Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.516
Filtrar
1.
Biomolecules ; 14(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540684

RESUMO

Peptides continue to gain significance in the pharmaceutical arena. Since the unveiling of insulin in 1921, the Food and Drug Administration (FDA) has authorised around 100 peptides for various applications. Peptides, although initially derived from endogenous sources, have evolved beyond their natural origins, exhibiting favourable therapeutic effectiveness. Medicinal chemistry has played a pivotal role in synthesising valuable natural peptide analogues, providing synthetic alternatives with therapeutic potential. Furthermore, key chemical modifications have enhanced the stability of peptides and strengthened their interactions with therapeutic targets. For instance, selective modifications have extended their half-life and lessened the frequency of their administration while maintaining the desired therapeutic action. In this review, I analyse the FDA approval of natural peptides, as well as engineered peptides for diabetes treatment, growth-hormone-releasing hormone (GHRH), cholecystokinin (CCK), adrenocorticotropic hormone (ACTH), and α-melanocyte stimulating hormone (α-MSH) peptide analogues. Attention will be paid to the structure, mode of action, developmental journey, FDA authorisation, and the adverse effects of these peptides.


Assuntos
Hormônio Adrenocorticotrópico , alfa-MSH , Estados Unidos , alfa-MSH/farmacologia , Colecistocinina , Peptídeo 1 Semelhante ao Glucagon , United States Food and Drug Administration , Hormônios Estimuladores de Melanócitos , Fatores de Transcrição
2.
ACS Infect Dis ; 9(12): 2436-2447, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009640

RESUMO

The repotentiation of the existing antibiotics by exploiting the combinatorial potential of antimicrobial peptides (AMPs) with them is a promising approach to address the challenges of slow antibiotic development and rising antimicrobial resistance. In the current study, we explored the ability of lead second generation Ana-peptides viz. Ana-9 and Ana-10, derived from Alpha-Melanocyte Stimulating Hormone (α-MSH), to act synergistically with different classes of conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). The peptides exhibited prominent synergy with ß-lactam antibiotics, namely, oxacillin, ampicillin, and cephalothin, against planktonic MRSA. Furthermore, the lead combination of Ana-9/Ana-10 with oxacillin provided synergistic activity against clinical MRSA isolates. Though the treatment of MRSA is complicated by biofilms, the lead combinations successfully inhibited biofilm formation and also demonstrated biofilm disruption potential. Encouragingly, the peptides alone and in combination were able to elicit in vivo anti-MRSA activity and reduce the bacterial load in the liver and kidney of immune-compromised mice. Importantly, the presence of Ana-peptides at sub-MIC doses slowed the resistance development against oxacillin in MRSA cells. Thus, this study highlights the synergistic activity of Ana-peptides with oxacillin advocating for the potential of Ana-peptides as an alternative therapeutic and could pave the way for the reintroduction of less potent conventional antibiotics into clinical use against MRSA infections.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Antibacterianos/farmacologia , Oxacilina/farmacologia , Biofilmes , Peptídeos/farmacologia , Hormônios Estimuladores de Melanócitos
3.
Int J Pharm ; 644: 123344, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37634663

RESUMO

Melanocortin-1 receptor (MC1-R) targeting alpha-melanocyte stimulating hormone-analogue (α-MSH) biomolecules labelled with α-emitting radiometal seem to be valuable in the targeted radionuclide therapy of MC1-R positive melanoma malignum (MM). Herein is reported the anti-tumor in vivo therapeutic evaluation of MC1-R-affine [213Bi]Bi-DOTA-NAPamide and HOLDamide treatment in MC1-R positive B16-F10 melanoma tumor-bearing C57BL/6J mice. On the 6th, 8th and 10th days post tumor cell inoculation; the treated groups of mice were intravenously injected with approximately 5 MBq of both amide derivatives. Beyond body weight and tumor volume assessment, [68Ga]Ga-DOTA-HOLDamide and NAPamide-based PET/MRI scans, and ex vivo biodistribution studies were executed 30,- and 90 min postinjection. In the PET/MRI imaging studies the B16-F10 tumors were clearly visualized with both 68Ga-labelled tracers, however, significantly lower tumor-to-muscle (T/M) ratios were observed by using [68Ga]Ga-DOTA-HOLDamide. After alpha-radiotherapy treatment the tumor size of the control group was larger relative to both treated cohorts, while the smallest tumor volumes were observed in the NAPamide-treated subclass on the 10th day. Relatively higher [213Bi]Bi-DOTA-NAPamide accumulation in the B16-F10 tumors (%ID/g: 2.71 ± 0.15) with discrete background activity led to excellent T/M ratios, particularly 90 min postinjection. Overall, the therapeutic application of receptor selective [213Bi]Bi-DOTA-NAPamide seems to be feasible in MC1-R positive MM management.


