Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
1.
Biomolecules ; 14(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540765

RESUMO

Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which Pten was conditionally ablated, (1) in glia (Plp1-expressing cells) and (2) in neurons (Calb2-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; n = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS). We investigated gut motility and evaluated the enteric nervous system. Pten inhibition in Plp1-expressing cells elicited gliogenesis at baseline and post-DSS (early and late) in the colon, and neurogenesis post-DSS late in the proximal colon. They also exhibited an increased frequency of colonic migrating motor complexes (CMMC) and slower whole gut transit times. Pten inhibition in Calb2-expressing cells did not induce enteric neuro- or gliogenesis, and no alterations were detected in CMMC or whole gut transit times when compared to the control at baseline or post-DSS (early and late). Our results merit further research into Pten modulation where increased glia and/or slower intestinal transit times are desired (e.g., short-bowel syndrome and rapid-transit disorders).


Assuntos
Sistema Nervoso Entérico , Animais , Camundongos , Sistema Nervoso Entérico/metabolismo , Neurogênese/fisiologia , Proteolipídeos/metabolismo , Tamoxifeno/farmacologia , Tensinas/metabolismo
2.
Funct Integr Genomics ; 24(2): 54, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467932

RESUMO

Despite substantial progress in clinical trials of osteoarthritis (OA) gene therapy, the prevalence of OA is still on the rise. MiRNAs have a potential biomarker and therapeutic target for OA. OA cartilage and chondrosarcoma cells were studied to determine the role of miR-29a-3p and PTEN. OA cartilage and human chondrosarcoma cells (SW1353) were obtained. miR-29a-3p and PTEN signature expression was determined by RT-qPCR. The binding relationship between miR-29a-3p and PTEN was investigated by dual-luciferase reporter gene and western blot assay. TUNEL, immunohistochemistry, CCK-8, and flow cytometry were utilized to determine the proliferation and apoptosis of SW1353 cells. This study indicated downregulation of miR-29a-3p expression and upregulation of PTEN expression in human OA primary chondrocytes or OA tissue samples, compared with the normal cartilage cells or tissues. PTEN expression was negatively correlated with miR-29a-3p expression, and miR-29a-3p targeted PTEN mechanistically. miR-29a-3p reduced SW1353 cell activity and proliferation and promoted cell apoptosis. However, the aforementioned effects could be reversed by downregulating PTEN. miR-29a-3p can stimulate chondrocyte proliferation and inhibit apoptosis by inhibiting PTEN expression.


Assuntos
Neoplasias Ósseas , Condrossarcoma , MicroRNAs , Osteoartrite , Humanos , Apoptose/genética , Proliferação de Células/genética , Condrossarcoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Tensinas
3.
Gene ; 908: 148304, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387708

RESUMO

Hereditary cancer syndromes result from the presence of inherited pathogenic variants within susceptibility genes. However, the susceptibility genes associated with hereditary cancer syndrome remain predominantly unidentified. Here, we reported a case of hereditary cancer syndrome observed in a Chinese family harboring a germline mutation in Tensin1 (TNS1). We described a 59-year-old female patient presented with Multiple myeloma and Thyroid carcinoma. The proband and her family members exhibited suspected tumor syndrome due to occurrences of other cancer cases. After oncogenetic counseling, whole-exome sequencing and Sanger sequencing were conducted and a primary driver mutation of TNS1 (NM_022648.7:c.2999-1G > C) was detected. Gene Expression Profiling Interactive Analysis revealed that TNS1 was expressed lower in different tumors when compared to normal, including Pancreatic adenocarcinoma, Breast invasive carcinoma, Thyroid carcinoma andColon adenocarcinoma cells. Despite the well-established role of TNS1 as a tumor suppressor in breast cancer and colorectal cancer, its potential utility as a marker gene for diagnosis and treatment of pancreatic cancer remains uncertain. Here, our data demonstrated that knockdown of TNS1 could promote cell proliferation and migration in Pancreatic adenocarcinoma (PDAC) cells. In addition, TNS1 regulated migration through EMT signaling pathway in PDAC cells. Our findings proposed that this variant was likely involved in cancer predisposition by disrupting the normal splicing process. In summary, we presented a genetic disease by linking an intronic mutation inTNS1. We aim to provide early detection of cancers by identifying germline variants in susceptibility genes.


