (CHO) alone, exogenous ketones followed by CHO supplementation during recovery from glycogen-lowering exercise have been shown to increase muscle glycogen resynthesis. However, whether this strategy improves subsequent exercise performance is unknown. The objective of this study was to assess the efficacy of ketone monoester (KME) followed by CHO ingestion after glycogen-lowering exercise on subsequent 20 km (TT20km) and 5 km (TT5km) best-effort time trials. Nine recreationally active men (175.6 ± 5.3 cm, 72.9 ± 7.7 kg, 28 ± 5 y, 12.2 ± 3.2% body fat, VO2max = 56.2 ± 5.8 mL· kg BM-1·min-1; mean ± SD) completed a glycogen-lowering exercise session, followed by 4 h of recovery and subsequent TT20km and TT5km. During the first 2 h of recovery, participants ingested either KME (25 g) followed by CHO at a rate of 1.2 g·kg-1·h-1 (KME + CHO) or an iso-energetic placebo (dextrose) followed by CHO (PLAC + CHO). Blood metabolites during recovery and performance during the subsequent two-time trials were measured. In comparison to PLAC + CHO, KME + CHO displayed greater (p < 0.05) blood beta-hydroxybutyrate concentration during the first 2 h, lower (p < 0.05) blood glucose concentrations at 30 and 60 min, as well as greater (p < 0.05) blood insulin concentration 2 h following ingestion. However, no treatment differences (p > 0.05) in power output nor time to complete either time trial were observed vs. PLAC + CHO. These data indicate that the metabolic changes induced by KME + CHO ingestion following glycogen-lowering exercise are insufficient to enhance subsequent endurance time trial performance.


Assuntos
Glicogênio , Estado Nutricional , Masculino , Humanos , Ácido 3-Hidroxibutírico , Cetonas , Ingestão de Alimentos
2.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613036

RESUMO

The liver plays a crucial role in glucose metabolism. Obesity and a diet rich in fats (HFD) contribute to the accumulation of intracellular lipids. The aim of the study was to explore the involvement of acyl-CoA synthetase 1 (ACSL1) in bioactive lipid accumulation and the induction of liver insulin resistance (InsR) in animals fed an HFD. The experiments were performed on male C57BL/6 mice divided into the following experimental groups: 1. Animals fed a control diet; 2. animals fed HFD; and 3. HFD-fed animals with the hepatic ACSL1 gene silenced through a hydrodynamic gene delivery technique. Long-chain acyl-CoAs, sphingolipids, and diacylglycerols were measured by LC/MS/MS. Glycogen was measured by means of a commercially available kit. The protein expression and phosphorylation state of the insulin pathway was estimated by Western blot. HFD-fed mice developed InsR, manifested as an increase in fasting blood glucose levels (202.5 mg/dL vs. 130.5 mg/dL in the control group) and inhibition of the insulin pathway, which resulted in an increase in the rate of gluconeogenesis (0.420 vs. 0.208 in the control group) and a decrease in the hepatic glycogen content (1.17 µg/mg vs. 2.32 µg/mg in the control group). Hepatic ACSL1 silencing resulted in decreased lipid content and improved insulin sensitivity, accounting for the decreased rate of gluconeogenesis (0.348 vs. 0.420 in HFD(+/+)) and the increased glycogen content (4.3 µg/mg vs. 1.17 µg/mg in HFD(+/+)). The elevation of gluconeogenesis and the decrease in glycogenesis in the hepatic tissue of HFD-fed mice resulted from cellular lipid accumulation. Inhibition of lipid synthesis through silencing ACSL1 alleviated HFD-induced hepatic InsR.


Assuntos
Resistência à Insulina , Insulinas , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Fígado , Diglicerídeos , Glicogênio
3.
J Int Soc Sports Nutr ; 21(1): 2336095, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38576169

RESUMO

PURPOSE: Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS: The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS: Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION: Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.