Assuntos
Melanoma Experimental , Receptor Tipo 1 de Melanocortina , Animais , Camundongos , Camundongos Endogâmicos C57BL , Radioisótopos de Gálio , Distribuição Tecidual , Hormônios Estimuladores de Melanócitos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/radioterapia
4.
J Med Chem ; 66(10): 6715-6724, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37133411

RESUMO

Melanocortin receptors (MCRs) are a family of G protein-coupled receptors that regulate important physiological functions. Yet, drug development targeting MCRs is hindered by potential side effects due to a lack of receptor subtype-selective ligands with bioavailability. Here, we report novel synthetic pathways to introduce Ψ and χ angle constraints at the C-terminus Trp position of the nonselective prototype tetrapeptide agonist Ac-His-d-Phe-Arg-Trp-NH2. With these conformational constraints, peptide 1 (Ac-His-d-Phe-Arg-Aia) shows improved selectivity at hMC1R, with an EC50 of 11.2 nM for hMC1R and at least 15-fold selectivity compared to other MCR subtypes. Peptide 3 (Ac-His-pCF3-d-Phe-Arg-Aia) is a potent and selective hMC4R agonist with an EC50 of 4.1 nM at hMC4R and at least ninefold selectivity. Molecular docking studies reveal that the Ψ and χ angle constraints force the C-terminal Aia residue to flip and interact with TM6 and TM7, a feature that we hypothesize leads to the receptor subtype selectivity.


Assuntos
Hormônios Estimuladores de Melanócitos , Receptores de Melanocortina , Simulação de Acoplamento Molecular , Conformação Molecular , Relação Estrutura-Atividade , Receptor Tipo 4 de Melanocortina/metabolismo
5.
J Pharm Biomed Anal ; 229: 115374, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001274

RESUMO

Given the rising pervasiveness of melanocortin-1 receptor (MC1-R) positive melanoma malignum (MM) and pertinent metastases, radiolabelled receptor-affine alpha-melanocyte stimulating hormone-analogue (α-MSH analogue) imaging probes would be of crucial importance in timely tumor diagnostic assessment. Herein we aimed at investigating the biodistribution and the MM targeting potential of newly synthesized 213Bi-conjugated MC1-R specific peptide-based radioligands with the establishment of MC1-R overexpressing MM preclinical model. DOTA-conjugated NAP, -HOLD, -FOLD, -and MARSamide were labelled with 213Bi. Ex vivo biodistribution studies were conducted post-administration of 3.81 ± 0.32 MBq [213Bi]Bi-DOTA conjugated deriva-tives into twenty B16-F10 tumor-bearing C57BL/6 J and healthy mice. Organ Level Internal Dose Assessment (OLINDA) and IDAC-Dose were used to calculate translational data-based absorbed radiation dose in human organs. Moderate or low %ID/g uptake of [213Bi]Bi-DOTA conjugated NAP, -HOLD, -and MARSamide and significantly increased [213Bi]Bi-DOTA-FOLDamide accumulation was observed in the thoracic and abdominal organs (p ≤ 0.01). High [213Bi]Bi-DOTA-NAP (%ID/g:3.76 ± 0.96), -and FOLDamide (%ID/g:3.28 ± 0.95) tumor tracer activity confirmed their MC1-R-affinity. The bladder wall received the highest radiation absorbed dose followed by the kidneys (bladder wall: 1.95·10-2 and 8.97·10-2 mSv/MBq; kidneys: 7.47·10-3 vs. 5.88·10-2 mSv/MBq measured by IDAC and OLINDA; respectively) indicating the suitability of the NAPamide derivative for clinical use. These novel [213Bi]Bi-DOTA-linked peptide probes displaying meaningful MC1-R affinity could be promising molecular probes in MM imaging.


