Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.912
Filtrar
1.
Infect Genet Evol ; 119: 105581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432594

RESUMO

Alveolar echinococcosis (AE), caused by Echinococcus multilocularis, is an important zoonotic disease. Yili Prefecture in Xinjiang is endemic for AE, however the molecular variability of E. multilocularis in this region is poorly understood. In this study, 127 samples were used for haplotypes analysis, including 79 tissues from humans, 43 liver tissues from small rodents, and 5 fecal samples from dogs. Genetic variability in E. multilocularis was studied using complete sequences of the mitochondrial (mt) genes of cytochrome b (cob), NADH dehydrogenase subunit 2 (nad2), and cytochrome c oxidase subunit 1 (cox1), using a total of 3558 bp per sample. The Asia haplotype 2 (A2) was the dominant haplotype, with 72.15% (57/79) prevalence in humans, 2.33% (1/43) in small rodents, and 80.00% (4/5) in dogs, followed by A5, the second most common haplotype, which infected 27.91% (12/43) small rodents. Haplotype network analysis showed that all haplotypes clustered together with the Asian group. Pairwise fixation index (FST) values showed lower level of genetic differentiation between different regions within the country. Compared with the sequences of E. multilocularis from North America and Europe, all concatenated sequences isolated from Yili Prefecture were highly differentiated and formed a single population. The A2 haplotype, analyzed using the cob, nad2, and cox1 genes of E. multilocularis, is the predominant variant in humans and dogs in Yili Prefecture.


Assuntos
Equinococose , Echinococcus multilocularis , Humanos , Cães , Animais , Echinococcus multilocularis/genética , Haplótipos , Equinococose/epidemiologia , Equinococose/veterinária , Zoonoses , Roedores , Citocromos b/genética
2.
Naturwissenschaften ; 111(2): 18, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502308

RESUMO

Environmental RNA (eRNA) analysis is conventionally expected to infer physiological information about organisms within their ecosystems, whereas environmental DNA (eDNA) analysis only infers their presence and abundance. Despite the promise of eRNA application, basic research on eRNA characteristics and dynamics is limited. The present study conducted aquarium experiments using zebrafish (Danio rerio) to estimate the particle size distribution (PSD) of eRNA in order to better understand the persistence state of eRNA particles. Rearing water samples were sequentially filtered using different pore-size filters, and the resulting size-fractioned mitochondrial cytochrome b (CytB) eDNA and eRNA data were modeled with the Weibull complementary cumulative distribution function (CCDF) to estimate the parameters characterizing the PSDs. It was revealed that the scale parameter (α) was significantly higher (i.e., the mean particle size was larger) for eRNA than eDNA, while the shape parameter (ß) was not significantly different between them. This result supports the hypothesis that most eRNA particles are likely in a protected, intra-cellular state, which mitigates eRNA degradation in water. Moreover, these findings also imply the heterogeneous dispersion of eRNA relative to eDNA and suggest an efficient method of eRNA collection using a larger pore-size filter. Further studies on the characteristics and dynamics of eRNA particles should be pursued in the future.


Assuntos
DNA Ambiental , Perciformes , Animais , Peixe-Zebra/genética , Citocromos b/genética , Ecossistema , RNA , Tamanho da Partícula , Água
3.
Parasit Vectors ; 17(1): 52, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308365