Assuntos
Alho , Glicogênio , Humanos , Glicogênio/metabolismo , Antioxidantes/metabolismo , Alho/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético , Suplementos Nutricionais , RNA Mensageiro/metabolismo , Mitocôndrias/metabolismo , Glicemia/metabolismo
4.
Int J Biol Macromol ; 265(Pt 1): 130667, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453106

RESUMO

Glycogen is a naturally occurring or metabolically synthesized biological macromolecule found in a wide range of living organisms, including animals, microorganisms, and even plants. However, naturally sourced glycogen poses challenges for industrial use. This study focused on a biological macromolecule referred to as glycogen-like particles (GLPs), detailing the production methods and biological properties of these particles. In vitro enzymatic production of GLPs was successfully achieved. GLPs synthesized through a simultaneous enzymatic reaction using sucrose had significant changes in their structure and functionality based on the branching enzyme (BE) to amylosucrase (ASase) ratio. As this ratio increased, the GLPs developed higher molecular weights and greater density, solubility, and branching degree while reducing size and turbidity. Structural changes in these enzymes were not observed beyond a critical BE/ASase ratio. Uniformly dispersed curcumin powder was generated in 50 % (w/v) aqueous GLP solution, and the GLPs were non-toxic to human skin keratinocytes at a concentration of 2.5 mg/mL. GLPs with lower branching inhibited tyrosinase activity and melanin synthesis, while those with more long chains displayed effective UV-blocking. By manipulating the BE/ASase ratio, GLPs were shown to display diverse chemical structures and physical characteristics, suggesting their potential application in the food and cosmetics industries.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Cosméticos , Humanos , Glicogênio/química , Pele
5.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534311

RESUMO

Autophagy was initially recognized as a bulk degradation process that randomly sequesters and degrades cytoplasmic material in lysosomes (vacuoles in yeast). In recent years, various types of selective autophagy have been discovered. Glycophagy, the selective autophagy of glycogen granules, is one of them. While autophagy of glycogen is an important contributor to Pompe disease, which is characterized by the lysosomal accumulation of glycogen, its selectivity is still a matter of debate. Here, we developed the Komagataella phaffii yeast as a simple model of glycogen autophagy under nitrogen starvation conditions to address the question of its selectivity. For this, we turned the self-glucosylating initiator of glycogen synthesis, Glg1, which is covalently bound to glycogen, into the Glg1-GFP autophagic reporter. Our results revealed that vacuolar delivery of Glg1-GFP and its processing to free GFP were strictly dependent on autophagic machinery and vacuolar proteolysis. Notably, this process was independent of Atg11, the scaffold protein common for many selective autophagy pathways. Importantly, the non-mutated Glg1-GFP (which synthesizes and marks glycogen) and mutated Glg1Y212F-GFP (which does not synthesize glycogen and is degraded by non-selective autophagy as cytosolic Pgk1-GFP) were equally well delivered to the vacuole and had similar levels of released GFP. Therefore, we concluded that glycogen autophagy is a non-selective process in K. phaffii yeast under nitrogen starvation conditions.


Assuntos
Nitrogênio , Saccharomyces cerevisiae , Saccharomycetales , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia , Glicogênio/metabolismo
6.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465947

RESUMO

Caenorhabditis elegans (C. elegans) is a transparent, non-parasitic nematode with a simple biology, which makes it a great tool for biological sciences teaching through the staining of the cells or their molecular content. Lugol dye (iodine-potassium iodide solution) has been widely used in biochemistry to stain glycogen stores. In this context, it is possible to observe differences between fed and starved animals, besides the effects of different conditions, such as different diets and oxygen levels. Erioglaucine is a blue dye that indicates the loss of the intestinal barrier. When the intestinal barrier is intact, the blue dye stains inside the lumen; however, when this integrity is disrupted, the dye leaks into the body cavity. Using a stereomicroscope or a microscope, teachers can demonstrate physiological and biochemical alterations, or they can instigate students to ask a scientific question and hypothesize and test their hypothesis using these assays. The present protocol describes two staining techniques in C. elegans that can be easily carried out by students.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Caenorhabditis elegans/fisiologia , Corantes , Coloração e Rotulagem , Glicogênio
7.
J Contam Hydrol ; 262: 104325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428349

RESUMO

Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 µg L-1) with a mean size of 15-25 µm and lead acetate Pb(C2H3O2)2 (0.0, 2.5, and 5 mg L-1), both individually and in combination, through the exposure of the freshwater grass shrimp, Caridinia fossarum for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.