Assuntos
Adenocarcinoma , Síndromes Neoplásicas Hereditárias , Neoplasias Pancreáticas , Humanos , Feminino , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias/genética , Células Germinativas , Tensinas/genética
4.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338464

RESUMO

Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Tensinas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Genes Supressores de Tumor
5.
J Thromb Haemost ; 22(4): 905-914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266676

RESUMO

Thrombomodulin (TM) is a type 1 receptor best known for its function as an anticoagulant cofactor for thrombin activation of protein C on the surface of vascular endothelial cells. In addition to its anticoagulant cofactor function, TM also regulates fibrinolysis, complement, and inflammatory pathways. TM is a multidomain receptor protein with a lectin-like domain at its N-terminus that has been shown to exhibit direct anti-inflammatory functions. This domain is followed by 6 epidermal growth factor-like domains that support the interaction of TM with thrombin. The interaction inhibits the procoagulant function of thrombin and enables the protease to regulate the anticoagulant and fibrinolytic pathways by activating protein C and thrombin-activatable fibrinolysis inhibitor. TM has a Thr/Ser-rich region immediately above the membrane surface that harbors chondroitin sulfate glycosaminoglycans, and this region is followed by a single-spanning transmembrane and a C-terminal cytoplasmic domain. The structure and physiological function of the extracellular domains of TM have been extensively studied, and numerous excellent review articles have been published. However, the physiological function of the cytoplasmic domain of TM has remained poorly understood. Recent data from our laboratory suggest that intracellular signaling by the cytoplasmic domain of TM plays key roles in maintaining quiescence by modulating phosphatase and tensin homolog signaling in endothelial cells. This article briefly reviews the structure and function of extracellular domains of TM and focuses on the mechanism and possible physiological importance of the cytoplasmic domain of TM in modulating phosphatase and tensin homolog signaling in endothelial cells.


Assuntos
Trombina , Trombomodulina , Humanos , Trombomodulina/metabolismo , Trombina/metabolismo , Proteína C/metabolismo , Células Endoteliais/metabolismo , Tensinas , Anticoagulantes , Monoéster Fosfórico Hidrolases
7.
Rev Esp Patol ; 57(1): 3-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246708

RESUMO

INTRODUCTION: Phosphatase and tensin homologue (PTEN) is an important tumour suppressor in multi-step tumorigenesis. To establish the role of PTEN in gastric cancer progression, we examined the PTEN expression degree in gastric cancer tissues. We also explained the connection between PTEN expression and histopathological findings. MATERIALS AND METHODS: Our study was cross-sectional and made up of 50 patients with known gastric cancer. Immunohistochemical staining for PTEN was done on gastric cancer tissues. Tumour behaviour was estimated by histopathological assessments. RESULTS: Twenty-seven (54%) of the 50 patients had PTEN staining. The evaluation of the connection between PTEN expression and demographic data and tumour behaviours revealed no meaningful relationship between PTEN expression and patients' age, gender, tumour site and size, tumour type, tumour grade and stage, neural, and lymphovascular invasion (P-value>0.05). CONCLUSION: PTEN expression level is expected to be a significant molecular event in the progression of gastric cancer and may be a predictive marker for gastric cancer behaviours dependent on society.


Assuntos
Neoplasias Gástricas , Humanos , Tensinas , Estudos Transversais , Coloração e Rotulagem , PTEN Fosfo-Hidrolase
8.
Int J Biol Sci ; 20(1): 231-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164166

RESUMO

Head and neck squamous cell carcinoma (HNSCC) remains a formidable clinical challenge due to its high recurrence rate and limited targeted therapeutic options. This study aims to elucidate the role of tensin 4 (TNS4) in the pathogenesis of HNSCC across clinical, cellular, and animal levels. We found a significant upregulation of TNS4 expression in HNSCC tissues compared to normal controls. Elevated levels of TNS4 were associated with adverse clinical outcomes, including diminished overall survival. Functional assays revealed that TNS4 knockdown attenuated, and its overexpression augmented, the oncogenic capabilities of HNSCC cells both in vitro and in vivo. Mechanistic studies revealed that TNS4 overexpression promotes the interaction between integrin α5 and integrin ß1, thereby activating focal adhesion kinase (FAK). This TNS4-mediated FAK activation simultaneously enhanced the PI3K/Akt signaling pathway and facilitated the interaction between TGFßRI and TGFßRII, leading to the activation of the TGFß signaling pathway. Both of these activated pathways contributed to HNSCC tumorigenesis. Additionally, we found that hypoxia-inducible factor 1α (HIF-1α) transcriptionally regulated TNS4 expression. In conclusion, our findings provide the basis for innovative TNS4-targeted therapeutic strategies, which could potentially improve prognosis and survival rates for patients with HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Integrina alfa5beta1 , Fator de Crescimento Transformador beta , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Transformação Celular Neoplásica , Hipóxia , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Tensinas/metabolismo
9.
Biomolecules ; 14(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38254705