Assuntos
Melanoma Experimental , Humanos , Animais , Camundongos , Melanoma Experimental/diagnóstico por imagem , alfa-MSH , Receptor Tipo 1 de Melanocortina/metabolismo , Distribuição Tecidual , Compostos Radiofarmacêuticos/química , Camundongos Endogâmicos C57BL , Hormônios Estimuladores de Melanócitos
6.
Domest Anim Endocrinol ; 83: 106785, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36745973

RESUMO

A chemiluminescent immunoassay is commonly employed to measure adrenocorticotrophic hormone (ACTH) concentrations to assist pituitary pars intermedia dysfunction diagnosis. In a previous study, seasonally-dependent assay cross-reactivity to endogenous equine corticotropin-like intermediate lobe peptide (CLIP, ACTH 18-39) was suspected. The present study aimed to demonstrate binding of endogenous equine CLIP to the capture antibody of the ACTH chemiluminescent immunoassay. Liquid chromatography - mass spectrometry (LCMS) methods were optimised to identify selected ions from synthetic human ACTH, α-melanocyte stimulating hormone (α-MSH, ACTH 1-17) and CLIP. Synthetic ACTH and CLIP bound to the capture antibody of the chemiluminescent ACTH assay, but α-MSH did not. Equine endogenous CLIP was detected by LCMS in pony plasma taken in the autumn and could be eluted from the capture antibody of the ACTH chemiluminescent immunoassay. Further research is required to enable quantification of CLIP. Equine CLIP may alter measured ACTH concentrations in vivo.


Assuntos
Hormônio Adrenocorticotrópico , alfa-MSH , Cavalos , Animais , Humanos , Peptídeo da Parte Intermédia da Adeno-Hipófise Semelhante à Corticotropina/metabolismo , alfa-MSH/metabolismo , Anticorpos , Hipófise/metabolismo , Hormônios Estimuladores de Melanócitos/metabolismo
7.
Biomolecules ; 12(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36291616

RESUMO

The discovery of melanocortins in 1916 has resulted in more than 100 years of research focused on these peptides. Extensive studies have elucidated well-established functions of melanocortins mediated by cell surface receptors, including MSHR (melanocyte-stimulating hormone receptor) and ACTHR (adrenocorticotropin receptor). Subsequently, three additional melanocortin receptors (MCRs) were identified. Among these five MCRs, MC3R and MC4R are expressed primarily in the central nervous system, and are therefore referred to as the neural MCRs. Since the central melanocortin system plays important roles in regulating energy homeostasis, targeting neural MCRs is emerging as a therapeutic approach for treating metabolic conditions such as obesity and cachexia. Early efforts modifying endogenous ligands resulted in the development of many potent and selective ligands. This review focuses on the ligands for neural MCRs, including classical ligands (MSH and agouti-related peptide), nonclassical ligands (lipocalin 2, ß-defensin, small molecules, and pharmacoperones), and clinically approved ligands (ACTH, setmelanotide, bremelanotide, and several repurposed drugs).


Assuntos
Hormônios Estimuladores de Melanócitos , beta-Defensinas , Hormônios Estimuladores de Melanócitos/metabolismo , Ligantes , Lipocalina-2 , Hormônio Adrenocorticotrópico/metabolismo , beta-Defensinas/metabolismo , Receptores de Melanocortina/química , Receptores de Melanocortina/metabolismo , Melanocortinas/metabolismo
8.
Gen Comp Endocrinol ; 328: 114105, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973587

