Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.514
Filtrar
1.
Biochemistry ; 63(3): 326-338, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38207281

RESUMO

Enzyme polymerization (also known as filamentation) has emerged as a new layer of enzyme regulation. SgrAI is a sequence-dependent DNA endonuclease that forms polymeric filaments with enhanced DNA cleavage activity as well as altered DNA sequence specificity. To better understand this unusual regulatory mechanism, full global kinetic modeling of the reaction pathway, including the enzyme filamentation steps, has been undertaken. Prior work with the primary DNA recognition sequence cleaved by SgrAI has shown how the kinetic rate constants of each reaction step are tuned to maximize activation and DNA cleavage while minimizing the extent of DNA cleavage to the host genome. In the current work, we expand on our prior study by now including DNA cleavage of a secondary recognition sequence, to understand how the sequence of the bound DNA modulates filamentation and activation of SgrAI. The work shows that an allosteric equilibrium between low and high activity states is modulated by the sequence of bound DNA, with primary sequences more prone to activation and filament formation, while SgrAI bound to secondary recognition sequences favor the low (and nonfilamenting) state by up to 40-fold. In addition, the degree of methylation of secondary sequences in the host organism, Streptomyces griseus, is now reported for the first time and shows that as predicted, these sequences are left unprotected from the SgrAI endonuclease making sequence specificity critical in this unusual filament-forming enzyme.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Sequência de Bases , Multimerização Proteica , Especificidade por Substrato , Regulação Alostérica , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética
2.
Nano Lett ; 24(6): 1901-1908, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38147528

RESUMO

We present a novel approach that integrates electrical measurements with molecular dynamics (MD) simulations to assess the activity of type-II restriction endonucleases, specifically EcoRV. Our approach employs a single-walled carbon nanotube field-effect transistor (swCNT-FET) functionalized with the EcoRV substrate DNA, enabling the detection of enzymatic cleavage events. Notably, we leveraged the methylene blue (MB) tag as an "orientation guide" to immobilize the EcoRV substrate DNA in a specific direction, thereby enhancing the proximity of the DNA cleavage reaction to the swCNT surface and consequently improving the sensitivity in EcoRV detection. We conducted computational modeling to compare the conformations and electrostatic potential (ESP) of MB-tagged DNA with its MB-free counterpart, providing strong support for our electrical measurements. Both conformational and ESP simulations exhibited robust agreement with our experimental data. The inhibitory efficacy of the EcoRV inhibitor aurintricarboxylic acid (ATA) was also evaluated, and the selectivity of the sensing device was examined.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Sondas de DNA
3.
Structure ; 31(11): 1463-1472.e2, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37652002

RESUMO

The type II restriction endonuclease Sau3AI cleaves the sequence 5'-GATC-3' in double-strand DNA producing two sticky ends. Sau3AI cuts both DNA strands regardless of methylation status. Here, we report the crystal structures of the active site mutant Sau3AI-E64A and the C-terminal domain Sau3AI-C with a bound GATC substrate. Interestingly, the catalytic site of the N-terminal domain (Sau3AI-N) is spatially blocked by the C-terminal domain, suggesting a potential self-inhibition of the enzyme. Interruption of Sau3AI-C binding to substrate DNA disrupts Sau3AI function, suggesting a functional linkage between the N- and C-terminal domains. We propose that Sau3AI-C behaves as an allosteric effector binding one GATC substrate, which triggers a conformational change to open the N-terminal catalytic site, resulting in the subsequent GATC recognition by Sau3AI-N and cleavage of the second GATC site. Our data indicate that Sau3AI and UbaLAI might represent a new subclass of type IIE restriction enzymes.


Assuntos
Clivagem do DNA , DNA , DNA/metabolismo , Enzimas de Restrição do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Metilação
4.
J Phys Chem B ; 127(29): 6470-6478, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37452775

RESUMO

Protein-DNA interactions are fundamental to many biological processes. Proteins must find their target site on a DNA molecule to perform their function, and mechanisms for target search differ across proteins. Especially challenging phenomena to monitor and understand are transient binding events that occur across two DNA target sites, whether occurring in cis or trans. Type IIS restriction endonucleases rely on such interactions. They play a crucial role in safeguarding bacteria against foreign DNA, including viral genetic material. BfiI, a type IIS restriction endonuclease, acts upon a specific asymmetric sequence, 5-ACTGGG-3, and precisely cuts both upper and lower DNA strands at fixed locations downstream of this sequence. Here, we present two single-molecule Förster resonance energy-transfer-based assays to study such interactions in a BfiI-DNA system. The first assay focuses on DNA looping, detecting both "Phi"- and "U"-shaped DNA looping events. The second assay only allows in trans BfiI-target DNA interactions, improving the specificity and reducing the limits on observation time. With total internal reflection fluorescence microscopy, we directly observe on- and off-target binding events and characterize BfiI binding events. Our results show that BfiI binds longer to target sites and that BfiI rarely changes conformations during binding. This newly developed assay could be employed for other DNA-interacting proteins that bind two targets and for the dsDNA substrate BfiI-PAINT, a useful strategy for DNA stretch assays and other super-resolution fluorescence microscopy studies.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Enzimas de Restrição do DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , DNA/química
5.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372946

