Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
Diabetes Obes Metab ; 26 Suppl 2: 34-45, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450938

RESUMO

Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.


Assuntos
Craniofaringioma , Doenças Hipotalâmicas , Neoplasias Hipofisárias , Humanos , Leptina/metabolismo , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/terapia , Doenças Hipotalâmicas/metabolismo , Obesidade/complicações , Obesidade/terapia , Obesidade/genética , Hipotálamo/metabolismo , Craniofaringioma/complicações , Craniofaringioma/terapia , Craniofaringioma/metabolismo , Hiperfagia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Melanocortinas/metabolismo , Metabolismo Energético/fisiologia
2.
Diabetes Obes Metab ; 26 Suppl 2: 46-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504134

RESUMO

Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.


Assuntos
Manejo da Obesidade , Humanos , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Medicina de Precisão , Obesidade/epidemiologia , Obesidade/genética , Obesidade/terapia , Leptina/genética , Leptina/metabolismo , Melanocortinas/uso terapêutico , Melanocortinas/genética
3.
Ecotoxicol Environ Saf ; 274: 116177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461573

RESUMO

Triphenyltin (TPT) is a typical persistent organic pollutant whose occurrence in coral reef ecosystems may threaten the survival of reef fishes. In this study, a brightly colored representative reef fish, Amphiprion ocellaris was used to explore the effects of TPT at environmental levels (1, 10, and 100 ng/L) on skin pigment synthesis. After the fish were exposed to TPT for 60 days, the skin became darker, owing to an increase in the relative area of black stripes, a decrease in orange color values while an increase in brown color values, and an increase in the number of melanocytes in the orange part of the skin tissues. To explore the mechanisms by which TPT induces darker body coloration, the enzymatic activity and gene expression levels of the members of melanocortin system that affect melanin synthesis were evaluated. Leptin levels and lepr expression were found to be increased after TPT exposure, which likely contributed to the increase found in pomc expression and α-melanocyte-stimulating hormone (α-MSH) levels. Then Tyr activity and mc1r, tyr, tyrp1, mitf, and dct were upregulated, ultimately increasing melanin levels. Importantly, RT-qPCR results were consistent with the transcriptome analysis of trends in lepr and pomc expression. Because the orange color values decreased, pterin levels and the pteridine metabolic pathway were also evaluated. The results showed that TPT induced BH4 levels and spr, xdh, and gch1 expression associated with pteridine synthesis decreased, ultimately decreasing the colored pterin content (sepiapterin). We conclude that TPT exposure interferes with the melanocortin system and pteridine metabolic pathway to increase melanin and decrease colored pterin levels, leading to darker body coloration in A. ocellaris. Given the importance of body coloration for the survival and reproduction of reef fishes, studies on the effects of pollutants (others alongside TPT) on body coloration are of high priority.


Assuntos
Melanocortinas , Compostos Orgânicos de Estanho , Perciformes , Animais , Pró-Opiomelanocortina , Ecossistema , Melaninas/genética , Pteridinas , Peixes/genética , Perciformes/genética , Pterinas , Redes e Vias Metabólicas
4.
Sci Rep ; 14(1): 7067, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528040

RESUMO

Mutations leading to a reduced or loss of function in genes of the leptin-melanocortin system confer a risk for monogenic forms of obesity. Yet, gain of function variants in the melanocortin-4-receptor (MC4R) gene predispose to a lower BMI. In individuals with reduced body weight, we thus expected mutations leading to an enhanced function in the respective genes, like leptin (LEP) and MC4R. Therefore, we have Sanger sequenced the coding regions of LEP and MC4R in 462 female patients with anorexia nervosa (AN), and 445 healthy-lean controls. In total, we have observed four and eight variants in LEP and MC4R, respectively. Previous studies showed different functional in vitro effects for the detected frameshift and non-synonymous variants: (1) LEP: reduced/loss of function (p.Val94Met), (2) MC4R: gain of function (p.Val103Ile, p.Ile251Leu), reduced or loss of function (p.Thr112Met, p.Ser127Leu, p.Leu211fsX) and without functional in vitro data (p.Val50Leut). In LEP, the variant p.Val94Met was detected in one patient with AN. For MC4R variants, one patient with AN carried the frameshift variant p.Leu211fsX. One patient with AN was heterozygous for two variants at the MC4R (p.Val103Ile and p.Ser127Leu). All other functionally relevant variants were detected in similar frequencies in patients with AN and lean individuals.