RESUMO

In bony vertebrates, melanocortin 2 receptor (Mc2r) specifically binds adrenocorticotropic hormone (ACTH) and is responsible for mediating anterior pituitary signaling that stimulates corticosteroid production in the adrenal gland/interrenal cells. In bony fishes Mc2r requires the chaperoning of an accessory protein (Mrap1) to traffic to the membrane surface and bind ACTH. Here, we evaluated the structure and pharmacological properties of Mc2r from the Senegal bichir (Polypterus senegalus), which represents the most basal bony fish from which an Mc2r has been pharmacologically studied to date. In our experiments, cDNA constructs of the Mc2r from the Senegal bichir (sbMc2r) and various vertebrate Mrap1s were heterologously co-expressed in Chinese hamster ovary (CHO) cells, stimulated by ACTH or melanocyte-stimulating hormone (α-MSH) ligands, and assessed using a luciferase reporter gene assay. When expressed without an Mrap1, sbMc2r was not activated by ACTH. When co-expressed with Mrap1 from either chicken (Gallus gallus) or bowfin (Amia calva), sbMc2r could be activated in a dose-dependent manner by ACTH, but not α-MSH. Co-expression of sbMrap2 with sbMc2r resulted in no detectable activation of the receptor. Collectively, these results demonstrate that sbMc2r has pharmacological properties similar to those of Mc2rs of later-evolved bony fishes, such as Mrap1 dependence and ACTH selectivity, indicating that these qualities of Mc2r function are ancestral to all bony fish Mc2rs.


Assuntos
Receptor Tipo 2 de Melanocortina , Receptores de Melanocortina , Hormônio Adrenocorticotrópico/farmacologia , Animais , Células CHO , Galinhas/metabolismo , Cricetinae , Cricetulus , DNA Complementar/metabolismo , Peixes/genética , Hormônios Estimuladores de Melanócitos/metabolismo , Receptor Tipo 2 de Melanocortina/genética , Receptor Tipo 2 de Melanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Senegal , alfa-MSH/metabolismo
9.
Front Endocrinol (Lausanne) ; 12: 613983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953692

RESUMO

The equilibrium and reciprocal actions among appetite-stimulating (orexigenic) and appetite-suppressing (anorexigenic) signals synthesized in the gut, brain, microbiome and adipose tissue (AT), seems to play a pivotal role in the regulation of food intake and feeding behavior, anxiety, and depression. A dysregulation of mechanisms controlling the energy balance may result in eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). AN is a psychiatric disease defined by chronic self-induced extreme dietary restriction leading to an extremely low body weight and adiposity. BN is defined as out-of-control binge eating, which is compensated by self-induced vomiting, fasting, or excessive exercise. Certain gut microbiota-related compounds, like bacterial chaperone protein Escherichia coli caseinolytic protease B (ClpB) and food-derived antigens were recently described to trigger the production of autoantibodies cross-reacting with appetite-regulating hormones and neurotransmitters. Gut microbiome may be a potential manipulator for AT and energy homeostasis. Thus, the regulation of appetite, emotion, mood, and nutritional status is also under the control of neuroimmunoendocrine mechanisms by secretion of autoantibodies directed against neuropeptides, neuroactive metabolites, and peptides. In AN and BN, altered cholinergic, dopaminergic, adrenergic, and serotonergic relays may lead to abnormal AT, gut, and brain hormone secretion. The present review summarizes updated knowledge regarding the gut dysbiosis, gut-barrier permeability, short-chain fatty acids (SCFA), fecal microbial transplantation (FMT), blood-brain barrier permeability, and autoantibodies within the ghrelin and melanocortin systems in eating disorders. We expect that the new knowledge may be used for the development of a novel preventive and therapeutic approach for treatment of AN and BN.


Assuntos
Autoanticorpos , Transtornos da Alimentação e da Ingestão de Alimentos/imunologia , Microbioma Gastrointestinal/imunologia , Grelina/imunologia , Insulina/imunologia , Leptina/imunologia , Hormônios Estimuladores de Melanócitos/imunologia , Neuropeptídeo Y/imunologia , Transtornos da Alimentação e da Ingestão de Alimentos/microbiologia , Humanos
10.
Sci Adv ; 7(14)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811065

