Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.582
Filtrar
1.
Int J Biol Macromol ; 263(Pt 2): 130423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428760

RESUMO

Corn starch with slow thickening property may facilitate more efficient heat transfer and safety of corn starch-thickened foods. Partial substitution of normal corn starch (NCS) with slow-pasting behavior of cow cockle starch (CCS) was hypothesized to impart binary starch blend with slow-thickening effect during hydrothermal heating. To test hypothesis, a series of starch blend dispersions (with weight ratios of CCS to NCS = 75:25, 50:50, 25:75) were prepared at various starch concentrations (6 %, 8 %, 10 %, and 12 %) and subjected to the Rapid Viscosity Analysis (RVA). RVA viscographs of starch blends were compared with that of NCS, suggesting that nearly all starch blends at various concentrations showed longer time span of pasting and lower pasting rate. Although CCS and NCS blend gels exhibited lower Young's modulus and hardness based on textural profile analysis, the sensory panels revealed that 6 % and 8 % starch blend gels (with weight ratio of CCS to NCS = 25:75) showed the mouthfeel analogous to NCS gel. These findings highlight a viable non-chemical modification strategy that enables binary blends of CCS and NCS as a novel gelling agent with slow-pasting property and may aid in safety and high-quality processing of hydrogel foods.


Assuntos
Cardiidae , Amido , Animais , Bovinos , Amido/química , Zea mays/química , Viscosidade , Hidrogéis
2.
Chemosphere ; 353: 141554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430940

RESUMO

Microbial biodegradation of commercially available poly(butylene adipate-co-terephthalate)-polylactic acid-thermoplastic starch based bio-plastic has been pursued at high temperatures exceeding 55 °C. Herein, we first reported three newly isolated fungal strains from farmland soil samples of Republic of Korea namely, Pyrenochaetopsis sp. strain K2, Staphylotrichum sp. S2-1, and Humicola sp. strain S2-3 were capable of degrading a commercial bio-plastic film with degradation rates of 9.5, 8.6, and 12.2%, respectively after 3 months incubation at ambient conditions. Scanning electron microscopy (SEM) analyses showed that bio-plastic film was extensively fragmented with severe cracking on the surface structure after incubation with isolated fungal strains. X-ray diffraction (XRD) analysis also revealed that high crystallinity of the commercial bio-plastic film was significantly decreased after degradation by fungal strains. Liquid chromatography-mass spectrometry (LC-MS) analyses of the fungal culture supernatants containing the bio-plastic film showed the peaks for adipic acid, terephthalic acid (TPA), and terephthalate-butylene (TB) as major metabolites, suggesting cleavage of ester bonds and accumulation of TPA. Furthermore, a consortium of fungal strain K2 with TPA degrading bacterium Pigmentiphaga sp. strain P3-2 isolated from the same sampling site exhibited faster degradation rate of the bio-plastic film within 1 month of incubation with achieving complete biodegradation of accumulated TPA. We assume that the extracellular lipase activity presented in the fungal cultures could hydrolyze the ester bonds of PBAT component of bio-plastic film. Taken together, the fungal and bacterial consortium investigated herein could be beneficial for efficient biodegradation of the commercial bio-plastic film at ambient conditions.


Assuntos
Alcenos , Ácidos Ftálicos , Poliésteres , Amido , Amido/química , Poliésteres/química , Adipatos , Fungos , Ésteres
3.
BMC Genomics ; 25(1): 248, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443859