Assuntos
Metais Pesados , Compostos Organometálicos , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos/toxicidade , Ecossistema , Chumbo , Polietileno/toxicidade , Água Doce , Glicogênio , Lipídeos , Poluentes Químicos da Água/toxicidade
9.
J Diabetes Res ; 2024: 5549762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435452

RESUMO

The etiology of insulin resistance (IR) development in type 1 diabetes mellitus (T1DM) remains unclear; however, impaired skeletal muscle metabolism may play a role. While IR development has been established in male T1DM rodents, female rodents have yet to be examined in this context. Resistance exercise training (RT) has been shown to improve IR and is associated with a lower risk of hypoglycemia onset in T1DM compared to aerobic exercise. The purpose of this study was to investigate the effects of RT on IR development in female T1DM rodents. Forty Sprague Dawley eight-week-old female rats were divided into four groups: control sedentary (CS; n = 10), control trained (CT; n = 10), T1DM sedentary (DS; n = 10), and T1DM trained (DT; n = 10). Multiple low-dose streptozotocin injections were used to induce T1DM. Blood glucose levels were maintained in the 4-9 mmol/l range with intensive insulin therapy. CT and DT underwent weighted ladder climbing 5 days/week for six weeks. Intravenous glucose tolerance tests (IVGTT) were conducted on all animals following the six-week period. Results demonstrate that DS animals exhibited significantly increased weekly blood glucose measures compared to all groups including DT (p < 0.0001), despite similar insulin dosage levels. This was concomitant with a significant increase in insulin-adjusted area under the curve following IVGTT in DS (p < 0.05), indicative of a reduction in insulin sensitivity. Both DT and DS exhibited greater serum insulin concentrations compared to CT and CS (p < 0.05). DS animals also exhibited significantly greater glycogen content in white gastrocnemius muscle compared to CS and DT (p < 0.05), whereas DT and DS animals exhibited greater p-Akt: Akt ratio in the white vastus lateralis muscle and citrate synthase activity in the red vastus lateralis muscle compared to CS and CT (p < 0.05). These results indicate that female rodents with T1DM develop poor glycemic control and IR which can be attenuated with RT, possibly related to differences in intramyocellular glycogen content.


Assuntos
Diabetes Mellitus Tipo 1 , Resistência à Insulina , Treinamento de Força , Feminino , Masculino , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Diabetes Mellitus Tipo 1/terapia , Glicemia , Proteínas Proto-Oncogênicas c-akt , Músculo Esquelético , Insulina , Glicogênio
10.
J Physiol ; 602(8): 1681-1702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502562

RESUMO

In skeletal muscle, glycogen particles are distributed both within and between myofibrils, as well as just beneath the sarcolemma. Their precise localisation may influence their degradation rate. Here, we investigated how exercise at different intensities and durations (1- and 15-min maximal exercise) with known variations in glycogenolytic rate and contribution from anaerobic metabolism affects utilisation of the distinct pools. Furthermore, we investigated how decreased glycogen availability achieved through lowering carbohydrate and energy intake after glycogen-depleting exercise affect the storage of glycogen particles (size, numerical density, localisation). Twenty participants were divided into two groups performing either a 1-min (n = 10) or a 15-min (n = 10) maximal cycling exercise test. In a randomised, counterbalanced, cross-over design, the exercise tests were performed following short-term consumption of two distinct diets with either high or moderate carbohydrate content (10 vs. 4 g kg-1 body mass (BM) day-1) mediating a difference in total energy consumption (240 vs. 138 g kg-1 BM day-1). Muscle biopsies from m. vastus lateralis were obtained before and after the exercise tests. Intermyofibrillar glycogen was preferentially utilised during the 1-min test, whereas intramyofibrillar glycogen was preferentially utilised during the 15-min test. Lowering carbohydrate and energy intake after glycogen-depleting exercise reduced glycogen availability by decreasing particle size across all pools and diminishing numerical density in the intramyofibrillar and subsarcolemmal pools. In conclusion, distinct subcellular glycogen pools were differentially utilised during 1-min and 15-min maximal cycling exercise. Additionally, lowered carbohydrate and energy consumption after glycogen-depleting exercise altered glycogen storage by reducing particle size and numerical density, depending on subcellular localisation. KEY POINTS: In human skeletal muscle, glycogen particles are localised in distinct subcellular compartments, referred to as intermyofibrillar, intramyofibrillar and subsarcolemmal pools. The intermyofibrillar and subsarcolemmal pools are close to mitochondria, while the intramyofibrillar pool is at a distance from mitochondria. We show that 1 min of maximal exercise is associated with a preferential utilisation of intermyofibrillar glycogen, and, on the other hand, that 15 min of maximal exercise is associated with a preferential utilisation of intramyofibrillar glycogen. Furthermore, we demonstrate that reduced glycogen availability achieved through lowering carbohydrate and energy intake after glycogen-depleting exercise is characterised by a decreased glycogen particle size across all compartments, with the numerical density only diminished in the intramyofibrillar and subsarcolemmal compartments. These results suggest that exercise intensity influences the subcellular pools of glycogen differently and that the dietary content of carbohydrates and energy is linked to the size and subcellular distribution of glycogen particles.