RESUMO

Humans and mice with natural red hair have elevated basal pain thresholds and an increased sensitivity to opioid analgesics. We investigated the mechanisms responsible for higher nociceptive thresholds in red-haired mice resulting from a loss of melanocortin 1 receptor (MC1R) function and found that the increased thresholds are melanocyte dependent but melanin independent. MC1R loss of function decreases melanocytic proopiomelanocortin transcription and systemic melanocyte-stimulating hormone (MSH) levels in the plasma of red-haired (Mc1re/e ) mice. Decreased peripheral α-MSH derepresses the central opioid tone mediated by the opioid receptor OPRM1, resulting in increased nociceptive thresholds. We identified MC4R as the MSH-responsive receptor that opposes OPRM1 signaling and the periaqueductal gray area in the brainstem as a central area of opioid/melanocortin antagonism. This work highlights the physiologic role of melanocytic MC1R and circulating melanocortins in the regulation of nociception and provides a mechanistic framework for altered opioid signaling and pain sensitivity in red-haired individuals.


Assuntos
Analgésicos Opioides , Nociceptividade , Animais , Cabelo , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética
11.
Behav Neurosci ; 135(4): 528-539, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33900100

RESUMO

The knowledge about the role of MC3 receptors (MC3r) in the regulation of feeding behavior is limited. The present study was conducted to determine whether MC3r mediates the hypophagic effects of the melanocortins under conditions of positive energy balance. Male Wistar rats were fed with a high-fat diet (HFD) for 15 days and on day 16 the animals received an intracerebroventricular injection of the following treatments: Vehicle, D-Trp8-γ-melanocyte-stimulating hormone (MSH; MC3r agonist), SHU9119 (MC3r/MC4r antagonist), or D-Trp8-γ-MSH+SHU9119. Food intake was measured and the behavioral satiety sequence (BSS) analysis was carried out during the first hour of the dark phase. The c-Fos and α-MSH immunoreactivity in the arcuate nucleus (ARC) was evaluated 60 min later the onset of food intake. The results indicated that D-Trp8-γ-MSH decreased the ingestion of the HFD and this effect is associated with the early development of the satiation process Moreover, the D-Trp8-γ-MSH increased the accumulation of the α-MSH in the ARC and the c-Fos activity in the PVN. The antagonist SHU9119 partially prevented the D-Trp8-γ-MSH-induced hypophagia. Moreover, behavioral analysis suggests that central activation of MC3r accelerated the cessation of feeding in conditions of positive energy balance; the possible role of MC4r is discussed. Present data indicate that central stimulation of MC3r prevented the overconsumption of the HFD without affecting the natural satiation process, suggesting a potential use of MC3r for the treatment of eating disorders that are stimulated by hypercaloric diets. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Dieta Hiperlipídica , Receptor Tipo 3 de Melanocortina , Animais , Masculino , Melanocortinas , Hormônios Estimuladores de Melanócitos , Ratos , Ratos Wistar , Saciação
12.
Eur J Pharmacol ; 901: 174072, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823184

RESUMO

Glucagon-like peptide-2 (GLP-2) is secreted from enteroendocrine L-type cells of the gut and also released from preproglucagonergic (PPG) neurons in the nucleus tractus solitarius (NTS) and adjacent medial reticular nucleus of the brain stem. The neurons in the NTS express GLP-2, and the neurons send extensive projections to the hypothalamus. Recent studies show that the intracerebroventricular administration of GLP-2 significantly suppresses food intake in animals and some evidence suggest that the melanocortin receptor-4 (MC4-R) signaling in the hypothalamus is required for intracerebroventricular GLP-2-mediated inhibition of feeding. There is proopiomelanocortin (POMC) positive neurons expressing MC4-R in the NTS. Suppression of MC4-R expressing neurons in the brain stem inhibits gastric emptying. In this study, we tested the effects of NTS GLP-2R activation and blockade on feeding behavior and evaluated the endogenous melanocortin system's role in the NTS in mediating effects of GLP-2 on feeding behavior in fed and fasted rats. Our results demonstrated that microinjection of GLP-2 into the NTS suppressed food intake in fasted-refeeding rats but did not affect food intake in free-feeding rats, and this inhibition was blocked by pretreatment of either Exendin (9-39) or SHU 9119, suggesting the GLP-2 system in the NTS exerts an inhibitory action on food intake. MC4-R mediates this action in the NTS.