RESUMO

BACKGROUND: Tsetse flies (Glossina spp.) are the definitive biological vectors of African trypanosomes in humans and animals. Controlling this vector is the most promising method of preventing trypanosome transmission. This requires a comprehensive understanding of tsetse biology and host preference to inform targeted design and management strategies, such as the use of olfaction and visual cues in tsetse traps. No current review exists on host preference and blood meal analyses of tsetse flies. METHODS: This review presents a meta-analysis of tsetse fly blood meal sources and the methodologies used to identify animal hosts from 1956 to August 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRIMA-ScR) was applied. This focused on tsetse-endemic countries, blood meal analysis methodologies and the blood meal hosts identified. The articles were retrieved and screened from databases using predetermined eligibility criteria. RESULTS: Only 49/393 of the articles retrieved matched the inclusion criteria. Glossina's main hosts in the wild included the bushbuck, buffalo, elephant, warthog, bushpig and hippopotamus. Pigs, livestock and humans were key hosts at the domestic interface. The least studied species included Glossina fuscipleuris, G. fusca, G. medicorum, G. tabaniformis and G. austeni. In the absence of preferred hosts, Glossina fed opportunistically on a variety of hosts. Precipitin, haemagglutination, disc diffusion, complement fixation, ELISA and PCR-based assays were used to evaluate blood meals. Cytochrome b (Cyt b) was the main target gene in PCR to identify the vertebrate hosts. CONCLUSIONS: Tsetse blood meal sources have likely expanded because of ecological changes that could have rendered preferred hosts unavailable. The major approaches for analysing tsetse fly blood meal hosts targeted Cyt b gene for species identification by Sanger sequencing. However, small-fragment DNAs, such as the mammalian 12S and 16S rRNA genes, along with second- and third-generation sequencing techniques, could increase sensitivity for host identification in multiple host feeders that Sanger sequencing may misidentify as "noise". This review of tsetse fly blood meal sources and approaches to host identification could inform strategies for tsetse control.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Citocromos b , Mamíferos/genética , RNA Ribossômico 16S , Suínos , Trypanosoma/genética , Moscas Tsé-Tsé/genética
4.
Acta Trop ; 253: 107154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373526

RESUMO

Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan and highly diverse blood parasites of birds that have been neglected in avian medicine. However, recent discoveries based on molecular diagnostic markers show that these pathogens often cause marked damage to various internal organs due to exo-erythrocytic development, sometimes resulting in severe and even lethal avian haemoproteosis, including cerebral pathologies. Molecular markers are essential for haemoproteosis diagnostics, but the data is limited, particularly for parasites transmitted in tropical ecosystems. This study combined microscopic and molecular approaches to characterize Haemoproteus enucleator morphologically and molecularly. Blood samples were collected from the African pygmy kingfisher Ispidina picta in Cameroon, and the parasite was identified using morphological characters of gametocytes. The analysis of partial cytochrome b sequences (cytb) identified a new Haemoproteus lineage (hISPIC03), which was linked to the morphospecies H. enucleator. Illustrations of blood stages were provided and the phylogenetic analysis showed that the new lineage clustered with five other closely related lineages belonging to the same morphospecies (hALCLEU01, hALCLEU02, hALCLEU03, hISPIC01, and hALCQUA01), with a maximum genetic distance between these lineages of 1.5 % (7 bp difference) in the 478 bp cytb sequences. DNA haplotype network was developed and identified geographic and host distribution of all lineages belonging to H. enucleator group. These lineages were almost exclusively detected in African kingfishers from Gabon, Cameroon, South Africa, and Botswana. This study developed the molecular characterization of H. enucleator and provides opportunities for diagnostics of this pathogen at all stages of its life cycle, which remains undescribed in all its closely related lineages.


Assuntos
Doenças das Aves , Haemosporida , Infecções Protozoárias em Animais , Animais , Filogenia , Ecossistema , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Aves/parasitologia , Haemosporida/genética , Citocromos b/genética
5.
Environ Sci Pollut Res Int ; 31(12): 18579-18592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351353