RESUMO

The synaptic protein-DNA complexes, formed by specialized proteins that bridge two or more distant sites on DNA, are critically involved in various genetic processes. However, the molecular mechanism by which the protein searches for these sites and how it brings them together is not well understood. Our previous studies directly visualized search pathways used by SfiI, and we identified two pathways, DNA threading and site-bound transfer pathways, specific to the site-search process for synaptic DNA-protein systems. To investigate the molecular mechanism behind these site-search pathways, we assembled complexes of SfiI with various DNA substrates corresponding to different transient states and measured their stability using a single-molecule fluorescence approach. These assemblies corresponded to specific-specific (synaptic), non-specific-non-specific (non-specific), and specific-non-specific (pre-synaptic) SfiI-DNA states. Unexpectedly, an elevated stability in pre-synaptic complexes assembled with specific and non-specific DNA substrates was found. To explain these surprising observations, a theoretical approach that describes the assembly of these complexes and compares the predictions with the experiment was developed. The theory explains this effect by utilizing entropic arguments, according to which, after the partial dissociation, the non-specific DNA template has multiple possibilities of rebinding, effectively increasing the stability. Such difference in the stabilities of SfiI complexes with specific and non-specific DNA explains the utilization of threading and site-bound transfer pathways in the search process of synaptic protein-DNA complexes discovered in the time-lapse AFM experiments.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , DNA/química , Proteínas/metabolismo , Ligação Proteica , Replicação do DNA
6.
Mol Biol Rep ; 50(6): 5495-5499, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031321

RESUMO

BACKGROUND: Type-IIS restriction enzymes cut outside their recognition sites, allowing them to remove their binding sites upon digestion. This feature has resulted in their wide application in molecular biology techniques, including seamless cloning methods, enzymatic CRISPR library generation, and others. We studied the ability of the Type-IIS restriction enzyme MmeI, which recognizes an asymmetric sequence TCCRAC and cuts 20 bp downstream, to cut across a double-strand break (DSB). METHODS AND RESULTS: We used synthetic double-stranded oligos with MmeI recognition sites close to 5' end and different overhang lengths to measure digestion after different periods of time and at different temperatures. We found that the MmeI binding and cutting sites can be situated on opposite sides of a DSB if the edges of the DNA molecules are held together by transient base-pairing interactions between compatible overhangs. CONCLUSION: We found that MmeI can cut across a DSB, and the efficiency of the cutting depends on both overhang length and temperature.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , DNA/metabolismo , Metilação de DNA , Sítios de Ligação
8.
Nucleic Acids Res ; 51(9): 4467-4487, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987874

RESUMO

Type IIS restriction endonucleases contain separate DNA recognition and catalytic domains and cleave their substrates at well-defined distances outside their target sequences. They are employed in biotechnology for a variety of purposes, including the creation of gene-targeting zinc finger and TAL effector nucleases and DNA synthesis applications such as Golden Gate assembly. The most thoroughly studied Type IIS enzyme, FokI, has been shown to require multimerization and engagement with multiple DNA targets for optimal cleavage activity; however, details of how it or similar enzymes forms a DNA-bound reaction complex have not been described at atomic resolution. Here we describe biochemical analyses of DNA cleavage by the Type IIS PaqCI restriction endonuclease and a series of molecular structures in the presence and absence of multiple bound DNA targets. The enzyme displays a similar tetrameric organization of target recognition domains in the absence or presence of bound substrate, with a significant repositioning of endonuclease domains in a trapped DNA-bound complex that is poised to deliver the first of a series of double-strand breaks. PaqCI and FokI share similar structural mechanisms of DNA cleavage, but considerable differences in their domain organization and quaternary architecture, facilitating comparisons between distinct Type IIS enzymes.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Especificidade por Substrato
9.
Methods Mol Biol ; 2651: 143-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892765

RESUMO

Development of FokI-based engineered nucleases has been a platform technology that enables creation of novel sequence-specific nucleases as well as structure-specific nucleases. Z-DNA-specific nucleases have been constructed by fusing a Z-DNA-binding domain to the nuclease domain of FokI (FN). In particular, Zαα, an engineered Z-DNA-binding domain with a high affinity, is an ideal fusion partner to generate a highly efficient Z-DNA-specific cutter. Here, we describe construction, expression, and purification of Zαα-FOK (Zαα-FN) nuclease in detail. In addition, Z-DNA-specific cleavage is demonstrated by the use of Zαα-FOK.