Assuntos
Depressores do Apetite/farmacologia , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Núcleo Solitário , Animais , Ingestão de Alimentos/efeitos dos fármacos , Jejum , Peptídeo 2 Semelhante ao Glucagon/administração & dosagem , Peptídeo 2 Semelhante ao Glucagon/antagonistas & inibidores , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Microinjeções , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Int J Toxicol ; 40(2): 153-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33438493

RESUMO

Melanin is a group of natural pigments that determines the human skin color and provides fundamental protection against the harmful impacts of physical and chemical stimuli. The aim of this study was to establish the regulatory role of aryl hydrocarbon receptor (AhR) in α-melanocyte-stimulating hormone (α-MSH) induced melanogenesis. In the present study, following knockdown of AhR, murine B16F10 cells were treated with α-MSH (200 nM) and tyrosinase activities, cellular melanin content, mRNA levels of several important genes involved in melanogenesis including AhR, CTNNB1, TYR2, and microphthalmia-associated transcription factor (MITF) were measured as endpoints. Exposure to α-MSH led to elevated expression of AhR, CTNNB1, MITF, and TYR in accordance with increased tyrosinase enzyme activity as well as a significant rise in the total melanin content. Our results suggest that AhR plays a regulatory role in α-MSH-stimulated melanogenesis.


Assuntos
Melaninas/biossíntese , Hormônios Estimuladores de Melanócitos/metabolismo , Hormônios Estimuladores de Melanócitos/farmacologia , Melanócitos/metabolismo , Melanoma/fisiopatologia , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Animais , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Hormônios Estimuladores de Melanócitos/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Células Tumorais Cultivadas/efeitos dos fármacos
14.
Domest Anim Endocrinol ; 74: 106507, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841887

RESUMO

The melanocortin-3 receptor (MC3R) is a G protein-coupled receptor and potentially important in production traits. Three naturally occurring mutations (M54L, G104S, and L151R) in chicken MC3R (cMC3R) were reported previously to be associated with production traits. Here, we inserted the full-length cMC3R coding sequence into pcDNA3.1(+) and generated the 3 mutations by site-directed mutagenesis. The total and cell surface expression of the receptors was measured by flow cytometry. We analyzed the pharmacological characteristics, including binding and cyclic adenosine monophosphate (cAMP) and mitogen-activated protein kinase (MAPK) signaling, using 6 ligands ([Nle4, D-Phe7]-α-melanocyte stimulating hormone (MSH), α-, ß-, γ-, and D-Trp8-γ-MSHs, and agouti-related peptide). All mutants had similar total and cell surface expression as the wild-type (WT) cMC3R. M54L had similar pharmacological properties as the WT cMC3R. G104S did not exhibit any specific binding but had minimal response to α-, ß-, γ-, and D-Trp8-γ-MSH, although it generated 24% WT response when stimulated by NDP-MSH. Although L151R had normal binding, the responses to agonists were reduced to approximately 25% of that of the WT. In MAPK signaling, all 3 mutants showed significantly increased agonist-stimulated phosphorylation of extracellular signal-regulated protein kinases 1/2, indicating the existence of biased signaling at G104S and L151R. In summary, our studies demonstrated that although all 3 mutations are significantly associated with production traits, only G104S and L151R had severe defects in receptor pharmacology. How M54L might cause production trait differences remains to be investigated.


Assuntos
Galinhas/genética , Mutação/genética , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/fisiologia , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Hormônios Estimuladores de Melanócitos/metabolismo , Ligação Proteica , Receptor Tipo 3 de Melanocortina/química , Transdução de Sinais
15.
Domest Anim Endocrinol ; 74: 106536, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871339