RESUMO

Ginkgo biloba leaf extract (GBE) can effectively treat bloom-forming freshwater algae. However, there is limited information about the underlying suppression mechanism of the marine bloom-forming Prorocentrum donghaiense-the most dominant algal bloom species in the East China Sea. We investigated the effect of GBE on P. donghaiense in terms of its response to photosynthesis at the molecular/omic level. In total, 93,743 unigenes were annotated using six functional databases. Furthermore, 67,203 differentially expressed genes (DEGs) were identified in algae treated with 1.8 g∙L-1 GBE. Among these DEGs, we identified the genes involved in photosynthesis. PsbA, PsbB and PsbD in photosystem II, PsaA in photosystem I, and PetB and PetD in the cytochrome b6/f complex were downregulated. Other related genes, such as PsaC, PsaE, and PsaF in photosystem I; PetA in the cytochrome b6/f complex; and atpA, atpD, atpH, atpG, and atpE in the F-type H+-ATPase were upregulated. These results suggest that the structure and activity of the complexes were destroyed by GBE, thereby inhibiting the electron flow between the primary and secondary quinone electron acceptors, primary quinone electron acceptor, and oxygen-evolving complex in the PSII complex, and interrupting the electron flow between PSII and PSI, ultimately leading to a decline in algal cell photosynthesis. These findings provide a basis for understanding the molecular mechanisms underlying P. donghaiense exposure to GBE and a theoretical basis for the prevention and control of harmful algal blooms.


Assuntos
Dinoflagelados , Ginkgo biloba , Citocromos b , Complexo de Proteína do Fotossistema I , Proliferação Nociva de Algas , Fotossíntese , Perfilação da Expressão Gênica , Extratos Vegetais/farmacologia , Quinonas/farmacologia
6.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255939

RESUMO

Asthma is a multifactorial condition that can be associated with obesity. The phenotypes of asthma in lean and obese patients are different, with proinflammatory signatures being further elevated in the latter. Both obesity and asthma are associated with alterations in intestinal barrier function and immunity, and with the composition of the intestinal microbiota and food consumption. In this study, we aimed to establish an organoid model to test the hypothesis that the intestinal content of lean and obese, allergic, asthmatic children differentially regulates epithelial intestinal gene expression. A model of mouse jejunum intestinal organoids was used. A group of healthy, normal-weight children was used as a control. The intestinal content of asthmatic obese children differentially induced the expression of inflammatory and mitochondrial response genes (Tnf-tumor necrosis factor, Cd14, Muc13-mucin 13, Tff2-Trefoil factor 2 and Tff3, Cldn1-claudin 1 and 5, Reg3g-regenerating family member 3 gamma, mt-Nd1-NADH dehydrogenase 1 and 6, and mt-Cyb-mitochondrial cytochrome b) via the RAGE-advanced glycosylation end product-specific receptor, NF-κB-nuclear factor kappa b and AKT kinase signal transduction pathways. Fecal homogenates from asthmatic normal-weight and obese children induce a differential phenotype in intestinal organoids, in which the presence of obesity plays a major role.


Assuntos
Asma , Obesidade Pediátrica , Criança , Animais , Camundongos , Humanos , Fezes , Claudina-1 , Citocromos b , NF-kappa B
7.
Zool Res ; 45(1): 215-225, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247179

RESUMO

A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1 633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea (SCS). Based on mitochondrial genomic characteristics, morphological examination, and sclerite scanning electron microscopy, the samples were categorized into four suborders (Calcaxonia, Holaxonia, Scleraxonia, and Stolonifera), and identified as 9 possible new cold-water coral species. Assessments of GC-skew dissimilarity, phylogenetic distance, and average nucleotide identity (ANI) revealed a slow evolutionary rate for the octocoral mitochondrial sequences. The nonsynonymous ( Ka) to synonymous ( Ks) substitution ratio ( Ka/ Ks) suggested that the 14 protein-coding genes (PCGs) were under purifying selection, likely due to specific deep-sea environmental pressures. Correlation analysis of the median Ka/ Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b (cyt b) and DNA mismatch repair protein ( mutS) may be influenced by environmental factors in the context of deep-sea species formation. This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals.