Assuntos
Glicogênio , Músculo Esquelético , Humanos , Glicogênio/metabolismo , Músculo Esquelético/fisiologia , Miofibrilas/metabolismo , Exercício Físico/fisiologia , Músculo Quadríceps/metabolismo , Carboidratos da Dieta/metabolismo
11.
Nat Metab ; 6(3): 494-513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443593

RESUMO

Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.


Assuntos
Astrócitos , Dor , Camundongos , Animais , Astrócitos/metabolismo , Dor/metabolismo , Dor/patologia , Neurônios/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Glicogênio/metabolismo
12.
J Mol Cell Cardiol ; 189: 83-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484473

RESUMO

Diabetic heart disease morbidity and mortality is escalating. No specific therapeutics exist and mechanistic understanding of diabetic cardiomyopathy etiology is lacking. While lipid accumulation is a recognized cardiomyocyte phenotype of diabetes, less is known about glycolytic fuel handling and storage. Based on in vitro studies, we postulated the operation of an autophagy pathway in the myocardium specific for glycogen homeostasis - glycophagy. Here we visualize occurrence of cardiac glycophagy and show that the diabetic myocardium is characterized by marked glycogen elevation and altered cardiomyocyte glycogen localization. We establish that cardiac glycophagy flux is disturbed in diabetes. Glycophagy may represent a potential therapeutic target for alleviating the myocardial impacts of metabolic disruption in diabetic heart disease.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Glicogênio/metabolismo , Autofagia , Diabetes Mellitus/metabolismo
13.
Biochem Biophys Res Commun ; 708: 149810, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531222

RESUMO

At present, the physiological roles of various hormones in fish glucose metabolism have been elucidated. Spexin, a 14-amino acids polypeptide, is highly conserved in many species and has functions such as reducing body weight and improving insulin resistance. In this paper, the open reading frame (ORF) of spx21 in grass carp (Ctenopharyngodon idella) was cloned, and the tissue distribution of spx1 and spx2, their direct and indirect regulatory effects on glucose metabolism of grass carp were investigated. The ORF of spx2 gene in grass carp was 279 bp in length. Moreover, spx1 was highly expressed in the adipose tissue, while spx2 was highly expressed in the brain. In vitro, SPX1 and SPX2 showed opposite effects on the glycolytic pathway in the primary hepatocytes. In vivo, intraperitoneal injection of SPX1 and SPX2 significantly reduced serum glucose levels and increased hepatopancreas glycogen contents. Meanwhile, SPX1 and SPX2 promoted the expression of key genes of glycolysis (pk) and glycogen synthesis (gys) in the hepatopancreas at 3 h post injection. As for indirect effects, 1000 nM SPX1 and SPX2 significantly increased insulin-mediated liver type phosphofructokinase (pfkla) mRNA expression and enhanced the inhibitory effects of insulin on glucose-6-phosphatase (g6pase), phosphoenolpyruvate carboxykinase (pepck), glycogen phosphorylase L (pygl) mRNA expression. Our results show that SPX1 and SPX2 have similar indirect effects on the regulation of glucose metabolism that enhance insulin activity, but they exhibit opposite roles in terms of direct effects.


Assuntos
Carpas , Glucose , Animais , Glucose/metabolismo , Carpas/metabolismo , Insulina , RNA Mensageiro/genética , Glicogênio , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
14.
Int J Biol Macromol ; 263(Pt 2): 130332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401580

RESUMO

Glycogen, a complex branched glucose polymer and a blood-sugar reservoir in animals, comprises small ß particles joined together into composite α particles. In diabetic animals, α particles fragment more easily than those in healthy animals. Finding evidence for or against postulated mechanisms for α-particle formation is thus important for diabetes research. Insight into this is obtained here using Monte-Carlo simulations, including addition and loss of glucose monomer, branching and debranching, based on earlier simulations which were in acceptable agreement with experiment [Zhang et al., Int J Biol Macromolecules 2018, 116, 264]. One postulated mechanism for α-particle formation is "budding": occasionally a glucan chain temporarily protrudes from the particle, and if its growing end is sufficiently far from its parent particle, it propagates to a new linked particle. We tested this by simulations in which an "artificial" bud (a chain extending well outside the average particle radius) is added to a glycogen molecule in a dynamic steady state, and the system allowed to evolve. In some simulations, the particle reached a new steady state having an irregular dumbbell shape: a rudimentary α particle. Thus 'budding' is a possible mechanism for α particles to form. If no simulations had shown this behaviour, it would have refuted the postulate.