RESUMO

The low bioavailability of most phytochemicals limits their anticancer effects in humans. The present study was designed to test whether combining arctigenin (Arc), a lignan mainly from the seed of Arctium lappa, with green tea (GT) and quercetin (Q) enhances the chemopreventive effect on prostate cancer. We performed in vitro proliferation studies on different cell lines. We observed a strong synergistic anti-proliferative effect of GT+Q+Arc in exposing androgen-sensitive human prostate cancer LNCaP cells. The pre-malignant WPE1-NA22 cell line was more sensitive to this combination. No cytotoxicity was observed in normal prostate epithelial PrEC cells. For an in vivo study, 3-week-old, prostate-specific PTEN (phosphatase and tensin homolog) knockout mice were treated with GT+Q, Arc, GT+Q+Arc, or the control daily until 16 weeks of age. In vivo imaging using prostate-specific membrane antigen (PSMA) probes demonstrated that the prostate tumorigenesis was significantly inhibited by 40% (GT+Q), 60% (Arc at 30 mg/kg bw), and 90% (GT+Q+Arc) compared to the control. A pathological examination showed that all control mice developed invasive prostate adenocarcinoma. In contrast, the primary lesion in the GT+Q and Arc alone groups was high-grade prostatic intraepithelial neoplasia (PIN), with low-grade PIN in the GT+Q+Arc group. The combined effect of GT+Q+Arc was associated with an increased inhibition of the androgen receptor, the PI3K/Akt pathway, Ki67 expression, and angiogenesis. This study demonstrates that combining Arc with GT and Q was highly effective in prostate cancer chemoprevention. These results warrant clinical trials to confirm the efficacy of this combination in humans.


Assuntos
Furanos , Lignanas , Neoplasias da Próstata , Animais , Masculino , Camundongos , Quimioprevenção , Lignanas/farmacologia , Lignanas/uso terapêutico , Camundongos Knockout , Fosfatidilinositol 3-Quinases , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/prevenção & controle , Quercetina/farmacologia , Quercetina/uso terapêutico , Tensinas , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Chá
10.
Arterioscler Thromb Vasc Biol ; 44(2): 352-365, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059351

RESUMO

BACKGROUND: We recently demonstrated that deletion of thrombomodulin gene from endothelial cells results in upregulation of proinflammatory phenotype. In this study, we investigated the molecular basis for the altered phenotype in thrombomodulin-deficient (TM-/-) cells. METHODS: Different constructs containing deletions or mutations in the cytoplasmic domain of thrombomodulin were prepared and introduced to TM-/- cells. The phenotype of cells expressing different derivatives of thrombomodulin and tissue samples of thrombomodulin-knockout mice were analyzed for expression of distinct regulatory genes in established signaling assays. RESULTS: The phosphatase and tensin homolog were phosphorylated and its recruitment to the plasma membrane was impaired in TM-/- cells, leading to hyperactivation of AKT (protein kinase B) and phosphorylation-dependent nuclear exclusion of the transcription factor, forkhead box O1. The proliferative/migratory properties of TM-/- cells were enhanced, and cells exhibited hypersensitivity to stimulation by angiopoietin 1 and vascular endothelial growth factor. Reexpression of wild-type thrombomodulin in TM-/- cells normalized the cellular phenotype; however, thrombomodulin lacking its cytoplasmic domain failed to restore the normal phenotype in TM-/- cells. Increased basal permeability and loss of VE-cadherin were restored to normal levels by reexpression of wild-type thrombomodulin but not by a thrombomodulin construct lacking its cytoplasmic domain. A thrombomodulin cytoplasmic domain deletion mutant containing 3-membrane-proximal Arg-Lys-Lys residues restored the barrier-permeability function of TM-/- cells. Enhanced phosphatase and tensin homolog phosphorylation and activation of AKT and mTORC1 (mammalian target of rapamycin complex 1) were also observed in the liver of thrombomodulin-KO mice. CONCLUSIONS: These results suggest that the cytoplasmic domain of thrombomodulin interacts with the actin cytoskeleton and plays a crucial role in regulation of phosphatase and tensin homolog/AKT signaling in endothelial cells.