Assuntos
Antozoários , Genoma Mitocondrial , Animais , Antozoários/genética , Filogenia , China , Citocromos b/genética
8.
Microbiol Spectr ; 12(2): e0162023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179943

RESUMO

Pythiosis is a life-threatening infectious disease caused by the oomycete Pythium insidiosum. Clinical manifestations of pythiosis include an eye, blood vessel, skin, or gastrointestinal tract infection. Pythiosis has been increasingly reported worldwide, with an overall mortality rate of 28%. Radical surgery is required to save patients' lives due to the limited efficacy of antimicrobial drugs. Effective medical treatments are urgently needed for pythiosis. This study aims to find anti-P. insidiosum agents by screening 17 agricultural fungicides that inhibit plant-pathogenic oomycetes and validating their efficacy and safety. Cyazofamid outperformed other fungicides as it can potently inhibit genetically diverse P. insidiosum isolates while exhibiting minimal cellular toxicities. The calculated therapeutic scores determined that the concentration of cyazofamid causing significant cellular toxicities was eight times greater than the concentration of the drug effectively inhibiting P. insidiosum. Furthermore, other studies showed that cyazofamid exhibits low-to-moderate toxicities in animals. The mechanism of cyazofamid action is likely the inhibition of cytochrome b, an essential component in ATP synthesis. Molecular docking and dynamic analyses depicted a stable binding of cyazofamid to the Qi site of the P. insidiosum's cytochrome b orthologous protein. In conclusion, our search for an effective anti-P. insidiosum drug indicated that cyazofamid is a promising candidate for treating pythiosis. With its high efficacy and low toxicity, cyazofamid is a potential chemical for treating pythiosis, reducing the need for radical surgeries, and improving recovery rates. Our findings could pave the way for the development of new and effective treatments for pythiosis.IMPORTANCEPythiosis is a severe infection caused by Pythium insidiosum. The disease is prevalent in tropical/subtropical regions. This infectious condition is challenging to treat with antifungal drugs and often requires surgical removal of the infected tissue. Pythiosis can be fatal if not treated promptly. There is a need for a new treatment that effectively inhibits P. insidiosum. This study screened 17 agricultural fungicides that target plant-pathogenic oomycetes and found that cyazofamid was the most potent in inhibiting P. insidiosum. Cyazofamid showed low toxicity to mammalian cells and high affinity to the P. insidiosum's cytochrome b, which is involved in energy production. Cyazofamid could be a promising candidate for the treatment of pythiosis, as it could reduce the need for surgery and improve the survival rate of patients. This study provides valuable insights into the biology and drug susceptibility of P. insidiosum and opens new avenues for developing effective therapies for pythiosis.


Assuntos
Fungicidas Industriais , Imidazóis , Pitiose , Pythium , Sulfonamidas , Animais , Humanos , Pythium/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/uso terapêutico , Pitiose/tratamento farmacológico , Pitiose/microbiologia , Simulação de Acoplamento Molecular , Citocromos b/metabolismo , Mamíferos
9.
J Fish Biol ; 104(2): 484-496, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37344383

RESUMO

A new species, Sinocyclocheilus xingyiensis, is described based on specimens collected from a karst cave in Guizhou Province, China. The authors used an integrated taxonomic approach, including morphological and molecular data, to identify the new species as a member of the Sinocyclocheilu angularis group, and it can be distinguished from all other members of this group by a combination of the following features: two pairs of long barbels and long pectoral fins, 42-46 lateral-line scales, 7 (13-14) on outer (inner) side of the first gill arch and 35 (14-15 + 4 + 16 - 17) vertebrae. Phylogenetic analyses based on the cytochrome b (cyt b) gene fragment suggest that S. xingyiensis is a sister lineage to Sinocyclocheilus flexuosdorsalis. The genetic distance (Kimura 2-parameter) between the S. xingyiensis and S. angularis groups of Sinocyclocheilus species based on cyt b gene fragment ranged from 1.2% to 15.4%.


