Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.045
Filtrar
1.
Cell Death Dis ; 15(4): 259, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609375

RESUMO

Radiotherapy effectiveness in breast cancer is limited by radioresistance. Nevertheless, the mechanisms behind radioresistance are not yet fully understood. RUVBL1 and RUVBL2, referred to as RUVBL1/2, are crucial AAA+ ATPases that act as co-chaperones and are connected to cancer. Our research revealed that RUVBL1, also known as pontin/TIP49, is excessively expressed in MMTV-PyMT mouse models undergoing radiotherapy, which is considered a murine spontaneous breast-tumor model. Our findings suggest that RUVBL1 enhances DNA damage repair and radioresistance in breast cancer cells both in vitro and in vivo. Mechanistically, we discovered that DTL, also known as CDT2 or DCAF2, which is a substrate adapter protein of CRL4, promotes the ubiquitination of RUVBL1 and facilitates its binding to RUVBL2 and transcription cofactor ß-catenin. This interaction, in turn, attenuates its binding to acetyltransferase Tat-interacting protein 60 (TIP60), a comodulator of nuclear receptors. Subsequently, ubiquitinated RUVBL1 promotes the transcriptional regulation of RUVBL1/2-ß-catenin on genes associated with the non-homologous end-joining (NHEJ) repair pathway. This process also attenuates TIP60-mediated H4K16 acetylation and the homologous recombination (HR) repair process. Expanding upon the prior study's discoveries, we exhibited that the ubiquitination of RUVBL1 by DTL advances the interosculation of RUVBL1/2-ß-catenin. And, it then regulates the transcription of NHEJ repair pathway protein. Resulting in an elevated resistance of breast cancer cells to radiation therapy. From the aforementioned, it is evident that targeting DTL-RUVBL1/2-ß-catenin provides a potential radiosensitization approach when treating breast cancer.


Assuntos
Neoplasias Mamárias Animais , beta Catenina , Animais , Camundongos , ATPases Associadas a Diversas Atividades Celulares/genética , beta Catenina/genética , DNA Helicases/genética , Regulação da Expressão Gênica , Ubiquitina , Ubiquitinação , Proteínas Nucleares
2.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589567

RESUMO

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Assuntos
Hidrazinas , Neoplasias Renais , Triazóis , Tumor de Wilms , Humanos , 60611 , Transporte Ativo do Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Apoptose , Recidiva Local de Neoplasia , Doxorrubicina/farmacologia , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488661

RESUMO

R-loops are non-canonical DNA structures that form during transcription and play diverse roles in various physiological processes. Disruption of R-loop homeostasis can lead to genomic instability and replication impairment, contributing to several human diseases, including cancer. Although the molecular mechanisms that protect cells against such events are not fully understood, recent research has identified fork protection factors and DNA damage response proteins as regulators of R-loop dynamics. In this study, we identify the Werner helicase-interacting protein 1 (WRNIP1) as a novel factor that counteracts transcription-associated DNA damage upon replication perturbation. Loss of WRNIP1 leads to R-loop accumulation, resulting in collisions between the replisome and transcription machinery. We observe co-localization of WRNIP1 with transcription/replication complexes and R-loops after replication perturbation, suggesting its involvement in resolving transcription-replication conflicts. Moreover, WRNIP1-deficient cells show impaired replication restart from transcription-induced fork stalling. Notably, transcription inhibition and RNase H1 overexpression rescue all the defects caused by loss of WRNIP1. Importantly, our findings highlight the critical role of WRNIP1 ubiquitin-binding zinc finger (UBZ) domain in preventing pathological persistence of R-loops and limiting DNA damage, thereby safeguarding genome integrity.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Replicação do DNA , Proteínas de Ligação a DNA , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , DNA , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Hidrolases/genética , Dedos de Zinco
4.
Front Cell Infect Microbiol ; 14: 1274506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510966

RESUMO

Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.