RESUMO

BACKGROUND: Quality traits are essential determinants of consumer preferences. Dioscorea alata (Greater Yam), is a starchy tuber crop in tropical regions. However, a comprehensive understanding of the genetic basis underlying yam tuber quality remains elusive. To address this knowledge gap, we employed population genomics and candidate gene association approaches to unravel the genetic factors influencing the quality attributes of boiled yam. METHODS AND RESULTS: Comparative genomics analysis of 45 plant species revealed numerous novel genes absent in the existing D. alata gene annotation. This approach, adding 48% more genes, significantly enhanced the functional annotation of three crucial metabolic pathways associated with boiled yam quality traits: pentose and glucuronate interconversions, starch and sucrose metabolism, and flavonoid biosynthesis. In addition, the whole-genome sequencing of 127 genotypes identified 27 genes under selection and 22 genes linked to texture, starch content, and color through a candidate gene association analysis. Notably, five genes involved in starch content and cell wall composition, including 1,3-beta Glucan synthase, ß-amylase, and Pectin methyl esterase, were common to both approaches and their expression levels were assessed by transcriptomic data. CONCLUSIONS: The analysis of the whole-genome of 127 genotypes of D. alata and the study of three specific pathways allowed the identification of important genes for tuber quality. Our findings provide insights into the genetic basis of yam quality traits and will help the enhancement of yam tuber quality through breeding programs.


Assuntos
Dioscorea , Dioscorea/genética , Melhoramento Vegetal , Genômica , Fenótipo , Amido
4.
Food Res Int ; 181: 114098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448107

RESUMO

Quantitative changes at different length scales (molecular, microscopic, and macroscopic levels) during cooking were evaluated to better understand the cooking behavior of common beans. The microstructural evolution of presoaked fresh and aged red kidney beans during cooking at 95 °C was quantified using light microscopy coupled with image analysis. These data were related to macroscopic properties, being hardness and volume changes representing texture and swelling of the beans during cooking. Microstructural properties included the cell area (Acell), the fraction of intercellular spaces (%Ais), and the fraction of starch area within the cells (%As/c), reflecting respectively cell expansion, cell separation, and starch swelling. A strong linear correlation between hardness and %Ais (r = -0.886, p = 0.07), along with a significant relative change in %Ais (∼5 times), suggests that softening is predominantly due to cell separation rather than cell expansion. Regarding volume changes, substantial cell expansion (Acell increased by ∼1.5 times) during the initial 30 min of cooking was greatly associated with the increase in the cotyledon volume, while the significance of cell separation became more prominent during the later stages of cooking. Furthermore, we found that the seed coat, rather than the cotyledon, played a major role in the swelling of whole beans, which became less pronounced after aging. The macroscopic properties did not correlate with %As/c. However, the evolution of %As/c conveyed information on the swelling of the starch granules during cooking. During the initial phase, the starch granule swelling mainly filled the cells, while during the later phase, the further swelling was confined by the cell wall. This study provides strong microscopic evidence supporting the direct involvement of the cell wall/ middle lamella network in microstructural changes during cooking as affected by aging, which is in line with the results of molecular changes.


Assuntos
Phaseolus , Verduras , Culinária , Amido
5.
PeerJ ; 12: e17052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464751

RESUMO

Tuber plants are of great significance in the world as human food crops. Polysaccharides, important metabolites in tuber plants, also serve as a source of innovative drugs with significant pharmacological effects. These drugs are particularly known for their immunomodulation and antitumor properties. To fully exploit the potential value of tuber plant polysaccharides and establish a synthetic system for their targeted synthesis, it is crucial to dissect their metabolic processes and genetic regulatory mechanisms. In this article, we provide a comprehensive summary of the basic pathways involved in the synthesis of various types of tuber plant polysaccharides. We also outline the key research progress that has been made in this area in recent years. We classify the main types and functions of tuber plant polysaccharides and analyze the biosynthetic processes and genetic regulation mechanisms of key enzymes involved in the metabolic pathways of starch, cellulose, pectin, and fructan in tuber plants. We have identified hexokinase and glycosyltransferase as the key enzymes involved in the polysaccharide synthesis process. By elucidating the synthesis pathway of polysaccharides in tuber plants and understanding the underlying mechanism of action of key enzymes in the metabolic pathway, we can provide a theoretical framework for enhancing the yield of polysaccharides and other metabolites in plant culture cells. This will ultimately lead to increased production efficiency.