Assuntos
DNA Forma Z , Proteínas Recombinantes de Fusão/metabolismo , Dedos de Zinco , Conformação Molecular , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo
10.
Methods Mol Biol ; 2562: 321-333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36272085

RESUMO

The axolotl (Ambystoma mexicanum ) has been widely used as an animal model for studying development and regeneration. In recent decades, the use of genetic engineering to alter gene expression has advanced our knowledge on the fundamental molecular and cellular mechanisms, pointing us to potential therapeutic targets. We present a detailed, step-by-step protocol for axolotl transgenesis using either I-SceI meganuclease or the mini Tol2 transposon system, by injection of purified DNA into one-cell stage eggs. We add useful tips on the site of injection and the viability of the eggs.


Assuntos
Ambystoma mexicanum , Desoxirribonucleases de Sítio Específico do Tipo II , Animais , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Técnicas de Transferência de Genes , DNA/genética , Injeções
11.
J Mol Biol ; 434(9): 167550, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35317996

RESUMO

The LAGLIDADG family of homing endonucleases (LHEs) bind to and cleave their DNA recognition sequences with high specificity. Much of our understanding for how these proteins evolve their specificities has come from studying LHE homologues. To gain insight into the molecular basis of LHE specificity, we characterized I-WcaI, the homologue of the Saccharomyces cerevisiae I-SceI LHE found in Wickerhamomyces canadensis. Although I-WcaI and I-SceI cleave the same recognition sequence, expression of I-WcaI, but not I-SceI, is toxic in bacteria. Toxicity suppressing mutations frequently occur at I-WcaI residues critical for activity and I-WcaI cleaves many more non-cognate sequences in the Escherichia coli genome than I-SceI, suggesting I-WcaI endonuclease activity is the basis of toxicity. In vitro, I-WcaI is a more active and a less specific endonuclease than I-SceI, again accounting for the observed toxicity in vivo. We determined the X-ray crystal structure of I-WcaI bound to its cognate target site and found that I-WcaI and I-SceI use residues at different positions to make similar base-specific contacts. Furthermore, in some regions of the DNA interface where I-WcaI specificity is lower, the protein makes fewer DNA contacts than I-SceI. Taken together, these findings demonstrate the plastic nature of LHE site recognition and suggest that I-WcaI and I-SceI are situated at different points in their evolutionary pathways towards acquiring target site specificity.


Assuntos
Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/genética , Especificidade por Substrato
12.
Phys Biol ; 19(3)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263721

RESUMO

The biological functions of DNA are carried out by individual proteins that interact with specific sequences along the DNA in order to prime the molecular processes required by the cellular metabolism. Protein-DNA interactions include DNA replication, gene expression and its regulation, DNA repair, DNA restriction and modification by endonucleases, generally classified as enzymatic functions, or transcription factors functions. To find specific binding target sequences and achieve their aims, in less than one second proteins operate in symbiosis with a crowded cellular environment, identifying extremely small cognate sequences along the DNA chain, which range from 15-20 bps for repressors to 4-6 bps for restriction enzymes. In a previous work, we proposed that the extraordinary ability of proteins to identify consensus sequences on DNA in a short time appears to be dependent on specific quantum signatures such as the entanglement ofπ-πelectrons between DNA nucleotides and protein amino acids, where the couple ofπelectrons function as a radical pair, oneπelectron is located on a specific site of sequence to be identified and the other one performs a quantum walk to identify possible sites of consensus sequence. In this paper, we use the restriction endonucleases enzymes, EcoRV and EcoRI as a case study. These enzymes are able to recognize 3'-GATACT-5' or 3'-GAATCT-5' sequences, respectively. We exploit the analogy of a coin operator with a Bloch sphere to demonstrate that the entanglement betweenπ-πelectrons generated at the contacts on specific GA dimers between proteins and DNA relies on the spin of the electrons that form an initial singlet state. The latter is a maximally entangled state so that the identification of specific nucleotides is associated with the formation of singlet states. On the other hand, during the identification of subsequent GA dimers, the spin-orbit interaction on walkingπelectron induces triplet transitions so that singlet-triplet transitions should manifest an experimentally measurable effect. We propose that the possible experimental evidence of entanglement betweenπ-πelectrons may be due to the phosphorescence signal correspondence to triplet decay processes.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Biologia , DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Elétrons , Proteínas
13.
Biotechniques ; 72(5): 185-193, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255734