Assuntos
Parasitos , Proteínas de Saccharomyces cerevisiae , Trypanosoma , Animais , Parasitos/metabolismo , Saccharomyces cerevisiae/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Microcorpos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
mBio ; 15(4): e0003124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501868

RESUMO

The Clp protease system is important for maintaining proteostasis in bacteria. It consists of ClpP serine proteases and an AAA+ Clp-ATPase such as ClpC1. The hexameric ATPase ClpC1 utilizes the energy of ATP binding and hydrolysis to engage, unfold, and translocate substrates into the proteolytic chamber of homo- or hetero-tetradecameric ClpP for degradation. The assembly between the hetero-tetradecameric ClpP1P2 chamber and the Clp-ATPases containing tandem ATPase domains from the same species has not been studied in depth. Here, we present cryo-EM structures of the substrate-bound ClpC1:shClpP1P2 from Streptomyces hawaiiensis, and shClpP1P2 in complex with ADEP1, a natural compound produced by S. hawaiiensis and known to cause over-activation and dysregulation of the ClpP proteolytic core chamber. Our structures provide detailed information on the shClpP1-shClpP2, shClpP2-ClpC1, and ADEP1-shClpP1/P2 interactions, reveal conformational transition of ClpC1 during the substrate translocation, and capture a rotational ATP hydrolysis mechanism likely dominated by the D1 ATPase activity of chaperones.IMPORTANCEThe Clp-dependent proteolysis plays an important role in bacterial homeostasis and pathogenesis. The ClpP protease system is an effective drug target for antibacterial therapy. Streptomyces hawaiiensis can produce a class of potent acyldepsipeptide antibiotics such as ADEP1, which could affect the ClpP protease activity. Although S. hawaiiensis hosts one of the most intricate ClpP systems in nature, very little was known about its Clp protease mechanism and the impact of ADEP molecules on ClpP. The significance of our research is in dissecting the functional mechanism of the assembled Clp degradation machinery, as well as the interaction between ADEP1 and the ClpP proteolytic chamber, by solving high-resolution structures of the substrate-bound Clp system in S. hawaiiensis. The findings shed light on our understanding of the Clp-dependent proteolysis in bacteria, which will enhance the development of antimicrobial drugs targeting the Clp protease system, and help fighting against bacterial multidrug resistance.


Assuntos
Adenosina Trifosfatases , Endopeptidase Clp , Streptomyces , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteólise , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Peptídeo Hidrolases/metabolismo , Trifosfato de Adenosina/metabolismo
6.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542345

RESUMO

Single-particle cryo-electron microscopy (cryo-EM) has been shown to be effective in defining the structure of macromolecules, including protein complexes. Complexes adopt different conformations and compositions to perform their biological functions. In cryo-EM, the protein complexes are observed in solution, enabling the recording of images of the protein in multiple conformations. Various methods exist for capturing the conformational variability through analysis of cryo-EM data. Here, we analyzed the conformational variability in the hexameric AAA + ATPase p97, a complex with a six-fold rotational symmetric core surrounded by six flexible N-domains. We compared the performance of discrete classification methods with our recently developed method, MDSPACE, which uses 3D-to-2D flexible fitting of an atomic structure to images based on molecular dynamics (MD) simulations. Our analysis detected a novel conformation adopted by approximately 2% of the particles in the dataset and determined that the N-domains of p97 sway by up to 60° around a central position. This study demonstrates the application of MDSPACE in analyzing the continuous conformational changes in partially symmetrical protein complexes, systems notoriously difficult to analyze due to the alignment errors caused by their partial symmetry.