Assuntos
Plantas , Polissacarídeos , Humanos , Metabolismo dos Carboidratos , Frutanos/metabolismo , Plantas/metabolismo , Amido
6.
BMC Plant Biol ; 24(1): 196, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494545

RESUMO

BACKGROUND: Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS: The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS: The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.


Assuntos
Endosperma , Oryza , Endosperma/metabolismo , Amido/metabolismo , Sementes/genética , Grão Comestível/genética , Homeostase , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas
7.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38447078

RESUMO

Holstein steers (n = 40; initial BW = 84.9 ±â€…7.1 kg) were used to study the genesis of liver abscesses (LA) using an acidotic diet challenge with or without intraruminal bacterial inoculation. Steers were housed in individual pens inside a barn and randomly assigned to one of three treatments: (1) low-starch control diet comprised primarily of dry-rolled corn and wet corn gluten feed (CON); (2) high-starch acidotic diet with steam-flaked corn (AD); or (3) acidotic diet plus intraruminal inoculation with Fusobacterium necrophorum subsp. necrophorum (9.8 × 108 colony forming units [CFU]/mL), Trueperella pyogenes (3.91 × 109 CFU/mL), and Salmonella enterica serovar Lubbock (3.07 × 108 CFU/mL), previously isolated from LA (ADB). Steers in AD and ADB were fed the acidotic diet for 3 d followed by 2 d of the CON diet, and this cycle was repeated four times. On day 23, ADB steers were intraruminally inoculated with the bacteria. At necropsy, gross pathology of livers, lungs, rumens, and colons was noted. Continuous data were analyzed via mixed models as repeated measures over time with individual steer as the experimental unit. Mixed models were also used to determine the difference in prevalence of necropsy scores among treatments. Ruminal pH decreased in AD and ADB steers during each acidotic diet cycle (P ≤ 0.05). LA prevalence was 42.9% (6 of 14) in ADB vs. 0% in AD or CON treatments (P < 0.01). Ruminal damage was 51.1% greater in ADB than in AD (P ≤ 0.04). Culture of LA determined that 100% of the abscesses contained F. necrophorum subsp. necrophorum, 0% contained T. pyogenes, 50% contained Salmonella, and 50% contained a combination of F. necrophorum subsp. necrophorum and Salmonella. The F. necrophorum subsp. necrophorum was clonally identical to the strain used for the bacterial inoculation based on phylogenetic analysis of the whole genome. This experimental model successfully induced rumenitis and LA in Holstein steers and confirms the central dogma of LA pathogenesis that acidosis and rumenitis lead to the entry of F. necrophorum into the liver to cause abscesses. Our findings suggest that an acidotic diet, in conjunction with intraruminal bacterial inoculation, is a viable model to induce LA. Further research is needed to determine the repeatability of this model, and a major application of the model will be in evaluations of novel interventions to prevent LA.


Liver abscesses (LA) in feedlots are costly to the beef industry. At harvest, LA cause an increase in liver condemnations, carcass trimming, and a decrease in quality grade. The objective of this research was to develop an experimental LA model in Holstein steers using an acidotic diet with and without intraruminal inoculation of bacteria involved in LA formation. These data suggest acidotic diet challenges in conjunction with bacterial inoculation were able to induce LA in Holstein steers. The acidotic diet alone caused reduced rumen content pH and caused rumen wall inflammation and damage, observed at harvest. Nonetheless, the addition of bacteria had a compounding effect on rumen damage. Both bacteria inoculated were isolated from 57% of LA suggesting they may work in synergy to form LA.