RESUMO

Aims: New methods of DNA recombination that capture the principal advantages of the BioBrick standard (ease of design) and Golden Gate assembly (decreased labor) are demonstrated here. Methods & materials: Both methods employ DNA methyltransferase expression vectors, available from Addgene, that protect selected sites on different plasmids from particular Type II restriction endonucleases. No other reagents are required. Results: The 4R/2M discontinuous DNA assembly is more efficient (produces more desired recombinant plasmids) and as specific (produces few undesired recombination products) as conventional subcloning. The 5RM continuous DNA assembly is approximately as efficient and specific as conventional Golden Gate assembly, even though in vivo methylation of one plasmid is incomplete. Conclusion: Both methylase-assisted methods streamline BioBrick assembly workflows without complicating the design of synthetic parts.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II , Biologia Sintética , Clonagem Molecular , DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Vetores Genéticos , Plasmídeos/genética
14.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35171990

RESUMO

Transgenesis with the meganuclease I-SceI is a safe and efficient method, but the underlying mechanisms remain unclear due to the lack of information on transgene localization. Using I-SceI, we previously developed a transgenic Xenopus tropicalis line expressing enhanced green fluorescent protein driven by the neural crest-specific snai2 promoter/enhancer, which is a powerful tool for studying neural crest development and craniofacial morphogenesis. Here, we carried out whole-genome shotgun sequencing for the snai2:eGFP embryos to identify the transgene integration sites. With a 19x sequencing coverage, we estimated that 6 copies of the transgene were inserted into the Xenopus tropicalis genome in the hemizygous transgenic embryos. Two transgene integration loci adjacent to each other were identified in a noncoding region on chromosome 1, possibly as a result of duplication after a single transgene insertion. Interestingly, genomic DNA at the boundaries of the transgene integration loci contains short sequences homologous to the I-SceI recognition site, suggesting that the integration was not random but probably mediated by sequence homology. To our knowledge, our work represents the first genome-wide sequencing study on a transgenic organism generated with I-SceI, which is useful for evaluating the potential genetic effects of I-SceI-mediated transgenesis and further understanding the mechanisms underlying this transgenic method.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II , Proteínas de Saccharomyces cerevisiae , Animais , Animais Geneticamente Modificados , Proteínas de Saccharomyces cerevisiae/genética , Transgenes , Xenopus/genética
15.
Cold Spring Harb Protoc ; 2022(6): Pdb.prot107011, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35135888

RESUMO

Transgenic frogs can be very efficiently generated using I-SceI meganuclease, a nuclease with an 18-bp recognition site. The desired transgene must be flanked by I-SceI sites, in either a plasmid or a polymerase chain reaction (PCR) product. After a short in vitro digestion with the meganuclease, the complete reaction is injected into fertilized eggs, where the enzyme mediates genomic integration by an unknown mechanism. Posttransgenesis development is typically normal, and up to 70% of the embryos integrate the transgene.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II , Proteínas de Saccharomyces cerevisiae , Animais , Animais Geneticamente Modificados , Técnicas de Transferência de Genes , Proteínas de Saccharomyces cerevisiae/genética , Xenopus laevis/genética
16.
J Biol Chem ; 298(4): 101760, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202658

RESUMO

Enzyme filamentation is a widespread phenomenon that mediates enzyme regulation and function. For the filament-forming sequence-specific DNA endonuclease SgrAI, the process of filamentation both accelerates its DNA cleavage activity and expands its DNA sequence specificity, thus allowing for many additional DNA sequences to be rapidly cleaved. Both outcomes-the acceleration of DNA cleavage and the expansion of sequence specificity-are proposed to regulate critical processes in bacterial innate immunity. However, the mechanistic bases underlying these events remain unclear. Herein, we describe two new structures of the SgrAI enzyme that shed light on its catalytic function. First, we present the cryo-EM structure of filamentous SgrAI bound to intact primary site DNA and Ca2+ resolved to ∼2.5 Å within the catalytic center, which represents the trapped enzyme-DNA complex prior to the DNA cleavage reaction. This structure reveals important conformational changes that contribute to the catalytic mechanism and the binding of a second divalent cation in the enzyme active site, which is expected to contribute to increased DNA cleavage activity of SgrAI in the filamentous state. Second, we present an X-ray crystal structure of DNA-free (apo) SgrAI resolved to 2.0 Å resolution, which reveals a disordered loop involved in DNA recognition. Collectively, these multiple new observations clarify the mechanism of expansion of DNA sequence specificity of SgrAI, including the indirect readout of sequence-dependent DNA structure, changes in protein-DNA interactions, and the disorder-to-order transition of a crucial DNA recognition element.