Assuntos
Células Endoteliais , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Trombomodulina/genética , Trombomodulina/metabolismo , Tensinas , Fator A de Crescimento do Endotélio Vascular , Camundongos Knockout , Monoéster Fosfórico Hidrolases , Mamíferos/metabolismo
11.
Br J Dermatol ; 190(2): 244-257, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37850885

RESUMO

BACKGROUND: Psoriasis is a common chronic skin disorder. Pathologically, it features abnormal epidermal proliferation, infiltrating inflammatory cells and increased angiogenesis in the dermis. Aberrant expression of E3 ubiquitin ligase and a dysregulated protein ubiquitination system are implicated in the pathogenesis of psoriasis. OBJECTIVES: To examine the potential role of S-phase kinase-associated protein 2 (Skp2), an E3 ligase and oncogene, in psoriasis. METHODS: Gene expression and protein levels were evaluated with quantitative reverse transcriptase polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence staining of skin samples from patients with psoriasis vulgaris and an imiquimod (IMQ)-induced mouse model, as well as from cultured endothelial cells (ECs). Protein interaction, substrate ubiquitination and degradation were examined using co-immunoprecipitation, Western blotting and a cycloheximide chase assay in human umbilical vein ECs. Angiogenesis was measured in vitro using human dermal microvascular ECs (HDMECs) for BrdU incorporation, migration and tube formation. In vivo angiogenesis assays included chick embryonic chorioallantoic membrane, the Matrigel plug assay and quantification of vasculature in the mouse lesions. Skp2 gene global knockout (KO) mice and endothelial-specific conditional KO mice were used. RESULTS: Skp2 was increased in skin samples from patients with psoriasis and IMQ-induced mouse lesions. Immunofluorescent double staining indicated a close association of Skp2 expression with excessive vascularity in the lesional dermal papillae. In HDMECs, Skp2 overexpression was enhanced, whereas Skp2 knockdown inhibited EC proliferation, migration and tube-like structure formation. Mechanistically, phosphatase and tensin homologue (PTEN), which suppresses the phosphoinositide 3-kinase/Akt pathway, was identified to be a novel substrate for Skp2-mediated ubiquitination. A selective inhibitor of Skp2 (C1) or Skp2 small interfering RNA significantly reduced vascular endothelial growth factor-triggered PTEN ubiquitination and degradation. In addition, Skp2-mediated ubiquitination depended on the phosphorylation of PTEN by glycogen synthase kinase 3ß. In the mouse model, Skp2 gene deficiency alleviated IMQ-induced psoriasis. Importantly, tamoxifen-induced endothelial-specific Skp2 KO mice developed significantly ameliorated psoriasis with diminished angiogenesis of papillae. Furthermore, topical use of the Skp2 inhibitor C1 effectively prevented the experimental psoriasis. CONCLUSIONS: The Skp2/PTEN axis may play an important role in psoriasis-associated angiogenesis. Thus, targeting Skp2-driven angiogenesis may be a potential approach to treating psoriasis.


Assuntos
Psoríase , Proteínas Quinases Associadas a Fase S , Humanos , Animais , Camundongos , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Tensinas/metabolismo , Células Endoteliais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Psoríase/patologia , Ubiquitina-Proteína Ligases/metabolismo
12.
Neurol Res ; 46(2): 99-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37706249