Assuntos
Anorexia Nervosa , Leptina , Receptor Tipo 4 de Melanocortina , Feminino , Humanos , Anorexia Nervosa/genética , Leptina/genética , Melanocortinas/genética , Mutação , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética
5.
Ann Neurol ; 95(4): 688-699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308537

RESUMO

OBJECTIVE: Based upon similarities between the urge to move and sensory discomfort of restless legs syndrome (RLS) and properties of melanocortin hormones, including their incitement of movement and hyperalgesia, we assessed plasma and cerebrospinal fluid (CSF) α-melanocyte-stimulating hormone (α-MSH) and ß-endorphin in RLS patients and controls. METHODS: Forty-two untreated moderate-to-severe RLS patients and 44 matched controls underwent venipuncture at 19:00, 20:30, and 22:00; 37 RLS and 36 controls had lumbar puncture at 21:30. CSF and plasma were analyzed for pro-opiomelanocortin (POMC), adrenocorticotropin hormone (ACTH), α-MSH, ß-MSH, and ß-endorphin by immunoassay. RLS severity was assessed by International RLS Study Group Severity Scale. RESULTS: RLS participants were 52.7 ± 12.0 years old, 61.9% were women, 21.4% had painful RLS, and RLS severity was 24.8 ± 9.0. Controls had similar age and sex. Plasma ACTH, α-MSH, and ß-endorphin were similar between groups. Plasma POMC was significantly greater in RLS than controls (17.0 ± 11.5 vs 12.7 ± 6.1fmol/ml, p = 0.048). CSF ACTH was similar between groups. CSF ß-MSH was significantly higher in painful than nonpainful RLS or controls (48.2 ± 24.8 vs 32.1 ± 14.8 vs 32.6 ± 15.2pg/ml, analysis of variance [ANOVA] p = 0.03). CSF α-MSH was higher in RLS than controls (34.2 ± 40.9 vs 20.3 ± 11.0pg/ml, p = 0.062). CSF ß-EDP was lowest in painful RLS, intermediate in nonpainful RLS, and highest in controls (8.0 ± 3.4 vs 10.8 ± 3.1 vs 12.3 ± 5.0pg/ml, ANOVA p = 0.049). The ratio of the sum of CSF α- and ß-MSH to CSF ß-endorphin was highest, intermediate, and lowest in painful RLS, nonpainful RLS, and controls (p = 0.007). INTERPRETATION: CSF ß-MSH is increased and CSF ß-endorphin decreased in RLS patients with painful symptoms. ANN NEUROL 2024;95:688-699.


Assuntos
Endorfinas , Neuropeptídeos , Síndrome das Pernas Inquietas , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Pró-Opiomelanocortina/análise , alfa-MSH/análise , beta-Endorfina/análise , Melanocortinas , beta-MSH , Hormônio Adrenocorticotrópico
6.
Biomolecules ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397406

RESUMO

Alpha-melanocyte-stimulating hormone (α-MSH) and its binding receptors (the melanocortin receptors) play important roles in maintaining ocular tissue integrity and immune homeostasis. Particularly extensive studies have demonstrated the biological functions of α-MSH in both immunoregulation and cyto-protection. This review summarizes the current knowledge of both the physiological and pathological roles of α-MSH and its receptors in the eye. We focus on recent developments in the biology of α-MSH and the relevant clinical implications in treating ocular diseases.


Assuntos
Melanocortinas , alfa-MSH , Humanos , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Receptores de Melanocortina/metabolismo , Inflamação/tratamento farmacológico , Morte Celular
7.
J Neuroendocrinol ; 36(2): e13366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38279680