Assuntos
Acidose , Fusobacterium , Abscesso Hepático , Animais , Filogenia , Dieta/veterinária , Abscesso Hepático/veterinária , Abscesso Hepático/prevenção & controle , Modelos Teóricos , Acidose/veterinária , Amido , Ração Animal/análise , Rúmen/microbiologia
8.
Food Microbiol ; 120: 104449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431336

RESUMO

This research investigated the presence of Burkholderia gladioli pathovar cocovenenans (BGC) in wet rice and starch products, Tremella, and Auricularia auricula in Guangzhou, China. It examined BGC growth and bongkrekic acid (BA) production in wet rice noodles and vermicelli with varying rice flour, edible starch ratios, and oil concentrations. A qualitative analysis of 482 samples revealed a detection rate of 0.62%, with three positive for BGC. Rice flour-based wet rice noodles had BA concentrations of 13.67 ± 0.64 mg/kg, 2.92 times higher than 100% corn starch samples (4.68 ± 0.54 mg/kg). Wet rice noodles with 4% soybean oil had a BA concentration of 31.72 ± 9.41 mg/kg, 5.74 times higher than those without soybean oil (5.53 ± 1.23 mg/kg). The BA concentration correlated positively (r = 0.707, P < 0.05) with BGC contamination levels. Low temperatures (4 °C and -18 °C) inhibited BGC growth and BA production, while higher storage temperatures (26 °C and 32 °C) promoted BGC proliferation and increased BA production. Reducing edible oil use and increasing edible starch can mitigate the risk of BGC-related food poisoning in wet rice noodles and vermicelli production. Further research is needed to find alternative oils that do not enhance BA production. Strengthening prevention and control measures is crucial across the entire production chain to address BGC contamination and BA production.


Assuntos
Burkholderia gladioli , Oryza , Ácido Bongcréquico/análise , Óleo de Soja/análise , Amido , Contaminação de Alimentos/análise , Farinha/análise
9.
Carbohydr Polym ; 332: 121903, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431410

RESUMO

The utilization of naturally derived biodegradable polymers, including proteins, polysaccharides, and polyphenols, holds significant promise in addressing environmental concerns and reducing reliance on nonrenewable resources. This study aimed to develop films with enhanced UV resistance and antibacterial capabilities by covalently cross-linking soy protein isolate (SPI) with dialdehyde starch (DAS) through the incorporation of tannic acid (TA). The covalent crosslinking of TA with DAS and SPI was shown to establish a stable chemical cross-linking network. The tensile strength of the resulting SPI/DAS/15TA film exhibited a remarkable increase of 208.27 % compared to SPI alone and 52.99 % compared to SPI/DAS film. Notably, the UV absorption range of SPI/DAS/10TA films extended from 200 nm to 389 nm. This augmentation can be attributed to the oxidation of TA's phenolic hydroxyl groups to quinone under alkaline conditions, which then facilitated cross-linking with the SPI chain via Michael addition and Schiff base reactions. Furthermore, the film demonstrated robust antibacterial properties due to the incorporation of TA. Collectively, the observed properties highlight the significant potential of the SPI/DAS/10TA film for applications in food packaging, where its enhanced mechanical strength, UV resistance, and antibacterial characteristics can contribute to improved product preservation and safety.


Assuntos
Embalagem de Alimentos , Polifenóis , Proteínas de Soja , Amido/análogos & derivados , Proteínas de Soja/química , Antibacterianos/farmacologia
10.
PLoS One ; 19(3): e0298896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507346