Assuntos
Adenosina Trifosfatases , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Microscopia Crioeletrônica/métodos , Adenosina Trifosfatases/metabolismo
7.
Eur Rev Med Pharmacol Sci ; 28(2): 622-644, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305606

RESUMO

OBJECTIVE: Both non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) are prevalent diseases worldwide. This study aimed to explore the underlying mechanisms of NAFLD and HCC and identify new therapeutic targets for human cancers. MATERIALS AND METHODS: NAFLD and HCC gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) were utilized to identify co-expressed genes associated with NAFLD and HCC. Public databases were consulted to find common targets of NAFLD and HCC. Enrichment analysis and CIBERSORT techniques were employed to analyze the pathways enriched with DEGs and the attributes of infiltrating immune cells. Furthermore, the expression data of UROC1 and clinical information of patients were acquired from The Cancer Genome Atlas (TCGA) database. Finally, the expression of the UROC1 was validated by immunohistochemistry (IHC). RESULTS: Through a comprehensive bioinformatics analysis, eight hub genes (CCL2, CCR2, IL6, CSF3R, ATL2, SESN3, UROC1, FIGNL1) were identified. Enrichment analysis indicated that inflammatory and immune response may be common features between NAFLD and HCC. CIBER-SORT analysis revealed an imbalance of plasma cells and macrophages in NAFLD and HCC. Pan-cancer analysis demonstrated that UROC1 expression was related to clinical outcomes and tumor immunity in various cancers. Moreover, a strong correlation was exhibited between UROC1 expression and crucial elements, including tumor mutation burden (TMB), microsatellite instability (MSI), multiple immune checkpoints (ICP), and tumor microenvironment (TME). Importantly, an adverse clinical prognosis of HCC was linked to decreased UROC1 expression, which was consistent with IHC results. CONCLUSIONS: We identified eight hub genes (CCL2, CCR2, IL6, CSF3R, ATL2, SESN3, UROC1, FIGNL1), which may become early diagnostic and therapeutic targets for NAFLD and HCC. The pan-cancer analysis of UROC1 provides new evidence for its broad application prospects in the field of HCC and other cancers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/genética , Hepatopatia Gordurosa não Alcoólica/genética , Prognóstico , Interleucina-6 , Neoplasias Hepáticas/genética , Microambiente Tumoral/genética , ATPases Associadas a Diversas Atividades Celulares , Proteínas Associadas aos Microtúbulos , Proteínas Nucleares
8.
Cell Rep ; 43(2): 113713, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306274

RESUMO

R2TP is a chaperone complex consisting of the AAA+ ATPases RUVBL1 and RUVBL2, as well as RPAP3 and PIH1D1 proteins. R2TP is responsible for the assembly of macromolecular complexes mainly acting through different adaptors. Using proximity-labeling mass spectrometry, we identified deleted in primary ciliary dyskinesia (DPCD) as an adaptor of R2TP. Here, we demonstrate that R2TP-DPCD influences ciliogenesis initiation through a unique mechanism by interaction with Akt kinase to regulate its phosphorylation levels rather than its stability. We further show that DPCD is a heart-shaped monomeric protein with two domains. A highly conserved region in the cysteine- and histidine-rich domains-containing proteins and SGT1 (CS) domain of DPCD interacts with the RUVBL2 DII domain with high affinity to form a stable R2TP-DPCD complex both in cellulo and in vitro. Considering that DPCD is one among several CS-domain-containing proteins found to associate with RUVBL1/2, we propose that RUVBL1/2 are CS-domain-binding proteins that regulate complex assembly and downstream signaling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fosforilação , ATPases Associadas a Diversas Atividades Celulares , Cognição
9.
Cell Metab ; 36(4): 778-792.e10, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38378000