Assuntos
Cyprinidae , Cipriniformes , Animais , Cipriniformes/genética , Cipriniformes/anatomia & histologia , Rios , Filogenia , Citocromos b/genética , Cyprinidae/genética , Cyprinidae/anatomia & histologia , China
10.
Genes Genomics ; 46(1): 95-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985545

RESUMO

BACKGROUND: In nucleotide public repositories, studies discovered data errors which resulted in incorrect species identification of several accipitrid raptors considered for conservation. Mislabeling, particularly in cases of cryptic species complexes and closely related species, which were identified based on morphological characteristics, was discovered. Prioritizing accurate species labeling, morphological taxonomy, and voucher documentation is crucial to rectify spurious data. OBJECTIVE: Our study aimed to identify an effective DNA barcoding tool that accurately reflects the efficiency status of barcodes in raptor species (Accipitridae). METHODS: Barcode sequences, including 889 sequences from the mitochondrial cytochrome c oxidase I (COI) gene and 1052 sequences from cytochrome b (Cytb), from 150 raptor species within the Accipitridae family were analyzed. RESULTS: The highest percentage of intraspecific nearest neighbors from the nearest neighbor test was 88.05% for COI and 95.00% for Cytb, suggesting that the Cytb gene is a more suitable marker for accurately identifying raptor species and can serve as a standard region for DNA barcoding. In both datasets, a positive barcoding gap representing the difference between inter-and intra-specific sequence divergences was observed. For COI and Cytb, the cut-off score sequence divergences for species identification were 4.00% and 3.00%, respectively. CONCLUSION: Greater accuracy was demonstrated for the Cytb gene, making it the preferred primary DNA barcoding marker for raptors.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Código de Barras de DNA Taxonômico/métodos , Sequência de Bases , Genes Mitocondriais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Citocromos b/genética
11.
Acta Trop ; 250: 107103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135132

RESUMO

The present investigation was aimed at population genetic characterization of Theileria annulata on the basis of the cytochrome b (cyt b) gene along with the evaluation of status of buparvaquone resistance in Haryana (India). The sequences originating from China, Egypt, India, Iran, Iraq, Tunisia, Turkey and Sudan were included in the analysis. The maximum likelihood tree based on the Tamura-Nei (TN93+G) model placed all the sequences of T. annulata into a single clade. The median-joining haplotype network exemplified geographical clustering between T. annulata haplotypes originating from each country. Only five haplotypes (7.81 %) were shared between any two countries, while the remaining 59 haplotypes (92.19 %) were singleton and unique to one country. The values of pairwise genetic distance (FST) between all the populations indicated huge genetic differentiation (> 0.25) between different T. annulata populations, barring the FST value between Iraq and Turkey (0.14454) which suggested a moderate differentiation. Contrary to the FST index, the values of gene flow (Nm) between T. annulata populations were very low. The neutrality indices and mismatch distributions indicated a population expansion in the Indian T. annulata population. Furthermore, the secondary structure and homology modeling of the partial cyt b protein is also reported. The molecular analysis of newly generated sequences for buparvaquone resistance revealed that all the isolates were susceptible to buparvaquone treatment. However, two novel mutations at positions V203I and V219I in between the Q01 and Q02 drug-binding regions of the cyt b gene were observed for the first time.


Assuntos
Naftoquinonas , Theileria annulata , Theileria , Theileriose , Animais , Bovinos , Theileria annulata/genética , Citocromos b/genética , Theileriose/epidemiologia , Genética Populacional , Theileria/genética
12.
Anal Chem ; 96(1): 6-11, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132829

RESUMO

In situ analysis of membrane protein-ligand interactions under physiological conditions is of significance for both fundamental and applied science, but it is still a big challenge due to the limits in sensitivity and selectivity. Here, we demonstrate the potential of surface-enhanced resonance Raman spectroscopy (SERRS) for the investigation of membrane protein-protein interactions. Lipid biolayers are successfully coated on silver nanoparticles through electrostatic interactions, and a highly sensitive and biomimetic membrane platform is obtained in vitro. Self-assembly and immobilization of the reduced cytochrome b5 on the coated membrane are achieved and protein native biological functions are preserved. Owing to resonance effect, the Raman fingerprint of the immobilized cytochrome b5 redox center is selectively enhanced, allowing for in situ and real-time monitoring of the electron transfer process between cytochrome b5 and their partners, cytochrome c and myoglobin. This study provides a sensitive analytical approach for membrane proteins and paves the way for in situ exploration of their structural basis and functions.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Proteínas de Membrana , Elétrons , Citocromos b , Prata/química
13.
PLoS One ; 18(12): e0293076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096142