RESUMO

The arcuate nucleus is a crucial hypothalamic brain region involved in regulating body weight homeostasis. Neurons within the arcuate nucleus respond to peripheral metabolic signals, such as leptin, and relay these signals via neuronal projections to brain regions both within and outside the hypothalamus, ultimately causing changes in an animal's behaviour and physiology. There is a substantial amount of evidence to indicate that leptin is intimately involved with the postnatal development of arcuate nucleus melanocortin circuitry. Further, it is clear that leptin signalling directly in the arcuate nucleus is required for circuitry development. However, as leptin receptor long isoform (Leprb) mRNA is expressed in multiple nuclei within the developing hypothalamus, including the postsynaptic target regions of arcuate melanocortin projections, this raises the possibility that leptin also signals in these nuclei to promote circuitry development. Here, we used RT-qPCR and RNAscope® to reveal the spatio-temporal pattern of Leprb mRNA in the early postnatal mouse hypothalamus. We found that Leprb mRNA expression increased significantly in the arcuate nucleus, ventromedial nucleus and paraventricular nucleus of the hypothalamus from P8, in concert with the leptin surge. In the dorsomedial nucleus of the hypothalamus, increases in Leprb mRNA were slightly later, increasing significantly from P12. Using duplex RNAscope®, we found Leprb co-expressed with Sim1, Pou3f2, Mc4r and Bdnf in the paraventricular nucleus at P8. Together, these data suggest that leptin may signal in a subset of neurons postsynaptic to arcuate melanocortin neurons, as well as within the arcuate nucleus itself, to promote the formation of arcuate melanocortin circuitry during the early postnatal period.


Assuntos
Leptina , Receptores para Leptina , Animais , Camundongos , Leptina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Melanocortinas/metabolismo , RNA Mensageiro/metabolismo
8.
Neuropharmacology ; 247: 109848, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253222

RESUMO

Social deficits are debilitating features of many psychiatric disorders, including autism. While time-intensive behavioral therapy is moderately effective, there are no pharmacological interventions for social deficits in autism. Many studies have attempted to treat social deficits using the neuropeptide oxytocin for its powerful neuromodulatory abilities and influence on social behaviors and cognition. However, clinical trials utilizing supplementation paradigms in which exogenous oxytocin is chronically administered independent of context have failed. An alternative treatment paradigm suggests pharmacologically activating the endogenous oxytocin system during behavioral therapy to enhance the efficacy of therapy by facilitating social learning. To this end, melanocortin receptor agonists like Melanotan II (MTII), which induces central oxytocin release and accelerates formation of partner preference, a form of social learning, in prairie voles, are promising pharmacological tools. To model pharmacological activation of the endogenous oxytocin system during behavioral therapy, we administered MTII prior to social interactions between male and female voles. We assessed its effect on oxytocin-dependent activity in brain regions subserving social learning using Fos expression as a proxy for neuronal activation. In non-social contexts, MTII only activated hypothalamic paraventricular nucleus, a primary site of oxytocin synthesis. However, during social interactions, MTII selectively increased oxytocin-dependent activation of nucleus accumbens, a site critical for social learning. These results suggest a mechanism for the MTII-induced acceleration of partner preference formation observed in previous studies. Moreover, they are consistent with the hypothesis that pharmacologically activating the endogenous oxytocin system with a melanocortin agonist during behavioral therapy has potential to facilitate social learning.


Assuntos
Núcleo Accumbens , Ocitocina , Masculino , Humanos , Feminino , Animais , Ocitocina/metabolismo , Núcleo Accumbens/metabolismo , Melanocortinas/metabolismo , Comportamento Social , Receptores de Ocitocina/metabolismo , Meio Social , Arvicolinae/fisiologia
9.
J Pineal Res ; 76(1): e12939, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241679

RESUMO

Temporal signals such as light and temperature cycles profoundly modulate animal physiology and behaviour. Via endogenous timing mechanisms which are regulated by these signals, organisms can anticipate cyclic environmental changes and thereby enhance their fitness. The pineal gland in fish, through the secretion of melatonin, appears to play a critical role in the circadian system, most likely acting as an element of the circadian clock system. An important output of this circadian clock is the locomotor activity circadian rhythm which is adapted to the photoperiod and thus determines whether animals are diurnal or nocturnal. By using a genetically modified zebrafish strain known as Tg (Xla.Eef1a1:Cau.asip1)iim04, which expresses a higher level of the agouti signalling protein 1 (Asip1), an endogenous antagonist of the melanocortin system, we observed a complete disruption of locomotor activity patterns, which correlates with the ablation of the melatonin daily rhythm. Consistent with this, in vitro experiments also demonstrated that Asip1 inhibits melatonin secretion from the zebrafish pineal gland, most likely through the melanocortin receptors expressed in this gland. Asip1 overexpression also disrupted the expression of core clock genes, including per1a and clock1a, thus blunting circadian oscillation. Collectively, these results implicate the melanocortin system as playing an important role in modulating pineal physiology and, therefore, circadian organisation in zebrafish.