RESUMO

OBJECTIVE: The present study aimed at evaluating the potential contribution of Phosphatase and Tensin Homolog (PTEN) and its gene polymorphism (PTEN rs701848 T/C) in relation to Wingless/integrase-1 (Wnt) signaling in childhood epilepsy and the impact of antiepileptic medications on their serum levels. METHODS: This study included 100 children with epilepsy (50 pharmacoresistant and 50 pharmacoresponsive) and 50 matched controls. All subjects had their genotypes for the PTEN rs701848T/C polymorphism assessed using TaqManTM assays and real-time PCR. By using the sandwich ELISA technique, the blood concentrations of PTEN and Wnt3a were measured. RESULTS: Serum Wnt3a levels in epileptic patients were significantly higher than in the control group, p < 0.001. Children with epilepsy who received oxcarbazepine had considerably lower serum Wnt3a levels than those who didn't, p < 0.001.With an AUC of 0.71, the cutoff value for diagnosing epilepsy as serum Wnt3a > 6.2 ng/mL has a sensitivity of 55% and a specificity of 80%. When compared to controls, epileptic children had considerably more (TT) genotype and less (TC and CC) genotypes, p < 0.05 for all. Epileptic children had significantly higher (T) allele frequency than controls, p = 0.006 with OR (95%CI) = 1.962(1.206-3.192). Pharmacoresistant epileptic children had significantly higher (TT) genotype compared to pharmacoresponsive type (p = 0.020). CONCLUSION: We originally found a strong association between PTEN rs701848 T/C and childhood epilepsy, in particular pharmacoresistant type. Serum Wnt3a levels increased in epilepsy, but were not significantly different between different alleles of PTEN. In pharmaco-responsive children Wnt3a levels differed significantly between the different PTEN genotypes. Antiepileptics may affect Wnt3a levels.


Assuntos
Epilepsia , Via de Sinalização Wnt , Criança , Humanos , Tensinas/genética , Via de Sinalização Wnt/genética , Testes Farmacogenômicos , Polimorfismo de Nucleotídeo Único/genética , Genótipo , PTEN Fosfo-Hidrolase/genética , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Estudos de Casos e Controles
13.
Proc Natl Acad Sci U S A ; 120(52): e2301155120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109544

RESUMO

The protease MALT1 promotes lymphocyte activation and lymphomagenesis by cleaving a limited set of cellular substrates, most of which control gene expression. Here, we identified the integrin-binding scaffold protein Tensin-3 as a MALT1 substrate in activated human B cells. Activated B cells lacking Tensin-3 showed decreased integrin-dependent adhesion but exhibited comparable NF-κB1 and Jun N-terminal kinase transcriptional responses. Cells expressing a noncleavable form of Tensin-3, on the other hand, showed increased adhesion. To test the role of Tensin-3 cleavage in vivo, mice expressing a noncleavable version of Tensin-3 were generated, which showed a partial reduction in the T cell-dependent B cell response. Interestingly, human diffuse large B cell lymphomas and mantle cell lymphomas with constitutive MALT1 activity showed strong constitutive Tensin-3 cleavage and a decrease in uncleaved Tensin-3 levels. Moreover, silencing of Tensin-3 expression in MALT1-driven lymphoma promoted dissemination of xenografted lymphoma cells to the bone marrow and spleen. Thus, MALT1-dependent Tensin-3 cleavage reveals a unique aspect of the function of MALT1, which negatively regulates integrin-dependent B cell adhesion and facilitates metastatic spread of B cell lymphomas.


Assuntos
Caspases , Linfoma Difuso de Grandes Células B , Camundongos , Humanos , Animais , Adulto , Tensinas/genética , Caspases/metabolismo , NF-kappa B/metabolismo , Adesão Celular/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Linfoma Difuso de Grandes Células B/genética , Integrinas
14.
Fish Shellfish Immunol ; 142: 109149, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858786

RESUMO

Cell migration is an essential process in immunity and wound healing. The in vitro scratch assay was optimized for the SAF-1 cell line, obtained from gilthead seabream (Sparus aurata) fin. In addition, selected cells from the cell front were tracked for detailed individual cell movement and morphological analysis. Modulation of migration and cell tracking of the SAF-1 cell line by probiotics was evaluated. Cells were cultured and incubated for 24 h with three species of extremophilic yeasts [Yarrowia lipolytica (D1 and N6) and Debaryomyces hansenii (CBS004)] and the bacterium Shewanella putrefaciens (known as SpPdp11) and then scratch and cell tracking assays were performed. The results indicated that the forward velocity was significantly (p < 0.05) increased in SAF-1 cells incubated with CBS004 or SpPdp11. However, cell velocity, cumulative distance and Euclidean distance were only significantly increased in SAF-1 cells incubated with SpPdp11. Furthermore, to increase our understanding of the genes involved in cell movement, the expression profile of ten structural proteins (α-1ß tubulin, vinculin, focal adhesion kinase type, alpha-2 integrin, tetraspanin, integrin-linked kinase 1, tensin 3, tensin 4, paxillin, and light chain 2) was studied by real time-PCR. The expression of these genes was modulated as a function of the probiotic tested and the results indicate that CBS004 and SpPdp11 increase the movement of SAF-1 cells.