RESUMO

The golden flathead goby Glossogobius aureus is a native species in the Philippines, Australia, Japan, Taiwan, and many other countries in Asia. In the Philippines, it is an important food fish as it is commonly caught in major lakes. In this study, a total of 307 specimens morphologically identified as G. aureus were sampled from nine major lakes in the Philippines and were sequenced for their mitochondrial cytochrome b (cyt b) gene. Two hundred sixty of the 307 cyt b sequences had sequence similarities of ≥ 99% with G. aureus reference sequence in GenBank, while the remaining 47 (all from Lake Lanao) had sequence similarities of only 95% and were thus designated as Glossogobius cf. aureus and treated as a separate population. The sequences were then analyzed to examine the pattern of genetic diversity, relatedness, divergence, and demographic history among native and translocated populations of the species. Twenty-nine haplotypes were recovered, of which four haplotypes were shared among three to seven populations. Only one haplotype each was found in the native population in Lake Buhi and translocated population in Lake Paoay. Low haplotype and low nucleotide diversities were found for the populations in Laguna de Bay, Lanao, Bato, Buhi, Paoay, and Sebu lakes, which indicate founder event for the introduced populations in Lanao, Paoay, and Sebu lakes and recent genetic bottleneck for the native populations in Laguna de Bay, Bato, and Buhi. In contrast, high haplotype but low nucleotide diversities were found for the native populations of Taal, Naujan, and Buluan lakes, signifying a recent bottleneck followed by population expansion. Pairwise FST values showed generally large (FST = 0.168-0.249) to very large (FST = 0.302-1.000) genetic divergence between populations except between Laguna de Bay and Lake Bato, Laguna de Bay and Lake Buhi, and Lake Bato and Lake Buhi populations, which showed nonsignificant genetic differentiation. Lake Buluan and Lake Sebu populations showed moderate genetic differentiation (FST = 0.098). Neutrality tests showed significant negative Tajima's D and Fu's FS values only for the population from Laguna de Bay, which suggests that the population is undergoing expansion. These results are important for establishing scientifically sound strategies for effective conservation and sustainable exploitation of G. aureus in the Philippines.


Assuntos
Variação Genética , Perciformes , Animais , DNA Mitocondrial/genética , Lagos , Filipinas , Citocromos b/genética , Peixes/genética , Perciformes/genética , Haplótipos , Nucleotídeos , Filogenia
14.
Sci Transl Med ; 15(726): eadg8105, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091410

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.


Assuntos
Doença de Chagas , Parasitos , Tripanossomicidas , Trypanosoma cruzi , Animais , Humanos , Citocromos b , Tripanossomicidas/efeitos adversos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/induzido quimicamente , Doença de Chagas/parasitologia
15.
Biochemistry (Mosc) ; 88(10): 1438-1454, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105016

RESUMO

This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. Main focus of the article is on bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems II and I. Electron transport along the chains of non-cyclic, cyclic, and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in chloroplasts, and pH-dependent mechanisms of regulation of the cytochrome b6f complex are considered. Redox reactions with participation of molecular oxygen and ascorbate, alternative mediators of electron transport in chloroplasts, have also been discussed.


Assuntos
Complexo Citocromos b6f , Citocromos b , Transporte de Elétrons , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Citocromos b/metabolismo , Elétrons , Cloroplastos/metabolismo , Fotossíntese , Oxirredução
16.
Genes (Basel) ; 14(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136973

RESUMO

A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.