Assuntos
Melanocortinas , Melatonina , Glândula Pineal , Animais , Proteína Agouti Sinalizadora/genética , Proteína Agouti Sinalizadora/metabolismo , Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Peixe-Zebra/genética , Melanocortinas/metabolismo
10.
Mol Metab ; 80: 101886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246589

RESUMO

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Assuntos
Hipotálamo , Melanocortinas , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Camundongos Transgênicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
11.
J Clin Endocrinol Metab ; 109(3): e1249-e1259, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37820740

RESUMO

CONTEXT: Genetic variants in melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) genes are strongly associated with childhood obesity. OBJECTIVE: This study aims to identify and functionally characterize MC3R and MC4R variants in an Asian cohort of children with severe early-onset obesity. METHODS: Whole-exome sequencing was performed to screen for MC3R and MC4R coding variants in 488 Asian children with severe early-onset obesity (body mass index for age ≥97th percentile). Functionality of the identified variants were determined via measurement of intracellular cyclic adenosine monophosphate (cAMP) concentrations and luciferase activity. RESULTS: Four MC3R and 2 MC4R heterozygous nonsynonymous rare variants were detected. There were 3 novel variants: MC3R c.151G > C (p.Val51Leu), MC4R c.127C > A (p.Gln43Lys), and MC4R c.272T > G (p.Met91Arg), and 3 previously reported variants: MC3R c.127G > A (p.Glu43Lys), MC3R c.97G > A (p.Ala33Thr), and MC3R c.437T > A (p.Ile146Asn). Both MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants demonstrated defective downstream cAMP signaling activity. The MC4R c.127C > A (p.Gln43Lys) variant showed reduced cAMP signaling activity at low substrate concentration but the signaling activity was restored at high substrate concentration. The MC3R c.151G > C (p.Val51Leu) variant did not show a significant reduction in cAMP signaling activity compared to wild-type (WT) MC3R. Coexpression studies of the WT and variant MC3R/MC4R showed that the heterozygous variants did not exhibit dominant negative effect. CONCLUSION: Our functional assays demonstrated that MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants might predispose individuals to early-onset obesity, and further studies are needed to establish the causative effect of these variants in the pathogenesis of obesity.


Assuntos
Obesidade Mórbida , Obesidade Pediátrica , Humanos , Criança , Obesidade Mórbida/genética , Melanocortinas , Obesidade Pediátrica/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Proteínas de Transporte
12.
Brain ; 147(1): 26-38, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37633259

RESUMO

Restless legs syndrome (RLS) is responsive to opioid, dopaminergic and iron-based treatments. Receptor blocker studies in RLS patients suggest that the therapeutic efficacy of opioids is specific to the opioid receptor and mediated indirectly through the dopaminergic system. An RLS autopsy study reveals decreases in endogenous opioids, ß-endorphin and perhaps Met-enkephalin in the thalamus of RLS patients. A total opioid receptor knock-out (mu, delta and kappa) and a mu-opioid receptor knock-out mouse model of RLS show circadian motor changes akin to RLS and, although both models show sensory changes, the mu-opioid receptor knock mouse shows circadian sensory changes closest to those seen in idiopathic RLS. Both models show changes in striatal dopamine, anaemia and low serum iron. However, only in the total receptor knock-out mouse do we see the decreases in serum ferritin that are normally found in RLS. There are also decreases in serum iron when wild-type mice are administered a mu-opioid receptor blocker. In addition, the mu-opioid receptor knock-out mouse also shows increases in striatal zinc paralleling similar changes in RLS. Adrenocorticotropic hormone and α-melanocyte stimulating hormone are derived from pro-opiomelanocortin as is ß-endorphin. However, they cause RLS-like symptoms and periodic limb movements when injected intraventricularly into rats. These results collectively suggest that an endogenous opioid deficiency is pathogenetic to RLS and that an altered melanocortin system may be causal to RLS as well.