RESUMO

Stress or excitement is a concern when performing endocrine tests on fractious horses. Sedation may be a solution; however, perturbation of test results may preclude useful information. Thyrotropin-releasing hormone (TRH) is a known stimulator of prolactin, thyroid-stimulating hormone (TSH), melanocyte-stimulating hormone (MSH), and ACTH. Thyrotropin-releasing hormone-induced ACTH is a diagnostic tool for the assessment of endocrinopathies such as pituitary pars intermedia dysfunction. It is unknown if drugs commonly used for sedation alter endocrine responses. The objective of this study was to assess the effects of detomidine (DET) and butorphanol on endocrine responses to TRH. Nine light horse mares were used in a replicated 3 × 3 Latin square with the following treatments: saline, DET, and detomidine + butorphanol (DET/BUT), all administered intravenously at 0.01 mg/kg BW. A 1-wk washout period was allowed between phases, all of which were performed in December. Blood samples were collected at -10 and 0 min before treatment and 5 and 10 min post-treatment. Administration of 1 mg TRH occurred 10 min post-treatment, and blood sampling continued 5, 10, 20, and 30 min post-TRH. Data were analyzed by ANOVA as a replicated Latin square with repeated sampling. Plasma prolactin increased (P < 0.0001) after TRH in all groups, rapidly peaking at 5 min in drug-treated mares and 40 min in saline-treated mares. The peak prolactin response to TRH was 2-fold higher (P < 0.0001) in saline-treated mares compared with those drug-treated. A peak rise in plasma TSH was observed in DET/BUT-treated mares 10 min after TSH and was greater (P ≤ 0.007) compared with DET- and saline-treated mares. Plasma MSH was stimulated (P = 0.001) by DET and DET/BUT before TRH, and the peak MSH response to TRH was greater (P < 0.0001) in drug-treated mares, although not hastened as observed with prolactin and TSH. A peak rise in ACTH was observed in drug-treated mares 5 min after administration of TRH, whereas a peak rise was observed in control mares 10 min post-TRH and was almost 2-fold lower (P = 0.05) than the peak observed in DET and DET/BUT-treated mares. Basal ACTH concentrations were not affected by DET or DET/BUT, indicating that sedation with these compounds may be achieved when needing to measure basal plasma ACTH. Treatment with DET and DET/BUT did alter the prolactin, TSH, MSH, and ACTH responses to TRH; therefore, the use of these drugs may not be advisable when assessing endocrine responses to TRH stimulation.


Assuntos
Butorfanol/farmacologia , Cavalos/sangue , Imidazóis/farmacologia , Hormônios Estimuladores de Melanócitos/sangue , Prolactina/sangue , Tireotropina/sangue , Hormônio Adrenocorticotrópico/sangue , Hormônio Adrenocorticotrópico/metabolismo , Analgésicos Opioides/farmacologia , Animais , Butorfanol/administração & dosagem , Quimioterapia Combinada , Feminino , Hipnóticos e Sedativos/farmacologia , Imidazóis/administração & dosagem , Hormônio Liberador de Tireotropina/farmacologia
16.
Front Endocrinol (Lausanne) ; 11: 569241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362713

RESUMO

The clinical hallmarks of infections caused by critical respiratory viruses consist of pneumonia, which can progress to acute lung injury (ALI), and systemic manifestations including hypercoagulopathy, vascular dysfunction, and endotheliitis. The disease outcome largely depends on the immune response produced by the host. The bio-molecular mechanisms underlying certain dire consequences of the infection partly arise from an aberrant production of inflammatory molecules, an event denoted as "cytokine storm". Therefore, in addition to antiviral therapies, molecules able to prevent the injury caused by cytokine excess are under investigation. In this perspective, taking advantage of melanocortin peptides and their receptors, components of an endogenous modulatory system that exerts marked anti-inflammatory and immunomodulatory influences, could be an effective therapeutic strategy to control disease evolution. Exploiting the melanocortin system using natural or synthetic ligands can form a realistic basis to counteract certain deleterious effects of respiratory virus infections. The central and peripheral protective actions exerted following melanocortin receptor activation could allow dampening the harmful events that trigger the cytokine storm and endothelial dysfunction while sustaining the beneficial signals required to elicit repair mechanisms. The long standing evidence for melanocortin safety encourages this approach.