Assuntos
Citocromos b , Synechocystis , Transporte de Elétrons/genética , Synechocystis/genética , Synechocystis/metabolismo , Oxirredução , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plastoquinona/química
17.
Pestic Biochem Physiol ; 196: 105617, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945253

RESUMO

Anthracnose caused by Colletotrichum scovillei is one of the most destructive diseases of chili worldwide. Florylpicoxamid is a new quinone inside inhibitor (QiI) fungicide, which shows intensively inhibitory activity against C. scovillei. Currently, florylpicoxamid is in the registration process to control chili anthracnose in China. This study investigated the risk of resistance and resistance genetic mechanism of C. scovillei to florylpicoxamid. Baseline sensitivity of 141C. scovillei isolates to florylpicoxamid was established with an average EC50 value of 0.2328 ± 0.0876 µg/mL. A total of seven stable florylpicoxamid-resistant mutants were obtained with resistance factors ranging from 41 to 276. The mutants showed similar or weaker traits in mycelial growth, sporulation, conidial germination and pathogenicity than their parental isolates. Generally, the resistance risk of C. scovillei to florylpicoxamid would be moderate. In addition, there was no cross-resistance between florylpicoxamid and the commercially available fungicides tested. A37V and S207L mutations in the cytochrome b protein were detected in four high-resistance and three moderate-resistance mutants, respectively, of which, S207L is a new mutation. Molecular docking showed that the two mutations conferred different resistance levels to florylpicoxamid. These results provide a new perspective for QiI fungicide-resistance mechanism and may help in the reasonable use of florylpicoxamid against chili anthracnose in the future.


Assuntos
Fungicidas Industriais , Mutação Puntual , Citocromos b/genética , Simulação de Acoplamento Molecular , Doenças das Plantas , Fungicidas Industriais/farmacologia
18.
Arch Razi Inst ; 78(3): 915-921, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-38028851

RESUMO

Goats are the earliest domesticated ruminants. The local goat, Capra hircus, is considered one of the most important animals globally to provide good livestock production under harsh environmental conditions. This study aimed to detect the genetic structures of the local Iraqi goats bred in the central and southern regions of the country and investigate the possibility of benefiting from their genetic structures to construct improvement programs for increasing the productivity of these animals. To this end, blood samples were taken from 15 domestic black goats. A total of 10 ml of each animal's blood was placed in plastic containers of 10 ml. The DNA was extracted and sent to the laboratories of Juan Ju University, People's Republic of China, to analyze the sequences of the nitrogenous bases of the Cytochrome b (Cytb) gene. The results showed the presence of a genetic morphology for a segment of 670 base pairs for all the studied samples, and 15 sequences of this strain were recorded in the gene bank under the following accession numbers (LC496353.1:1-LC496367.1:1). The sequences of the nitrogenous bases of this segment of the gene, which were registered in the gene bank of some international goat breeds, were used for comparison with the sequences of black Iraqi goats to analyze the phylogenetic tree, calculate the genetic distance, study haplotypes, and calculate neutrality. The results showed the presence of one mutation in the studied segment of the Cytb gene, with a size of 670 bp. The mutation in base 46 of the studied gene converted from the purine group to the pyrimidine group (the shift from the nitrogen leaders A

Assuntos
Citocromos b , Cabras , Humanos , Animais , Cabras/genética , Filogenia , Citocromos b/genética , Iraque , Genótipo , Aminoácidos/genética
19.
Mol Biol Rep ; 50(12): 10131-10136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921983