Assuntos
Analgésicos Opioides , Síndrome das Pernas Inquietas , Humanos , Ratos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Síndrome das Pernas Inquietas/diagnóstico , Síndrome das Pernas Inquietas/tratamento farmacológico , Melanocortinas/uso terapêutico , beta-Endorfina/uso terapêutico , Ferro , Dopamina
13.
World J Pediatr ; 20(1): 26-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37725322

RESUMO

BACKGROUND: Obesity is a multifactorial chronic disease with a high, increasing worldwide prevalence. Genetic causes account for 7% of the cases in children with extreme obesity. DATA SOURCES: This narrative review was conducted by searching for papers published in the PubMed/MEDLINE, Embase and SciELO databases and included 161 articles. The search used the following search terms: "obesity", "obesity and genetics", "leptin", "Prader-Willi syndrome", and "melanocortins". The types of studies included were systematic reviews, clinical trials, prospective cohort studies, cross-sectional and prospective studies, narrative reviews, and case reports. RESULTS: The leptin-melanocortin pathway is primarily responsible for the regulation of appetite and body weight. However, several important aspects of the pathophysiology of obesity remain unknown. Genetic causes of obesity can be grouped into syndromic, monogenic, and polygenic causes and should be assessed in children with extreme obesity before the age of 5 years, hyperphagia, or a family history of extreme obesity. A microarray study, an analysis of the melanocortin type 4 receptor gene mutations and leptin levels should be performed for this purpose. There are three therapeutic levels: lifestyle modifications, pharmacological treatment, and bariatric surgery. CONCLUSIONS: Genetic study technologies are in constant development; however, we are still far from having a personalized approach to genetic causes of obesity. A significant proportion of the affected individuals are associated with genetic causes; however, there are still barriers to its approach, as it continues to be underdiagnosed. Video Abstract (MP4 1041807 KB).


Assuntos
Leptina , Obesidade Mórbida , Criança , Humanos , Pré-Escolar , Leptina/genética , Estudos Prospectivos , Estudos Transversais , Obesidade , Obesidade Mórbida/genética , Melanocortinas/genética
14.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38035762

RESUMO

Voluntary feed intake is insufficient to meet the nutrient demands associated with late pregnancy in prolific ewes and early lactation in high-yielding dairy cows. Under these conditions, peripheral signals such as growth hormone and ceramides trigger adaptations aimed at preserving metabolic well-being. Recent work in rodents has shown that the central nervous system-melanocortin (CNS-MC) system, consisting of alpha-melanocyte-stimulating hormone (α-MSH) and agouti-related peptide (AGRP) acting respectively as agonist and antagonist on central MC receptors, contributes to the regulation of some of the same adaptations. To assess the effects of the CNC-MC on peripheral adaptations in ruminants, ewes were implanted with an intracerebroventricular cannula in the third ventricle and infused over days with artificial cerebrospinal fluid (aCSF), the α-MSH analog melanotan-I (MTI), or AGRP. Infusion of MTI at 0.03 nmol/h reduced intake, expressed as a fold of maintenance energy requirement (M), from 1.8 to 1.1 M (P < 0.0001), whereas AGRP at 0.3 nmol/h increased intake from 1.8 to 2.0 M (P < 0.01); these doses were used in all subsequent experiments. To assess the effect of MTI on plasma variables, sheep were fed ad libitum and infused with aCSF or MTI or pair-fed to MTI-treated sheep and infused with aCSF (aCSFPF). Feed intake of the MTI and aCSFPF groups was 40% lower than the aCSF group (P < 0.0001). MTI increased plasma triiodothyronine and thyroxine in an intake-independent manner (P < 0.05 or less) but was devoid of effects on plasma glucose, insulin, and cortisol. None of these variables were altered by AGRP infusion in sheep fed at a fixed intake of 1.6 M. To assess the effect of CNS-MC activation on insulin action, ewes were infused with aCSF or MTI over the last 3 d of a 14-d period when energy intake was limited to 0.3 M and studied under basal conditions and during hyperinsulinemic-euglycemic clamps. MTI had no effect on plasma glucose, plasma insulin, or glucose entry rate under basal conditions but blunted the ability of insulin to inhibit endogenous glucose production during hyperinsulinemic-euglycemic clamps (P < 0.0001). Finally, MTI tended to reduce plasma leptin in sheep fed at 0.3 M (P < 0.08), and this effect became significant at 0.6 M (P < 0.05); MTI had no effect on plasma adiponectin irrespective of feeding level. These data suggest a role for the CNC-MC in regulating metabolic efficiency and peripheral insulin action.