RESUMO

Starch residue analysis was carried out on stone tools recovered from the bottom layer of the Anakena site on Rapa Nui (Easter Island). These deposits have been dated to AD 1000-1300 AD and so far, represent the earliest evidence of human settlement on this island. Twenty obsidian tools were analyzed. Analysis of 46 starch grains recovered from 20 obsidian tools from the earliest dated level of the Anakena site on Rapa Nui provides direct evidence for translocation of traditional crop plants at initial stages of the colonization of this island. The analysis of starch grains was based mainly on statistical methods for species identification but was complemented by visual inspection in some cases. Our results identify taxons previously unknown to have been cultivated on the island, such as breadfruit (Artocarpus altilis), Zingiber officinale (ginger), and starch grains of the Spondias dulcis and Inocarpus fagifer tropical trees. Additionally, starch grains of Colocasia esculenta (taro) and Dioscorea sp. (yam), both common species in Pacific agriculture, were identified. Furthermore, the presence of four American taxa Ipomoea batatas (sweet potato), Canna sp. (achira), Manihot esculenta (manioc), and Xanthosoma sp., was detected. The occurrence of Canna sp., M. esculenta, and Xanthosoma sp. starch grains suggests the translocation of previously not described South American cultivars into the Pacific. The detection of I. batatas from this site in Rapa Nui constitutes the earliest record of this cultigen in the Pacific. Our study provides direct evidence for translocation of a set of traditional Polynesian and South American crop plants at the initial stages of colonization in Rapa Nui.


Assuntos
Artocarpus , Dioscorea , Ipomoea batatas , Humanos , Amido , Grupos Raciais , Produtos Agrícolas , América do Sul
11.
Sci Rep ; 14(1): 6743, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509120

RESUMO

In rice, grain filling is a crucial stage where asynchronous filling of the pollinated spikelet's of the panicle occurs. It can influence both grain quality and yield. In rice grain, starch is the dominant component and contains amylose and amylopectin. Amylose content is the chief cooking quality parameter, however, rice varieties having similar amylose content varied in other parameters. Hence, in this study, a set of varieties varying in yield (04) and another set (12) of varieties that are similar in amylose content with variation in gel consistency and alkali spreading value were used. Panicles were collected at various intervals and analysed for individual grain weight and quantities of amylose and amylopectin. Gas exchange parameters were measured in varieties varying in yield. Upper branches of the panicles were collected from rice varieties having similar amylose content and were subjected to gene expression analysis with fourteen gene specific primers of starch synthesis. Results indicate that grain filling was initiated simultaneously in multiple branches. Amylose and amylopectin quantities increased with the increase in individual grain weight. However, the pattern of regression lines of amylose and amylopectin percentages with increase in individual grain weight varied among the varieties. Gas exchange parameters like photosynthetic rate, stomatal conductance, intercellular CO2 and transpiration rate decreased with the increase in grain filling period in both good and poor yielding varieties. However, they decreased more in poor yielders. Expression of fourteen genes varied among the varieties and absence of SBE2b can be responsible for medium or soft gel consistency.


Assuntos
Amilose , Oryza , Amilose/metabolismo , Amilopectina/metabolismo , Amido/metabolismo , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Expressão Gênica
12.
ACS Appl Mater Interfaces ; 16(11): 13411-13421, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456838

RESUMO

The development of sustainable biomaterials and surfaces to prevent the accumulation and proliferation of viruses and bacteria is highly demanded in healthcare areas. This study describes the assembly and full characterization of two new bioactive silver(I) coordination polymers (CPs) formulated as [Ag(aca)(µ-PTA)]n·5nH2O (1) and [Ag2(µ-ada)(µ3-PTA)2]n·4nH2O (2). These products were generated by exploiting a heteroleptic approach based on the use of two different adamantoid building blocks, namely 1,3,5-triaza-7-phosphaadamantane (PTA) and 1-adamantanecarboxylic (Haca) or 1,3-adamantanedicarboxylic (H2ada) acids, resulting in the assembly of 1D (1) and 3D (2). Antiviral, antibacterial, and antifungal properties of the obtained compounds were investigated in detail, followed by their incorporation as bioactive dopants (1 wt %) into hybrid biopolymers based on acid-hydrolyzed starch polymer (AHSP). The resulting materials, formulated as 1@AHSP and 2@AHSP, also featured (i) an exceptional antiviral activity against herpes simplex virus type 1 and human adenovirus (HAd-5) and (ii) a remarkable antibacterial activity against Gram-negative bacteria. Docking experiments, interaction with human serum albumin, mass spectrometry, and antioxidation studies provided insights into the mechanism of antimicrobial action. By reporting these new silver CPs driven by adamantoid building blocks and the derived starch-based materials, this study endows a facile approach to access biopolymers and interfaces capable of preventing and reducing the proliferation of a broad spectrum of different microorganisms, including bacteria, fungi, and viruses.