RESUMO

BACKGROUND: The mitochondrial genome is substantially susceptible to mutations and has high polymorphism due to structural features, location, and lack of recombinant variability, as its inheritance is strictly maternal. All of these events can be accompanied by the accumulation of mitochondrial single nucleotide polymorphisms (mtSNPs) in the sperm. The aim of this research was to analyze the influence of mutations in the MT-CYB gene on sperm quality. METHODS AND RESULTS: We conducted a case‒control study to identify mutations in the mitochondrial cytochrome B (MT-CYB) gene in men with asthenoteratozoospermia (89 cases) and oligoasthenoteratozoospermia (65 cases). The comparison group consisted of 164 fertile men. Somatic cell lysis followed by mtDNA extraction was conducted to analyze three mtDNA polymorphisms, rs28357373 (T15629C (Leu295=), rs527236194 (T15784C (p.Pro346=), rs2853506 (A15218G, p.Thr158Ala). Detection and genotyping of polymorphic loci in the MT-CYB gene was performed using the TaqMan allelic discrimination assay. To verify mutations in the MT-CYB gene, automated Sanger DNA sequencing was used. We found that rs527236194 was associated with asthenoteratozoospermia. rs28357373 in the MT-CYB gene did not show any polymorphism in the analyzed groups, which indicates a rare frequency of the TT genotype in our region. Rs28357373 and rs2853506 are not associated with male sperm abnormalities in the Volga-Ural region. CONCLUSION: The association of the rs527236194 polymorphic variant with sperm parameter alterations suggests its role in the pathophysiology of male infertility and requires further investigation in larger samples.


Assuntos
Astenozoospermia , Citocromos b , Masculino , Humanos , Citocromos b/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Astenozoospermia/genética , Sêmen , DNA Mitocondrial/genética , Espermatozoides
20.
Parasit Vectors ; 16(1): 365, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848977

RESUMO

BACKGROUND: Protozoan parasites of the genus Eimeria are the causative agents of chicken coccidiosis. Parasite resistance to most anticoccidial drugs is one of the major challenges to controlling this disease. There is an urgent need for a molecular marker to monitor the emergence of resistance against anticoccidial drugs, such as decoquinate. METHODS: We developed decoquinate-resistant strains by successively exposing the Houghton (H) and Xinjiang (XJ) strains of E. tenella to incremental concentrations of this drug in chickens. Additionally, we isolated a decoquinate-resistant strain from the field. The resistance of these three strains was tested using the criteria of weight gain, relative oocyst production and reduction of lesion scores. Whole-genome sequencing was used to identify the non-synonymous mutations in coding genes that were highly associated with the decoquinate-resistant phenotype in the two laboratory-induced strains. Subsequently, we scrutinized the missense mutation in a field-resistant strain for verification. We also employed the AlphaFold and PyMOL systems to model the alterations in the binding affinity of the mutants toward the drug molecule. RESULTS: We obtained two decoquinate-resistant (DecR) strains, DecR_H and XJ, originating from the original H and XJ strains, respectively, as well as a decoquinate-resistant E. tenella strain from the field (DecR_SC). These three strains displayed resistance to 120 mg/kg decoquinate administered through feed. Through whole-genome sequencing analysis, we identified the cytochrome b gene (cyt b; ETH2_MIT00100) as the sole mutated gene shared between the DecR_H and XJ strains and also detected this gene in the DecR_SC strain. Distinct non-synonymous mutations, namely Gln131Lys in DecR_H, Phe263Leu in DecR_XJ, and Phe283Leu in DecR_SC were observed in the three resistant strains. Notably, these mutations were located in the extracellular segments of cyt b, in close proximity to the ubiquinol oxidation site Qo. Drug molecular docking studies revealed that cyt b harboring these mutants exhibited varying degrees of reduced binding ability to decoquinate. CONCLUSIONS: Our findings emphasize the critical role of cyt b mutations in the development of decoquinate resistance in E. tenella. The strong correlation observed between cyt b mutant alleles and resistance indicates their potential as valuable molecular markers for the rapid detection of decoquinate resistance.


Assuntos
Coccidiose , Decoquinato , Eimeria tenella , Parasitos , Doenças das Aves Domésticas , Animais , Eimeria tenella/genética , Decoquinato/farmacologia , Citocromos b/genética , Galinhas/parasitologia , Mutação de Sentido Incorreto , Simulação de Acoplamento Molecular , Resistência a Medicamentos/genética , Coccidiose/veterinária , Coccidiose/parasitologia , Mutação , Doenças das Aves Domésticas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...