Highly productive ruminants face short-term nutritional deficits during demanding phases of their life cycle. They remain productive and healthy during these periods through a series of metabolic adaptations. Current models in ruminant biology attribute the coordination of these adaptations to circulating hormones and bioactive metabolites but have not considered the possibility that the central nervous system (CNS) is also involved. The latter appears likely given recent work in rodents implicating the CNS-melanocortin system in the regulation of some of these adaptations. To test this possibility, mature ewes were surgically implanted with a cannula accessing the brain allowing chronic infusion of melanocortins, and used in experiments assessing peripheral effects. These experiments showed that the CNS-melanocortin system regulates the circulating concentrations of some metabolic hormones as well as the ability of insulin to regulate glucose production. Overall, these studies suggest a role for the CNS-melanocortin system in regulating metabolic adaptations in ruminants.


Assuntos
Melanocortinas , alfa-MSH , Bovinos , Feminino , Ovinos , Animais , Gravidez , Melanocortinas/metabolismo , Melanocortinas/farmacologia , alfa-MSH/farmacologia , Proteína Relacionada com Agouti/farmacologia , Glicemia , Leptina , Insulina , Ingestão de Alimentos
15.
J Vet Intern Med ; 37(6): 2344-2355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37897303

RESUMO

BACKGROUND: The melanocortin 4 antagonist TCMCB07 is safe and effective in reversing cachexia caused by sepsis or cancer in rodents. The safety and pharmacokinetics of TCMCB07 are demonstrated in healthy beagle dogs. HYPOTHESIS/OBJECTIVES: The objectives of this study were to investigate the safety, peak plasma concentrations, and potential for efficacy of TCMCB07 in pet dogs with naturally occurring cachexia over a 4-week time period. ANIMALS: Fourteen dogs with cachexia of any underlying cause, except cancer of the oral cavity or gastrointestinal tract, were eligible for enrollment with informed client consent. METHODS: This study was a prospective, 1-armed open-label trial. Physical examination, complete blood count, chemistry panel, and owner-assessed quality of life surveys were checked at weeks 1, 2, and 4. Due to potential for bradycardia and hypotension, Holter monitoring and blood pressure evaluations were scheduled at pre-enrollment and week 4. RESULTS: Fourteen dogs completed the trial. Significant changes detected included increased mean body weight (18.6-19.5 kg, P < .02), increased body condition score (median Tufts 5-point thin dog scale score P < .004 and WSAVA muscle condition score P < .02) and increased mean blood urea nitrogen (21.79-30.43 mg dL-1 , P < .004). On quality of life surveys, pet owners perceived their dog appeared to be panting less (P < .002) and that the general health improved (P < .03). Four dogs had a change in coat pigmentation. The peak plasma concentration of TCMCB07 in cachectic dogs was similar to that in healthy beagle dogs. CONCLUSIONS AND CLINICAL IMPORTANCE: TCMCB07 was safe and has potential efficacy in pet dogs with cachexia.


Assuntos
Doenças do Cão , Neoplasias , Humanos , Animais , Cães , Caquexia/tratamento farmacológico , Caquexia/veterinária , Estudos Prospectivos , Qualidade de Vida , Melanocortinas , Peptídeos , Neoplasias/veterinária , Doenças do Cão/tratamento farmacológico
16.
J Pediatr Endocrinol Metab ; 36(12): 1140-1145, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37877373