Assuntos
Probióticos , Dourada , Animais , Rastreamento de Células , Tensinas , Movimento Celular , Probióticos/farmacologia
15.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37857485

RESUMO

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Assuntos
Córtex Auditivo , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Córtex Auditivo/metabolismo , Espinhas Dendríticas/metabolismo , Tensinas/metabolismo , Memória de Longo Prazo/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Memória de Curto Prazo/fisiologia , Sirolimo/farmacologia , Medo/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Mamíferos
16.
ACS Nano ; 17(20): 19652-19666, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37820299

RESUMO

Electrical stimulation therapy (EST) has been established as an effective strategy to accelerate wound healing by stimulating cell proliferation and migration, ultimately promoting re-epithelialization and vascularization, two key processes that significantly influence the rate of wound healing. Phosphatase and tensin homologue (PTEN), a widely expressed protein in somatic cells, works as a "brake" regulating cell differentiation, proliferation, and migration. Given that this "brake" also works in cell electrical responses, there is a hypothesis that PTEN inhibition may amplify the efficacy of EST in wound treatment. However, long-term inhibition of PTEN may result in DNA damage and reduce DNA repair, which poses a significant challenge to the safe use of PTEN inhibitors. To address this issue, we developed a system that combines PTEN inhibitor loaded electro-responsive hydrogel (BPV@PCP) with a wearable direct current pulse piezoelectric nanogenerator (PENG). The PENG converts the rat's motions into electric fields that synchronously charge the wound edge tissue and BPV@PCP. Electric field intensity was lower when the rat was quiet or anesthetized, which is insufficient to trigger an effective PTEN inhibitor release. However, when the rat was in action, the electric field intensity exceeded 625 mV/mm, resulting in a rapid drug release. This on-demand PTEN inhibition accelerated wound healing by amplifying cell electric responsiveness while avoiding negative effects associated with continuous overinhibition of PTEN. Notably, this system improves vascularization not only by improving endothelial cell electric responsiveness but also through the paracrine pathway, in which electrical stimulation and PTEN inhibition synergically promote VEGF secretion.


Assuntos
Hidrogéis , Cicatrização , Ratos , Animais , Tensinas , Hidrogéis/farmacologia , Proliferação de Células , Eletricidade
17.
Cell Mol Life Sci ; 80(9): 277, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668682

RESUMO

BACKGROUND: The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS: TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS: Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS: Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.


Assuntos
Adipogenia , Osteogênese , Tensinas , Humanos , Actinas , Adipogenia/genética , Diferenciação Celular , Osteogênese/genética , Tensinas/genética
18.
Mutagenesis ; 38(6): 295-304, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37712764

RESUMO

Hepatic leukemia factor (HLF), a transcription factor, is dysregulated in many cancers. This study investigates the function of HLF in prostate cancer (PCa) and its relation to tensin 1 (TNS1). Clinical tissues were collected from 24 PCa patients. Duke University 145 (DU145) and PC3 cells overexpressing HLF were established. HLF signaling was downregulated in PCa tissues compared to adjacent tissues and in DU145 and PC3 cells compared to prostate epithelial cells RWPE-1 or prostate stromal cells (WPMY-1). PCa cell lines with overexpression of HLF had reduced proliferative, migratory, and invasive activity, increased apoptosis, and cell mitosis mostly in the G0/G1 phase. HLF induced the TNS1 transcription to activate the p53 pathway. Depletion of TNS1 reversed the anti-tumor effects of HLF on PCa cells and tumor growth and metastasis in vivo. In summary, our findings suggest that HLF suppressed PCa progression by upregulating TNS1 expression and inducing the p53 pathway activation, which might provide insights into novel strategies for combating PCa.