RESUMO

Here, we identify a subset of vascular pericytes, defined by expression of platelet-derived growth factor receptor beta (PDGFR-ß) and G-protein-coupled receptor 91 (GPR91), that promote tumorigenesis and tyrosine kinase inhibitors (TKIs) resistance by functioning as the primary methionine source for cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC). Tumor-cell-derived succinate binds to GPR91 on pericyte to activate autophagy for methionine production. CSCs use methionine to create stabilizing N6-methyladenosine in ATPase-family-AAA-domain-containing 2 (ATAD2) mRNA, and the resulting ATAD2 protein complexes with SRY-box transcription factor 9 to assemble super enhancers and thereby dictate its target genes that feature prominently in CSCs. Targeting PDGFR-ß+GPR91+ pericytes with specific GRP91 antagonists reduce intratumoral methionine level, eliminate CSCs, and enhance TKIs sensitivity. These results unraveled the mechanisms by which PDGFR-ß+GPR91+ pericytes provide supportive niche for CSCs and could be used to develop targets for treating ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Pericitos/metabolismo , Carcinoma de Células Renais/patologia , Metionina/metabolismo , Racemetionina/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias Renais/patologia , Células-Tronco Neoplásicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/metabolismo
10.
BMC Genomics ; 25(1): 69, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233755

RESUMO

BACKGROUND: The yak is a symbol of the Qinghai-Tibet Plateau and provides important basic resources for human life on the plateau. Domestic yaks have been subjected to strong artificial selection and environmental pressures over the long-term. Understanding the molecular mechanisms of phenotypic differences in yak populations can reveal key functional genes involved in the domestication process and improve genetic breeding. MATERIAL AND METHOD: Here, we re-sequenced 80 yaks (Maiwa, Yushu, and Huanhu populations) to identify single-nucleotide polymorphisms (SNPs) as genetic variants. After filtering and quality control, remaining SNPs were kept to identify the genome-wide regions of selective sweeps associated with domestic traits. The four methods (π, XPEHH, iHS, and XP-nSL) were used to detect the population genetic separation. RESULTS: By comparing the differences in the population stratification, linkage disequilibrium decay rate, and characteristic selective sweep signals, we identified 203 putative selective regions of domestic traits, 45 of which were mapped to 27 known genes. They were clustered into 4 major GO biological process terms. All known genes were associated with seven major domestication traits, such as dwarfism (ANKRD28), milk (HECW1, HECW2, and OSBPL2), meat (SPATA5 and GRHL2), fertility (BTBD11 and ARFIP1), adaptation (NCKAP5, ANTXR1, LAMA5, OSBPL2, AOC2, and RYR2), growth (GRHL2, GRID2, SMARCAL1, and EPHB2), and the immune system (INPP5D and ADCYAP1R1). CONCLUSIONS: We provided there is an obvious genetic different among domestic progress in these three yak populations. Our findings improve the understanding of the major genetic switches and domestic processes among yak populations.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Domesticação , Receptores de Esteroides , Animais , Humanos , Bovinos/genética , Genoma , Análise de Sequência de DNA , Tibet , Genética Populacional , Proteínas dos Microfilamentos , Receptores de Superfície Celular , DNA Helicases , Proteínas do Tecido Nervoso , Ubiquitina-Proteína Ligases
11.
Cell Death Dis ; 15(1): 38, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216586

RESUMO

In principle, germline cells possess the capability to transmit a nearly unaltered set of genetic material to infinite future generations, whereas somatic cells are limited by strict growth constraints necessary to assure an organism's physical structure and eventual mortality. As the potential to replicate indefinitely is a key feature of cancer, we hypothesized that the activation of a "germline program" in somatic cells can contribute to oncogenesis. Our group recently described over one thousand germline specific genes that can be ectopically expressed in cancer, yet how germline specific processes contribute to the malignant properties of cancer is poorly understood. We here show that the expression of germ cell/cancer (GC) genes correlates with malignancy in lung adenocarcinoma (LUAD). We found that LUAD cells expressing more GC genes can repair DNA double strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation, compared to LUAD cells that express fewer GC genes. In particular, we identified the HORMA domain protein regulator TRIP13 to be predominantly responsible for this malignant phenotype, and that TRIP13 inhibition or expression levels affect the response to ionizing radiation and subsequent DNA repair. Our results demonstrate that GC genes are viable targets in oncology, as they induce increased radiation resistance and increased propagation in cancer cells. Because their expression is normally restricted to germline cells, we anticipate that GC gene directed therapeutic options will effectively target cancer, with limited side effects besides (temporary) infertility.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Reparo do DNA/genética , Adenocarcinoma de Pulmão/genética , DNA , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Células Germinativas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo
12.
Int J Biol Sci ; 20(3): 831-847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250153