RESUMO

OBJECTIVES: To study the prevalence and influence on metabolic profile of the prohormone-convertase-1 (PCSK1) N221D variant in childhood obesity, proven its role in the leptin-melanocortin signaling pathway as in proinsulin and other prohormone cleavage. METHODS: Transversal study of 1066 children with obesity (mean age and BMI Z-score 10.38 ± 3.44 years and +4.38 ± 1.77, respectively), 51.4 % males, 54.4 % prepubertal, 71.5 % Caucasians and 20.8 % Latinos. Anthropometric and metabolic features were compared between patients carrying the N221D variant in PCSK1 and patients with no variants found after next generation sequencing analysis of 17 genes (CREBBP, CPE, HTR2C, KSR2, LEP, LEPR, MAGEL2, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC, SH2B1, SIM1, TBX3 and TUB) involved in the leptin-melanocortin pathway. RESULTS: No variants were found in 531 patients (49.8 %), while 68 patients carried the PCSK1 N221D variant (42 isolately, and 26 with at least one additional gene variant). Its prevalence was higher in Caucasians vs. Latinos (χ2 7.81; p<0.01). Patients carrying exclusively the PCSK1 N221D variant (n=42) showed lower insulinemia (p<0.05), HOMA index (p<0.05) and area under the curve for insulin in the oral glucose tolerance test (p<0.001) and higher WBISI (p<0.05) than patients with no variants, despite similar obesity severity, age, sex and ethnic distribution. CONCLUSIONS: The N221D variant in PCSK1 is highly prevalent in childhood obesity, influenced by ethnicity. Indirect estimation of insulin resistance, based on insulinemia could be byassed in these patients and underestimate their type 2 diabetes mellitus risk.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Pediátrica , Masculino , Humanos , Criança , Feminino , Obesidade Pediátrica/epidemiologia , Obesidade Pediátrica/genética , Leptina/genética , Leptina/metabolismo , Melanocortinas/metabolismo , Metaboloma , Proteínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 1/metabolismo
17.
Nat Commun ; 14(1): 6602, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857606

RESUMO

Norepinephrine (NE) is a well-known appetite regulator, and the nor/adrenergic system is targeted by several anti-obesity drugs. To better understand the circuitry underlying adrenergic appetite control, here we investigated the paraventricular hypothalamic nucleus (PVN), a key brain region that integrates energy signals and receives dense nor/adrenergic input, using a mouse model. We found that PVN NE level increases with signals of energy deficit and decreases with food access. This pattern is recapitulated by the innervating catecholaminergic axon terminals originating from NTSTH-neurons. Optogenetic activation of rostral-NTSTH → PVN projection elicited strong motivation to eat comparable to overnight fasting whereas its inhibition attenuated both fasting-induced & hypoglycemic feeding. We found that NTSTH-axons functionally targeted PVNMC4R-neurons by predominantly inhibiting them, in part, through α1-AR mediated potentiation of GABA release from ARCAgRP presynaptic terminals. Furthermore, glucoprivation suppressed PVNMC4R activity, which was required for hypoglycemic feeding response. These results define an ascending nor/adrenergic circuit, NTSTH → PVNMC4R, that conveys peripheral hunger signals to melanocortin pathway.


Assuntos
Fome , Melanocortinas , Melanocortinas/metabolismo , Adrenérgicos/metabolismo , Apetite , Núcleo Hipotalâmico Paraventricular/metabolismo , Norepinefrina/metabolismo , Hipoglicemiantes/metabolismo
18.
Obes Surg ; 33(11): 3502-3509, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37798511

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) is associated with a high rate of type 2 diabetes (T2D) remission. Carriers of heterozygous variants in the leptin-melanocortin pathway (LMP) are more likely to experience weight recurrence after RYGB. Our aim was to investigate if carrier status and associated weight regain affects the rate of T2D remission after RYGB. METHODS: Carriers of LMP variants with a diagnosis of T2D prior to RYGB (N = 16) were matched to non-carriers (N = 32) based on sex, age, and BMI. We assessed for post-operative T2D remission status post-surgery on a yearly basis, for up to 15 years. Our primary endpoint was the proportion of patients achieving T2D remission at 1 year. We conducted a survival analysis for all patients that achieved remission at least at one time-point to evaluate for maintenance of T2D remission by using a log-rank test. RESULTS: Both carriers and non-carriers had similar baseline and procedural characteristics. The proopiomelanocortin gene in the LMP pathway had the most variants (n = 5, 31%). Carriers had a lower total body weight loss percentage at nadir (28.7% ± 6.9) than non-carriers (33.7% ± 8.8, p = 0.04). The proportion of patients achieving T2D remission at 1 year was 68.8% for carriers and 71.9% for non-carriers (p = 1.0). Survival curves for maintenance of first remission were similar for both groups (p = 0.73), with a median survival of 8 years for both carriers and non-carriers. CONCLUSIONS: Despite inferior weight loss outcomes at nadir, carriers had similar T2D remission rates when compared to non-carriers. Weight-independent metabolic benefits of RYGB might contribute to this observation.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Obesidade Mórbida , Humanos , Estudos de Casos e Controles , Obesidade Mórbida/cirurgia , Leptina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/cirurgia , Diabetes Mellitus Tipo 2/complicações , Melanocortinas , Estudos Retrospectivos , Resultado do Tratamento
19.
J Neurosci ; 43(36): 6280-6296, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37591737