Assuntos
Tratamento Farmacológico da COVID-19 , Receptores de Melanocortina/agonistas , Infecções Respiratórias/tratamento farmacológico , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , COVID-19/complicações , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Citocinas/metabolismo , Humanos , Hormônios Estimuladores de Melanócitos/metabolismo , Infecções Respiratórias/etiologia , Infecções Respiratórias/metabolismo
17.
PLoS Genet ; 16(12): e1009244, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301440

RESUMO

The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Pigmentação da Pele/genética , Animais , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Hipotálamo/metabolismo , Melaninas/genética , Hormônios Estimuladores de Melanócitos/genética , Hormônios Estimuladores de Melanócitos/metabolismo , Melanócitos/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/genética , Peixe-Zebra
18.
Sci Rep ; 10(1): 18957, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144604

RESUMO

The melanocortin peptides have an important role in regulating body weight and appetite. Mice that lack the desacetyl-α-MSH and α-MSH peptides (Pomctm1/tm1) develop obesity. This effect is exacerbated by a high fat diet (HFD). However, development of obesity in female Pomctm1/tm1 mice during chronic HFD conditions is not fully accounted for by the increased energy intake. We hypothesized that the protection against chronic HFD-induced obesity imparted by MSH peptides in females is mediated by sex-specific alterations in the gut structure and gut microbiota. We determined that female WT mice had reduced jejunum villus length and increased crypt depth in response to chronic HFD. WT males and Pomctm1/tm1 mice lacked this adaptation to a chronic HFD. Both Pomctm1/tm1 genotype and chronic HFD were significantly associated with gut microbiota composition. Sex-specific associations between Pomctm1/tm1 genotype and gut microbiota were observed in the presence of a chronic HFD. Pomctm1/tm1 females had significantly reduced fecal acetate and propionate concentrations when compared to WT females. We conclude that MSH peptides influence jejunum villus length, crypt depth and the structure of the gut microbiota. These effects favor reduced nutrient absorption and occur in addition to the recognized roles of desacetyl-α-MSH and α-MSH peptides in appetite control.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Hormônios Estimuladores de Melanócitos/metabolismo , Ácido Acético/metabolismo , Animais , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise Multivariada , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Propionatos/metabolismo , RNA Ribossômico 16S/metabolismo , alfa-MSH/metabolismo
19.
Front Neural Circuits ; 14: 595783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250721

RESUMO

Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) plays an essential role in the control of food intake and energy expenditure. Melanocortin-4 receptors (MC4Rs) are expressed in key areas that are implicated in regulating energy homeostasis. Although the importance of MC4Rs in the paraventricular hypothalamus (PVH) has been well documented, the role of MC4Rs in the medial amygdala (MeA) on feeding remains controversial. In this study, we specifically examine the role of a novel ARCPOMC→MeA neural circuit in the regulation of short-term food intake. To map a local melanocortinergic neural circuit, we use monosynaptic anterograde as well as retrograde viral tracers and perform double immunohistochemistry to determine the identity of the neurons receiving synaptic input from POMC neurons in the ARC. To investigate the role of the ARCPOMC→MeA projection on feeding, we optogenetically stimulate channelrhodopsin-2 (ChR2)-expressing POMC fibers in the MeA. Anterograde viral tracing studies reveal that ARC POMC neurons send axonal projections to estrogen receptor-α (ER-α)- and MC4R-expressing neurons in the MeA. Retrograde viral tracing experiments show that the neurons projecting to the MeA is located mainly in the lateral part of the ARC. Optogenetic stimulation of the ARCPOMC→MeA pathway reduces short-term food intake. This anorectic effect is blocked by treatment with the MC4R antagonist SHU9119. In addition to the melanocortinergic local circuits within the hypothalamus, this extrahypothalamic ARCPOMC→MeA neural circuit would play a role in regulating short-term food intake.


Assuntos
Tonsila do Cerebelo/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/fisiologia , Receptor alfa de Estrogênio/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Optogenética , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores
20.
Nat Commun ; 11(1): 4458, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895383

RESUMO

In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Hipotálamo/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteína Relacionada com Agouti/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Glicemia/análise , Comunicação Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Sacarose na Dieta/administração & dosagem , Sacarose na Dieta/efeitos adversos , Humanos , Hipotálamo/citologia , Hipotálamo/patologia , Injeções Intraventriculares , Leptina/genética , Masculino , Melanocortinas/metabolismo , Hormônios Estimuladores de Melanócitos/administração & dosagem , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , RNA-Seq , Receptor Tipo 4 de Melanocortina/genética , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/metabolismo , Indução de Remissão/métodos , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Técnicas Estereotáxicas , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...