Assuntos
Prata , Vírus , Humanos , Prata/farmacologia , Prata/química , Polímeros/farmacologia , Polímeros/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Antivirais/farmacologia , Amido , Proteínas Sanguíneas , Chaperonas Moleculares
13.
Food Res Int ; 182: 114156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519183

RESUMO

Food texture perception is dynamic, influenced by food properties and oral processing. Using the Repeatable Dual Extrusion Cell (RDEC), the oral processing dynamics of surimi gel with different corn starch concentrations (0-15%) in the presence of 1 ml artificial saliva or water were studied. The force-time curve showed increased peak forces with higher corn starch concentrations, peaking significantly at 10%, then decreasing at 15%. Salivary amylase played a crucial role in gel sample degradation, especially in samples with 5% starch, with a work value depletion ratio of 0.535 for sample with 1 ml water (SGW-5) and 0.406 for sample with 1 ml saliva (SGS-5). SEM analysis confirmed the formation of a continuous starch network with reduced intermolecular spaces in SGS-5. The starch-iodine complex showed decreasing order with increasing starch concentration, and SGS-5 exhibited the highest degradation rate (61.61 ± 0.92%). Mathematical modeling revealed that initial decay rates (k1) in gel sample decreased with increasing starch concentration, and samples with starch and artificial saliva had higher initial degradation rates. These findings highlight the intricate interplay between saliva and starch in the surimi gel matrix under continuous compressive motions by RDEC apparatus, providing insights for formulating food products with tailored textures properties.


Assuntos
Saliva , Amido , Amido/química , Saliva Artificial , Saliva/metabolismo , Géis/química , Água
14.
Food Res Int ; 182: 114178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519192

RESUMO

To explore the feasibility of substituting waxy rice with waxy or sweet-waxy corn, eight varieties of waxy and sweet-waxy corns were selected, including three self-cultivated varieties (Feng nuo 168, Feng nuo 211, and Feng nuo 10). Their starches were isolated and used as research objects, and commercially available waxy rice starch (CAWR) and waxy corn starch (CAWC) were used as controls. X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, rapid viscosity analyzer, and rotational rheometer were used to analyze their physicochemical and structural characteristics. The morphologies of all corn starch granules were generally oval or round, with significant differences in particle size distributions. All ten starches exhibited a typical A-type crystal structure; however, their relative crystallinity varied from 20.08% to 31.43%. Chain length distribution analysis showed that the A/B ratio of Jing cai tian nuo 18 and Feng nuo 168 was similar to that of CAWR. Peak viscosities of corn starches were higher than that of CAWR, except for Feng nuo 10, while their setback values were lower than that of CAWR. Except for Feng nuo 10, the paste transparency of corn starches was higher than that of CAWR (10.77%), especially for Jing cai tian nuo 18 (up to 24%). In summary, Jing cai tian nuo 18 and Feng nuo 168 are promising candidates to replace CAWR in developing various rice-based products.


Assuntos
Oryza , Zea mays , Zea mays/química , Oryza/química , Ceras/química , Estudos de Viabilidade , Amido/química , Amilopectina/química
15.
BMC Genomics ; 25(1): 274, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475714