Assuntos
Clivagem do DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Regulação Alostérica , Sítios de Ligação , Desoxirribonucleases de Sítio Específico do Tipo II/química , Especificidade por Substrato
18.
ACS Synth Biol ; 11(1): 53-60, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007422

RESUMO

Prokaryote genomes encode diverse programmable DNA endonucleases with significant potential for biotechnology and gene editing. However, these endonucleases differ significantly in their properties, which must be screened and measured. While positive selection screens based on ccdB and barnase have been developed to evaluate such proteins, their high levels of toxicity make them challenging to use. Here, we develop and validate a more robust positive selection screen based on the homing endonuclease I-SceI. Candidate endonucleases target and cure the I-SceI expression plasmid preventing induction of I-SceI-mediated double strand DNA breaks that lead to cell death in E. coli. We validated this screen to measure the relative activity of SpCas9, xCas9, and eSpCas9 and demonstrated an ability to enrich for more active endonuclease variants from a mixed population. This system may be applied in high throughput to rapidly characterize novel programmable endonucleases and be adapted for directed evolution of endonuclease function.


Assuntos
Edição de Genes , Proteínas de Saccharomyces cerevisiae , Desoxirribonuclease I , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
J Clin Neurosci ; 97: 115-120, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091316

RESUMO

BACKGROUND AND AIMS: There have been plenty of reports regarding the association between Vitamin D (Vit D) and carotid atherosclerosis and stroke. We aimed to assess the association between FokI and TaqI polymorphisms of vitamin D receptor (VDR) gene and the severity of carotid bulb stenosis and the incidence of carotid bulb calcification in patients with ischemic stroke. METHODS: This prospective study conducted at Shiraz University of Medical Sciences between February 2020 and August 2020. All consecutive patients with ischemic stroke with more than 50% carotid bulb stenosis in color doppler sonography underwent cervical CT angiography (CTA). Demographics, risk factors of ischemic stroke, serum calcium, phosphate, creatinine, serum 25-hydroxyvitamin D (Vit D) level were investigated by High-Performance Liquid Chromatography (HPLC) method. The severity of stenosis and presence of calcification in carotid bulb ipsilateral was studied in CTA to ischemic stroke. VDR genotypes of FokI and TaqI polymorphisms were determined by the Restriction FragmentLength Polymorphism (RFLP) method. RESULTS: A total of 122 patients were recruited in this study (mean age: 59.1, 66.4% males, 17.2% with carotid artery stenosis of 70-99%. 57% with carotid bulb calcification). There was a significant association between calcification of carotid bulb with FokI CC polymorphisms of VDR gene (P value = 0.037). There was no significant relationship between the severity of carotid bulb stenosis and Fok1 and TaqI polymorphisms of vitamin D receptor gene and their alleles. CONCLUSIONS: There may be a biological association between the FokI VDR gene and carotid bulb calcification.


Assuntos
AVC Isquêmico , Receptores de Calcitriol , Estudos de Casos e Controles , Constrição Patológica , Desoxirribonucleases de Sítio Específico do Tipo II , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Estudos Prospectivos , Receptores de Calcitriol/genética , Vitamina D
20.
Transgenic Res ; 31(1): 87-105, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34632562

RESUMO

Meganucleases are rare cutting enzymes that can generate DNA modifications and are part of the plant genome editing toolkit although they lack versatility. Here, we evaluated the use of two meganucleases, I-SceI and a customized meganuclease, in tomato and oilseed rape. Different strategies were explored for the use of these meganucleases. The activity of a customized and a I-SceI meganucleases was first estimated by the use of a reporter construct GFFP with the target sequences and enabled to demonstrate that both meganucleases can generate double-strand break and HDR mediated recombination in a reporter gene. Interestingly, I-SceI seems to have a higher DSB efficiency than the customized meganuclease: up to 62.5% in tomato and 44.8% in oilseed rape. Secondly, the same exogenous landing pad was introduced in both species. Despite being less efficient compared to I-SceI, the customized meganuclease was able to generate the excision of an exogenous transgene (large deletion of up to 3316 bp) present in tomato. In this paper, we also present some pitfalls to be considered before using meganucleases (e.g., potential toxicity) for plant genome editing.


Assuntos
Edição de Genes , Solanum lycopersicum , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Genes Reporter , Solanum lycopersicum/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...