Assuntos
Leucemia , Neoplasias da Próstata , Humanos , Masculino , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Tensinas/genética , Tensinas/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Turk J Gastroenterol ; 34(11): 1124-1133, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737217

RESUMO

BACKGROUND/AIMS: Recent studies that reveal the molecular profiles of colorectal carcinomas have demonstrated tumor heterogeneity. Characterization of colorectal carcinoma-specific genomic alterations is essential for developing more successful and targeted treat- ment protocols. Moreover, it is vital in elucidating the pathogenesis and mechanisms of resistance against treatment and predicting prognosis. MATERIALS AND METHODS: The study included 73 cases diagnosed with colorectal carcinomas and subjected to molecular analysis by the next-generation sequencing. The association between the clinicopathologic parameters and pathogenic mutations detected in 32 genes was evaluated. RESULTS: Pathogenic mutations were determined in a total of 24 genes. The Cell Division Cycle 27 (CDC27), Kirsten rat sarcoma viral proto-oncogene (KRAS), serine/threonine protein kinase B-raf (BRAF), phosphatase and tensin homolog, breast cancer 2 (BRCA2), and phosphotidylinositol-4,5-biphosphate 3-kinase (PIK3CA) mutations were determined at higher rates, with the adenomatous polypo- sis coli mutation determined at a lower rate than in the literature. There were significant positive correlations between CDC27 and phosphatase and tensin homolog (PTEN), PTEN and BRCA2, and PTEN and adenomatous polyposis coli (APC) concomitant muta- tions, whereas negative correlations were present between BRAF and KRAS. Statistically significant relationships were present between KRAS exon 2 and mucinous morphology, PIK3CA and absence of perineural invasion, BRAF and tumor differentiation/localization, MutS homolog 3 (MSH3) and tumor diameter, and BRCA2 and absence of lymph node metastasis. CONCLUSION: It is necessary to have a comprehensive database of genomic alterations of colorectal carcinomas to interpret mutations more accurately clinically. There are no studies on the frequency of mutations in colorectal carcinomas in the Turkish population; thus, follow-up and treatment protocols are organized following the European and American databases and guidelines. A comprehensive study of the colorectal carcinoma patients' mutation profile in the Turkish patient cohort by the next-generation sequencing method will help to provide significant therapeutic, prognostic, and predictive data and design more successful treatment and follow-up strategies.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Tensinas/genética , Tensinas/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
20.
World J Gastroenterol ; 29(29): 4528-4541, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37621754

RESUMO

BACKGROUND: Obesity plays a vital role in the occurrence and development of non-alcoholic steatohepatitis (NASH). However, the underlining mechanism is still unclear, where adipose tissue (AT) derived exosomes may actively participate. MicroRNAs (miRNAs) are commonly secreted from exosomes for cell communication. Though the regulation of miR-103 on insulin sensitivity has been reported, the specific role of AT-derived exosomes miR-103 in NASH is still vague and further investigation may provide novel therapeutic choices. AIM: To determine the specific role of AT-derived exosomes miR-103 in developing NASH through various methods. METHODS: The expression levels of miR-103 in the AT-derived exosomes and livers were detected and compared between NASH mice and control. The effect of miR-103 on NASH progression was also explored by antagonizing miR-103, including steatosis and inflammation degree changes. The interaction between miR-103 and the autophagy-related gene phosphatase and tensin homolog (PTEN) was confirmed by dual-luciferase reporter assay. The role of the interaction between miR-103 and PTEN on autophagy was verified in NASH-like cells. Finally, the effects of miR-103 from adipose-derived exosomes on NASH and autophagy were analyzed through animal experiments. RESULTS: The expression of miR-103 was increased in NASH mice, compared to the control, and inhibition of miR-103 could alleviate NASH. The results of the dual-luciferase reporter assay showed miR-103 could interact with PTEN. MiR-103-anta decreased p-AMPKa, p-mammalian target of rapamycin (mTOR), and p62 but increased the protein levels of PTEN and LC3-II/I and the number of autophagosomes in NASH mice. Similar results were also observed in NASH-like cells, and further experiments showed PTEN silencing inhibited the effect of miR-103-anta. AT derived-exosome miR-103 aggravated NASH and increased the expressions of p-AMPKa, p-mTOR, and p62 but decreased the protein levels of PTEN and LC3-II/I and the number of autophagosomes in mice. CONCLUSION: AT derived-exosome increased the levels of miR-103 in the liver, and miR-103 aggravated NASH. Mechanically, miR-103 could interact with PTEN and inhibit autophagy.


Assuntos
Exossomos , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Exossomos/genética , Tensinas , Hepatopatia Gordurosa não Alcoólica/genética , Hepatócitos , Autofagia , Proteínas Quinases Ativadas por AMP , Tecido Adiposo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...