Assuntos
Diabetes Mellitus , Glicogênio , Animais , Partículas alfa , Glucose , Glicemia
15.
Mol Metab ; 81: 101899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346589

RESUMO

OBJECTIVE: Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS: PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS: PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS: This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Camundongos , Ratos , Humanos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Terapia Genética/métodos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/terapia
16.
Am J Physiol Endocrinol Metab ; 326(3): E398-E406, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324260

RESUMO

Resveratrol, a natural polyphenol compound contained in numerous plants, has been proposed as a treatment for obesity-related disease processes such as insulin resistance. However, in humans there are conflicting results concerning the efficacy of resveratrol in improving insulin action; the purpose of the present study was to determine whether obesity status (lean, severely obese) affects the response to resveratrol in human skeletal muscle. Primary skeletal muscle cells were derived from biopsies obtained from age-matched lean and insulin-resistant women with severe obesity and incubated with resveratrol (1 µM) for 24 h. Insulin-stimulated glucose oxidation and incorporation into glycogen, insulin signal transduction, and energy-sensitive protein targets [AMP-activated protein kinase (AMPK), Sirt1, and PGC1α] were analyzed. Insulin-stimulated glycogen synthesis, glucose oxidation, and AMPK phosphorylation increased with resveratrol incubation compared with the nonresveratrol conditions (main treatment effect for resveratrol). Resveratrol further increased IRS1, Akt, and TBC1D4 insulin-stimulated phosphorylation and SIRT1 content in myotubes from lean women, but not in women with severe obesity. Resveratrol improves insulin action in primary human skeletal myotubes derived from lean women and women with severe obesity. In women with obesity, these improvements may be associated with enhanced AMPK phosphorylation with resveratrol treatment.NEW & NOTEWORTHY A physiologically relevant dose of resveratrol increases insulin-stimulated glucose oxidation and glycogen synthesis in myotubes from individuals with severe obesity. Furthermore, resveratrol improved insulin signal transduction in myotubes from lean individuals but not from individuals with obesity. Activation of AMPK plays a role in resveratrol-induced improvements in glucose metabolism in individuals with severe obesity.


Assuntos
Resistência à Insulina , Obesidade Mórbida , Humanos , Feminino , Obesidade Mórbida/metabolismo , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Obesidade/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Insulina/farmacologia , Insulina/metabolismo , Glucose/metabolismo , Resistência à Insulina/fisiologia , Glicogênio/metabolismo
17.
Epilepsy Res ; 200: 107317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341935

RESUMO

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy with onset during early adolescence. The disease is caused by mutations in EPM2A, encoding laforin, or EPM2B, encoding malin. Both proteins have functions that affect glycogen metabolism, including glycogen dephosphorylation by laforin and ubiquitination of enzymes involved in glycogen metabolism by malin. Lack of function of laforin or malin results in the accumulation of polyglucosan that forms Lafora bodies in the central nervous system and other tissues. Enzyme replacement therapy through intravenous administration of alglucosidase alfa (Myozyme®) has shown beneficial effects removing polyglucosan aggregates in Pompe disease. We evaluated the effectiveness of intracerebroventricular administration of alglucosidase alfa in the Epm2a-/- knock-out and Epm2aR240X knock-in mouse models of Lafora disease. Seven days after a single intracerebroventricular injection of alglucosidase alfa in 12-month-old Epm2a-/- and Epm2aR240X mice, the number of Lafora bodies was not reduced. Additionally, a prolonged infusion of alglucosidase alfa for 2 or 4 weeks in 6- and 9-month-old Epm2a-/- mice did not result in a reduction in the number of LBs or the amount of glycogen in the brain. These findings hold particular significance in guiding a rational approach to the utilization of novel therapies in Lafora disease.