RESUMO

The hypothalamic melanocortin system is critically involved in sensing stored energy and communicating this information throughout the brain, including to brain regions controlling motivation and emotion. This system consists of first-order agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons located in the hypothalamic arcuate nucleus and downstream neurons containing the melanocortin-3 (MC3R) and melanocortin-4 receptor (MC4R). Although extensive work has characterized the function of downstream MC4R neurons, the identity and function of MC3R-containing neurons are poorly understood. Here, we used neuroanatomical and circuit manipulation approaches in mice to identify a novel pathway linking hypothalamic melanocortin neurons to melanocortin-3 receptor neurons located in the paraventricular thalamus (PVT) in male and female mice. MC3R neurons in PVT are innervated by hypothalamic AgRP and POMC neurons and are activated by anorexigenic and aversive stimuli. Consistently, chemogenetic activation of PVT MC3R neurons increases anxiety-related behavior and reduces feeding in hungry mice, whereas inhibition of PVT MC3R neurons reduces anxiety-related behavior. These studies position PVT MC3R neurons as important cellular substrates linking energy status with neural circuitry regulating anxiety-related behavior and represent a promising potential target for diseases at the intersection of metabolism and anxiety-related behavior such as anorexia nervosa.SIGNIFICANCE STATEMENT Animals must constantly adapt their behavior to changing internal and external challenges, and impairments in appropriately responding to these challenges are a hallmark of many neuropsychiatric disorders. Here, we demonstrate that paraventricular thalamic neurons containing the melanocortin-3 receptor respond to energy-state-related information and external challenges to regulate anxiety-related behavior in mice. Thus, these neurons represent a potential target for understanding the neurobiology of disorders at the intersection of metabolism and psychiatry such as anorexia nervosa.


Assuntos
Melanocortinas , Pró-Opiomelanocortina , Animais , Feminino , Masculino , Camundongos , Proteína Relacionada com Agouti , Ansiedade , Homeostase , Receptor Tipo 3 de Melanocortina , Tálamo
20.
Eur J Pediatr ; 182(11): 4781-4793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37607976

RESUMO

Obesity represents a major health problem in the pediatric population with an increasing prevalence worldwide, associated with cardiovascular and metabolic disorders, and due to both genetic and environmental factors. Rare forms of obesity are mostly monogenic, and less frequently due to polygenic influence. Polygenic form of obesity is usually the common obesity with single gene variations exerting smaller impact on weight and is commonly non-syndromic.Non-syndromic monogenic obesity is associated with variants in single genes typically related to the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation, thus body weight control. Patients with these genetic defects usually present with hyperphagia and early-onset severe obesity. Significant progress in genetic diagnostic testing has recently made for early identification of patients with genetic obesity, which guarantees prompt intervention in terms of therapeutic management of the disease. What is Known: • Obesity represents a major health problem among children and adolescents, with an increasing prevalence worldwide, associated with cardiovascular disease and metabolic abnormalities, and it can be due to both genetic and environmental factors. • Non-syndromic monogenic obesity is linked to modifications in single genes usually involved in the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation. What is New: • The increasing understanding of rare forms of monogenic obesity has provided significant insights into the genetic causes of pediatric obesity, and our current knowledge of the various genes associated with childhood obesity is rapidly expanding. • A useful diagnostic algorithm for early identification of genetic obesity has been proposed, which can ensure a prompt intervention in terms of therapeutic management of the disease and an early prevention of the development of associated metabolic conditions.


Assuntos
Obesidade Pediátrica , Criança , Adolescente , Humanos , Obesidade Pediátrica/diagnóstico , Obesidade Pediátrica/genética , Leptina/genética , Testes Genéticos , Melanocortinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...