RESUMO

BACKGROUND: Tuber starch and steroidal glycoalkaloid (SGA)-related traits have been consistently prioritized in potato breeding, while allelic variation pattern of genes that underlie these traits is less explored. RESULTS: Here, we focused on the genes involved in two important metabolic pathways in the potato: starch metabolism and SGA biosynthesis. We identified 119 genes consisting of 81 involved in starch metabolism and 38 in the biosynthesis of steroidal glycoalkaloids, and discovered 96,166 allelic variants among 2,169 gene haplotypes in six autotetraploid potato genomes. Comparative analyses revealed an uneven distribution of allelic variants among gene haplotypes and that the vast majority of deleterious mutations in these genes are retained in heterozygous state in the autotetraploid potato genomes. Leveraging full-length cDNA sequencing data, we find that approximately 70% of haplotypes of the 119 genes are transcribable. Population genetic analyses identify starch and SGA biosynthetic genes that are potentially conserved or diverged between potato varieties with varying starch or SGA content. CONCLUSIONS: These results deepen the understanding of haplotypic diversity within functionally important genes in autotetraploid genomes and may facilitate functional characterization of genes or haplotypes contributing to traits related to starch and SGA in potato.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Amido/metabolismo , Melhoramento Vegetal , Alelos , Fenótipo , Esteroides
16.
Physiol Plant ; 176(2): e14232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450746

RESUMO

Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.


Assuntos
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucurbita/genética , Xenoenxertos , Cotilédone , Açúcares , Amido , Sacarose
17.
Braz J Biol ; 84: e273999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451628

RESUMO

The production of seedlings of the passion fruit tree, usually, is sexual, and the seeds are not uniform in the seedling emergence, and soaking treatments of seeds can provide faster and more uniform germination. It was aimed to study the action of plant growth regulators and the mobilization of reserves in the stages of soaking of yellow passion fruit seeds. The seeds were soaked for five hours in solutions containing plant growth regulators, in a completely randomized design, in a factorial 8 x 4, with four replications. The first factor corresponds to eight plant growth regulators: T1 - distilled water (control); T2 - 6-benzylaminepurine ​​500 mg L-1; T3 - 4-(3-indolyl) butyric acid 500 mg L-1; T4 - gibberellic acid 500 mg L-1; T5 - spermine 250 mg L-1; T6 - spermine 750 mg L-1; T7 - spermidine 750 mg L-1; T8 - spermidine 1250 mg L-1; and the second factor, to the four soaking times: zero, four, 72 and 120 hours, corresponding, respectively, to the dry seed, and to phases I, II, and III of the imbibition curve. It was evaluated the biochemical composition of seeds (lipids, soluble sugars and starch). The seeds showed accumulation of lipids in phase III; the content of soluble sugars increased in phase I and decreased in phase II. The starch content increased until the phase II and decreased in phase III. Starch is the main reserve in the seeds and the main source of energy used in phase III; soaking the seeds in polyamines generates an accumulation of lipids in the seeds and soaking in plant growth regulators increases the burning of starch.


Assuntos
Passiflora , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Frutas , Espermidina , Espermina , Ácido Butírico , Plântula , Amido , Açúcares
18.
Carbohydr Polym ; 333: 121953, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494204

RESUMO

The importance of gastric digestion in starch-based emulsion is often overshadowed compared to intestinal digestion, despite acknowledging the activity of salivary α-amylase in the stomach. This study aimed to address this gap by investigating the digestion of starch-based emulsions through orogastrointestinal digestion experiments. Our observations revealed the crucial role of salivary α-amylase, which hydrolyzed ∼8 %, ∼56 %, and âˆ¼ 28 % of starch in emulsions stabilized by octenylsuccinylated maize starch (OMS-E), gelatinized OMS (GOMS-E), and retrograded OMS (ROMS-E), respectively, during the gastric phase. Consequently, ∼23 % of the oil in GOMS-E underwent lipolysis during this phase, whereas ∼13 and âˆ¼ 6 % of the oil was lipolyzed in OMS-E and ROMS-E, respectively. These phenomena significantly influenced their small intestinal digestion and the bioaccessibility of encapsulated curcumin. Notably, GOMS-E exhibited ∼28 % lower curcumin bioaccessibility than that of curcumin encapsulated in OMS-E or ROMS-E. This difference was attributed to premature gastric digestion and subsequent encapsulant release in the case of GOMS-E. This understanding can be utilized to manipulate the delivery and digestion of starch-based emulsions. Importantly, our findings highlight the necessity of considering gastric amylolysis and lipolysis when investigating the gastrointestinal fate of starch-based emulsions.