Assuntos
Doença de Lafora , alfa-Glucosidases , Camundongos , Animais , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Glicogênio/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética
18.
Arch Biochem Biophys ; 753: 109920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307315

RESUMO

Revealing the potential of candidate drugs against different cancer types without disrupting normal cells depends on the drug mode of action. In the current study, the drug response of prostate cancer stem cells (PCSCs) to zoledronic acid (ZOL) grown in two-dimensional (2D) and three-dimensional (3D) culture systems was compared using Fourier transform-infrared (FT-IR) spectroscopy which is a vibrational spectroscopic technique, supporting by biochemical assays and imaging techniques. Based on our data, in 2D cell culture conditions, the ZOL treatment of PCSCs isolated according to both C133 and CD44 cell surface properties induced early/late apoptosis and suppressed migration ability. The CD133 gene expression and protein levels were altered, depending on culture systems. CD133 expression was significantly reduced in 2D cells upon ZOL treatment. FT-IR data revealed that the integrity, fluidity, and ordering/disordering states of the cell membrane and nucleic acid content were altered in both 2D and 3D cells after ZOL treatment. Regular protein structures decrease in 2D cells while glycogen and protein contents increase in 3D cells, indicating a more pronounced cytotoxic effect of ZOL for 2D cells. Untreated 3D PCSCs exhibited an even different spectral profile associated with IR signals of lipids, proteins, nucleic acids, and glycogen in comparison to untreated 2D cells. Our study revealed significant differences in the drug response and cellular constituents between 2D and 3D cells. Exploring molecular targets and/or drug-action mechanisms is significant in cancer treatment approaches; thus, FT-IR spectroscopy can be successfully applied as a novel drug-screening method in clinical research.


Assuntos
Neoplasias , Próstata , Masculino , Humanos , Ácido Zoledrônico/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Técnicas de Cultura de Células em Três Dimensões , Glicogênio , Células-Tronco Neoplásicas , Linhagem Celular Tumoral
19.
Scand J Med Sci Sports ; 34(2): e14571, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389143

RESUMO

During submaximal exercise, there is a heterogeneous recruitment of skeletal muscle fibers, with an ensuing heterogeneous depletion of muscle glycogen both within and between fiber types. Here, we show that the mean (95% CI) mitochondrial volume as a percentage of fiber volume of non-glycogen-depleted fibers was 2 (-10:6), 5 (-21:11), and 12 (-21:-2)% lower than all the sampled fibers after continuing exercise for 1, 2 h, and until task failure, respectively. Therefore, a glycogen-dependent fatigue of individual fibers during submaximal exercise may reduce the muscular oxidative power. These findings suggest a relationship between glycogen and mitochondrial content in individual muscle fibers, which is important for understanding fatigue during prolonged exercise.


Assuntos
Glicogênio , Fibras Musculares Esqueléticas , Humanos , Glicogênio/metabolismo , Tamanho Mitocondrial , Fibras Musculares Esqueléticas/metabolismo , Fadiga/metabolismo , Estresse Oxidativo , Músculo Esquelético/fisiologia
20.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358372

RESUMO

BACKGROUND: The essential function of HBV DNA polymerase (HBV-DNA-Pol) is to initiate viral replication by reverse transcription; however, the role of HBV-DNA-Pol in HBV-associated HCC has not been clarified. Glycogen phosphorylase L (PYGL) is a critical regulator of glycogenolysis and is involved in tumorigenesis, including HCC. However, it is unknown whether HBV-DNA-Pol regulates PYGL to contribute to HCC tumorigenesis. METHODS: Bioinformatic analysis, real-time quantitative PCR, western blotting, and oncology functional assays were performed to determine the contribution of HBV-DNA-Pol and PYGL to HCC development and glycolysis. The mechanisms of co-immunoprecipitation and ubiquitination were employed to ascertain how HBV-DNA-Pol upregulated PYGL. RESULTS: Overexpression of HBV-DNA-Pol enhanced HCC progression in vitro and in vivo. Mechanistically, HBV-DNA-Pol interacted with PYGL and increased PYGL protein levels by inhibiting PYGL ubiquitination, which was mediated by the E3 ligase TRIM21. HBV-DNA-Pol competitively impaired the binding of PYGL to TRIM21 due to its stronger binding affinity to TRIM21, suppressing the ubiquitination of PYGL. Moreover, HBV-DNA-Pol promoted glycogen decomposition by upregulating PYGL, which led to an increased flow of glucose into glycolysis, thereby promoting HCC development. CONCLUSIONS: Our study reveals a novel mechanism by which HBV-DNA-Pol promotes HCC by controlling glycogen metabolism in HCC, establishing a direct link between HBV-DNA-Pol and the Warburg effect, thereby providing novel targets for HCC treatment and drug development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Glicogênio , Carcinoma Hepatocelular/genética , DNA Viral , Neoplasias Hepáticas/genética , DNA Polimerase Dirigida por DNA/genética , Carcinogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...