RESUMO

Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas Mitocondriais , Sirtuína 3 , Animais , Camundongos , Cálcio , Cardiomegalia/genética , Homeostase , Mitocôndrias , Sirtuína 3/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas Mitocondriais/genética
13.
Cell Mol Biol Lett ; 29(1): 21, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291374

RESUMO

BACKGROUND: Septic cardiomyopathy (SCM), a common cardiovascular comorbidity of sepsis, has emerged among the leading causes of death in patients with sepsis. SCM's pathogenesis is strongly affected by mitochondrial metabolic dysregulation and immune infiltration disorder. However, the specific mechanisms and their intricate interactions in SCM remain unclear. This study employed bioinformatics analysis and drug discovery approaches to identify the regulatory molecules, distinct functions, and underlying interactions of mitochondrial metabolism and immune microenvironment, along with potential interventional strategies in SCM. METHODS: GSE79962, GSE171546, and GSE167363 datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and module genes were identified using Limma and Weighted Correlation Network Analysis (WGCNA), followed by functional enrichment analysis. Machine learning algorithms, including support vector machine-recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) regression, and random forest, were used to screen mitochondria-related hub genes for early diagnosis of SCM. Subsequently, a nomogram was developed based on six hub genes. The immunological landscape was evaluated by single-sample gene set enrichment analysis (ssGSEA). We also explored the expression pattern of hub genes and distribution of mitochondria/inflammation-related pathways in UMAP plots of single-cell dataset. Potential drugs were explored using the Drug Signatures Database (DSigDB). In vivo and in vitro experiments were performed to validate the pathogenetic mechanism of SCM and the therapeutic efficacy of candidate drugs. RESULTS: Six hub mitochondria-related DEGs [MitoDEGs; translocase of inner mitochondrial membrane domain-containing 1 (TIMMDC1), mitochondrial ribosomal protein S31 (MRPS31), F-box only protein 7 (FBXO7), phosphatidylglycerophosphate synthase 1 (PGS1), LYR motif containing 7 (LYRM7), and mitochondrial chaperone BCS1 (BCS1L)] were identified. The diagnostic nomogram model based on the six hub genes demonstrated high reliability and validity in both the training and validation sets. The immunological microenvironment differed between SCM and control groups. The Spearman correlation analysis revealed that hub MitoDEGs were significantly associated with the infiltration of immune cells. Upregulated hub genes showed remarkably high expression in the naive/memory B cell, CD14+ monocyte, and plasma cell subgroup, evidenced by the feature plot. The distribution of mitochondria/inflammation-related pathways varied across subgroups among control and SCM individuals. Metformin was predicted to be the most promising drug with the highest combined score. Its efficacy in restoring mitochondrial function and suppressing inflammatory responses has also been validated. CONCLUSIONS: This study presents a comprehensive mitochondrial metabolism and immune infiltration landscape in SCM, providing a potential novel direction for the pathogenesis and medical intervention of SCM.


Assuntos
Cardiomiopatias , Sepse , Humanos , Reprodutibilidade dos Testes , Mitocôndrias , Cardiomiopatias/genética , DNA Mitocondrial , Biologia Computacional , Inflamação , Sepse/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , ATPases Associadas a Diversas Atividades Celulares , Complexo III da Cadeia de Transporte de Elétrons , Chaperonas Moleculares , Proteínas Mitocondriais
14.
Nat Struct Mol Biol ; 31(3): 424-435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177685