Assuntos
Curcumina , alfa-Amilases Salivares , Emulsões , Amido , Estômago , Digestão , Tamanho da Partícula
19.
Carbohydr Polym ; 333: 121967, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494222

RESUMO

Type 2 Diabetes Mellitus (T2DM) is a carbohydrate-rich diet-regulated ailment with carbohydrates digested and absorbed rapidly. Hence, modulating carbohydrate digestion is warranted; to this end, polyphenols from plant sources are handy. However, polyphenols' instability and low bioavailability limit their wholesome use, and thus, encapsulating them into an inexpensive and suitable wall material would be the best strategy. Herein, the potential of porous starch granules is demonstrated. Curcumin and resveratrol were chosen as the test polyphenols due to their proven health benefits, and porous corn starch granules were chosen as the wall material. Porous corn starch granules were prepared through enzymatic modification with 11, 22, and 33 units of amyloglucosidase at three reaction times of 2, 4, and 6 h. The polyphenols were loaded at 100, 200, and 500 mg concentrations in 1 g of starch for 21 days and were characterized through Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectroscopy (FTIR) analyses. The encapsulation efficiency was determined, the rate of starch digestion was calculated through the Englyst test, and polyphenols' in vitro release behavior in gastric and intestinal fluids was measured. Results suggest that 33 enzyme units for a 2 h reaction time were optimal for forming spherical-oval pores on corn starch granules with the maximum encapsulation efficiency of 80.16 % and 88.33 % for curcumin and resveratrol, respectively. The FTIR results suggest the entrapment of polyphenols inside the starch matrix. The inclusion significantly reduced starch digestion and increased the percentage of resistant starch up to 41.11 % and 66.36 % with curcumin and resveratrol, respectively. The in vitro release behavior demonstrated good stability in the simulated gastric fluids and sustained release in simulated intestinal fluids. The encapsulated polyphenols showed a complex Fickian type of diffusion mechanism. Overall, the results suggest that porous corn starch granules could be a potential delivery system for curcumin and resveratrol and will aid in developing novel functional foods to address the T2DM concerns.


Assuntos
Curcumina , Diabetes Mellitus Tipo 2 , Resveratrol , Curcumina/química , Zea mays , Preparações de Ação Retardada , Porosidade , Polifenóis/química , Amido/química , Carboidratos
20.
J Agric Food Chem ; 72(10): 5391-5402, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427803

RESUMO

α-Glucanotransferases of the CAZy family GH70 convert starch-derived donors to industrially important α-glucans. Here, we describe characteristics of a novel GtfB-type 4,6-α-glucanotransferase of high enzyme activity (60.8 U mg-1) from Limosilactobacillus reuteri N1 (LrN1 GtfB), which produces surprisingly large quantities of soluble protein in heterologous expression (173 mg pure protein per L of culture) and synthesizes the reuteran-like α-glucan with (α1 → 6) linkages in linear chains and branch points. Protein structural analysis of LrN1 GtfB revealed the potential crucial residues at subsites -2∼+2, particularly H265, Y214, and R302, in the active center as well as previously unidentified surface binding sites. Furthermore, molecular dynamic simulations have provided unprecedented insights into linkage specificity hallmarks of the enzyme. Therefore, LrN1 GtfB represents a potent enzymatic tool for starch conversion, and this study promotes our knowledge on the structure-function relationship of GH70 GtfB α-glucanotransferases, which might facilitate the production of tailored α-glucans by enzyme engineering in future.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Limosilactobacillus reuteri , Simulação de Dinâmica Molecular , Glucanos/química , Amido/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...