RESUMO

Clamp loaders are AAA+ ATPases that facilitate high-speed DNA replication. In eukaryotic and bacteriophage clamp loaders, ATP hydrolysis requires interactions between aspartate residues in one protomer, present in conserved 'DEAD-box' motifs, and arginine residues in adjacent protomers. We show that functional defects resulting from a DEAD-box mutation in the T4 bacteriophage clamp loader can be compensated by widely distributed single mutations in the ATPase domain. Using cryo-EM, we discovered an unsuspected inactive conformation of the clamp loader, in which DNA binding is blocked and the catalytic sites are disassembled. Mutations that restore function map to regions of conformational change upon activation, suggesting that these mutations may increase DNA affinity by altering the energetic balance between inactive and active states. Our results show that there are extensive opportunities for evolution to improve catalytic efficiency when an inactive intermediate is involved.


Assuntos
Adenosina Trifosfatases , Replicação do DNA , Adenosina Trifosfatases/metabolismo , Microscopia Crioeletrônica , DNA , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Mutagênese , Trifosfato de Adenosina/metabolismo
15.
Am J Med Genet A ; 194(5): e63505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38168469

RESUMO

Data science methodologies can be utilized to ascertain and analyze clinical genetic data that is often unstructured and rarely used outside of patient encounters. Genetic variants from all genetic testing resulting to a large pediatric healthcare system for a 5-year period were obtained and reinterpreted utilizing the previously validated Franklin© Artificial Intelligence (AI). Using PowerBI©, the data were further matched to patients in the electronic healthcare record to associate with demographic data to generate a variant data table and mapped by ZIP codes. Three thousand and sixty-five variants were identified and 98% were matched to patients with geographic data. Franklin© changed the interpretation for 24% of variants. One hundred and fifty-six clinically actionable variant reinterpretations were made. A total of 739 Mendelian genetic disorders were identified with disorder prevalence estimation. Mapping of variants demonstrated hot-spots for pathogenic genetic variation such as PEX6-associated Zellweger Spectrum Disorder. Seven patients were identified with Bardet-Biedl syndrome and seven patients with Rett syndrome amenable to newly FDA-approved therapeutics. Utilizing readily available software we developed a database and Exploratory Data Analysis (EDA) methodology enabling us to systematically reinterpret variants, estimate variant prevalence, identify conditions amenable to new treatments, and localize geographies enriched for pathogenic variants.


Assuntos
Inteligência Artificial , Ciência de Dados , Humanos , Criança , Prevalência , Testes Genéticos/métodos , ATPases Associadas a Diversas Atividades Celulares
16.
Zhongguo Fei Ai Za Zhi ; 27(1): 1-12, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38296621

RESUMO

BACKGROUND: Radiation therapy is one of the most common treatments for non-small cell lung cancer (NSCLC). However, the insensitivity of some tumor cells to radiation is one of the major reasons for the poor efficacy of radiotherapy and the poor prognosis of patients, and exploring the underlying mechanisms behind radioresistance is the key to solving this clinical challenge. This study aimed to identify the molecules associated with radioresistance in lung adenocarcinoma (LUAD), identified thyroid hormone receptor interactor 13 (TRIP13) as the main target initially, and explored whether TRIP13 is related to radioresistance in LUAD and the specific mechanism, with the aim of providing theoretical basis and potential targets for the combination therapy of LUAD patients receiving radiotherapy in the clinic. METHODS: Three datasets, GSE18842, GSE19188 and GSE33532, were selected from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (|log FC|>1.5, P<0.05) in each of the three datasets using the R 4.1.3 software, and then Venn diagram was used to find out the differentially expressed genes common to the three datasets. The screened differential genes were then subjected to protein-protein interaction (PPI) analysis and module analysis with the help of STRING online tool and Cytoscape software, and survival prognosis analysis was performed for each gene with the help of Kaplan-Meier Plotter database, and the TRIP13 gene was identified as the main molecule for subsequent studies. Subsequently, the human LUAD cell line H292 was irradiated with multiple X-rays using a sub-lethal dose irradiation method to construct a radioresistant cell line, H292DR. The radioresistance of H292DR cells was verified using cell counting kit-8 (CCK-8) assay and clone formation assay. The expression levels of TRIP13 in H292 and H292DR cells were measured by Western blot. Small interfering RNA (siRNA) was used to silence the expression of TRIP13 in H292DR cells and Western blot assay was performed. The clone formation ability and migration ability of H292DR cells were observed after TRIP13 silencing, followed by the detection of changes in the expression levels of proteins closely related to homologous recombination, such as ataxia telangiectasia mutated (ATM) protein. RESULTS: Screening of multiple GEO datasets, validation of external datasets and survival analysis revealed that TRIP13 was highly expressed in LUAD and was associated with poor prognosis in LUAD patients who had received radiation therapy. And the results of gene set enrichment analysis (GSEA) of TRIP13 suggested that TRIP13 might be closely associated with LUAD radioresistance by promoting homologous recombination repair after radiation therapy. Experimentally, TRIP13 expression was found to be upregulated in H292DR, and silencing of TRIP13 was able to increase the sensitivity of H292DR cells to radiation. CONCLUSIONS: TRIP13 is associated with poor prognosis in LUAD patients treated with radiation, possibly by promoting a homologous recombination repair pathway to mediate resistance of LUAD cells to radiation.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/radioterapia , Contagem de Células , Terapia Combinada , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ciclo Celular
17.
Cancer Res ; 84(5): 675-687, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38190717

RESUMO

Therapy resistance and metastatic progression are primary causes of cancer-related mortality. Disseminated tumor cells possess adaptive traits that enable them to reprogram their metabolism, maintain stemness, and resist cell death, facilitating their persistence to drive recurrence. The survival of disseminated tumor cells also depends on their ability to modulate replication stress in response to therapy while colonizing inhospitable microenvironments. In this study, we discovered that the nuclear translocation of AXL, a TAM receptor tyrosine kinase, and its interaction with WRNIP1, a DNA replication stress response factor, promotes the survival of HER2+ breast cancer cells that are resistant to HER2-targeted therapy and metastasize to the brain. In preclinical models, knocking down or pharmacologically inhibiting AXL or WRNIP1 attenuated protection of stalled replication forks. Furthermore, deficiency or inhibition of AXL and WRNIP1 also prolonged metastatic latency and delayed relapse. Together, these findings suggest that targeting the replication stress response, which is a shared adaptive mechanism in therapy-resistant and metastasis-initiating cells, could reduce metachronous metastasis and enhance the response to standard-of-care therapies. SIGNIFICANCE: Nuclear AXL and WRNIP1 interact and mediate replication stress response, promote therapy resistance, and support metastatic progression, indicating that targeting the AXL/WRNIP1 axis is a potentially viable therapeutic strategy for breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/metabolismo , Recidiva Local de Neoplasia , Receptores Proteína Tirosina Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Microambiente Tumoral , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/metabolismo
18.
J Pediatr Ophthalmol Strabismus ; 61(1): 59-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37092661

RESUMO

PURPOSE: To report two new cases with confirmed diagnosis of Heimler syndrome and describe their systemic and ophthalmic phenotype and visual rehabilitation. METHODS: Retrospective review of medical records. RESULTS: Both siblings were diagnosed as having sensori-neural hearing loss and retinal dystrophy with exuberant intraretinal cystoid spaces and cone-rod dysfunction. The older sibling also had amelogenesis imperfecta and neither had nail abnormalities. Genetic analysis identified homozygosity for the pathogenic variant c.2528G>A p.(Gly843Asp) in the PEX1 gene in both siblings. The parents were heterozygous carriers of the variant. CONCLUSIONS: The authors report a familial case of Heimler syndrome due to biallelic PEX1 pathogenic variants that manifested as macular dystrophy characterized by cone-rod dysfunction and complicated by intraretinal cystoid spaces. Review of the literature shows that ocular phenotype is variable in patients with Heimler syndrome. [J Pediatr Ophthalmol Strabismus. 2024;61(1):59-66.].


Assuntos
Amelogênese Imperfeita , Anormalidades do Olho , Perda Auditiva Neurossensorial , Unhas Malformadas , Humanos , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/complicações , Mutação , Irmãos , Unhas Malformadas/diagnóstico , Unhas Malformadas/genética , Unhas Malformadas/complicações , Fenótipo , Anormalidades do Olho/complicações , Linhagem , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Membrana/genética
19.
Cytoskeleton (Hoboken) ; 81(2-3): 151-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37823563

RESUMO

The microtubule cytoskeleton is required for several crucial cellular processes, including chromosome segregation, cell polarity and orientation, and intracellular transport. These functions rely on microtubule stability and dynamics, which are regulated by microtubule-binding proteins (MTBPs). One such type of regulator is the microtubule-severing enzymes (MSEs), which are ATPases Associated with Diverse Cellular Activities (AAA+ ATPases). The most recently identified family are the fidgetins, which contain three members: fidgetin, fidgetin-like 1 (FL1), and fidgetin-like 2 (FL2). Of the three known MSE families, the fidgetins have the most diverse range of functions in the cell, spanning mitosis/meiosis, development, cell migration, DNA repair, and neuronal function. Furthermore, they offer intriguing novel therapeutic targets for cancer, cardiovascular disease, and wound healing. In the two decades since their first report, there has been great progress in our understanding of the fidgetins; however, there is still much left unknown about this unusual family. This review aims to consolidate the present body of knowledge of the fidgetin family of MSEs and to inspire deeper exploration into the fidgetins and the MSEs as a whole.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Adenosina Trifosfatases/metabolismo , Neurônios/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-37849306

RESUMO

OBJECTIVE: In Norway, 89% of patients with Amyotrophic lateral sclerosis (ALS) lacks a genetic diagnose. ALS genes and genes that cause other neuromuscular or neurodegenerative disorders extensively overlap. This population-based study examined whether patients with ALS have a family history of neurological disorders and explored the occurrence of rare genetic variants associated with other neurodegenerative or neuromuscular disorders. METHODS: During a two-year period, blood samples and clinical data from patients with ALS were collected from all 17 neurological departments in Norway. Our genetic analysis involved exome sequencing and bioinformatics filtering of 510 genes associated with neurodegenerative and neuromuscular disorders. The variants were interpreted using genotype-phenotype correlations and bioinformatics tools. RESULTS: A total of 279 patients from a Norwegian population-based ALS cohort participated in this study. Thirty-one percent of the patients had first- or second-degree relatives with other neurodegenerative disorders, most commonly dementia and Parkinson's disease. The genetic analysis identified 20 possible pathogenic variants, in ATL3, AFG3L2, ATP7A, BICD2, HARS1, KIF1A, LRRK2, MSTO1, NEK1, NEFH, and SORL1, in 25 patients. NEK1 risk variants were present in 2.5% of this ALS cohort. Only four of the 25 patients reported relatives with other neurodegenerative or neuromuscular disorders. CONCLUSION: Gene variants known to cause other neurodegenerative or neuromuscular disorders, most frequently in NEK1, were identified in 9% of the patients with ALS. Most of these patients had no family history of other neurodegenerative or neuromuscular disorders. Our findings indicated that AFG3L2, ATP7A, BICD2, KIF1A, and MSTO1 should be further explored as potential ALS-causing genes.


Assuntos
Esclerose Amiotrófica Lateral , Proteínas de Ciclo Celular , Doenças Neurodegenerativas , Humanos , Predisposição Genética para Doença/genética , Esclerose Amiotrófica Lateral/epidemiologia , Esclerose Amiotrófica Lateral/genética , Estudos de Associação Genética , Família , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Cinesinas/genética , Proteínas do Citoesqueleto/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...