Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.336
Filtrar
1.
mBio ; 15(4): e0003124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501868

RESUMO

The Clp protease system is important for maintaining proteostasis in bacteria. It consists of ClpP serine proteases and an AAA+ Clp-ATPase such as ClpC1. The hexameric ATPase ClpC1 utilizes the energy of ATP binding and hydrolysis to engage, unfold, and translocate substrates into the proteolytic chamber of homo- or hetero-tetradecameric ClpP for degradation. The assembly between the hetero-tetradecameric ClpP1P2 chamber and the Clp-ATPases containing tandem ATPase domains from the same species has not been studied in depth. Here, we present cryo-EM structures of the substrate-bound ClpC1:shClpP1P2 from Streptomyces hawaiiensis, and shClpP1P2 in complex with ADEP1, a natural compound produced by S. hawaiiensis and known to cause over-activation and dysregulation of the ClpP proteolytic core chamber. Our structures provide detailed information on the shClpP1-shClpP2, shClpP2-ClpC1, and ADEP1-shClpP1/P2 interactions, reveal conformational transition of ClpC1 during the substrate translocation, and capture a rotational ATP hydrolysis mechanism likely dominated by the D1 ATPase activity of chaperones.IMPORTANCEThe Clp-dependent proteolysis plays an important role in bacterial homeostasis and pathogenesis. The ClpP protease system is an effective drug target for antibacterial therapy. Streptomyces hawaiiensis can produce a class of potent acyldepsipeptide antibiotics such as ADEP1, which could affect the ClpP protease activity. Although S. hawaiiensis hosts one of the most intricate ClpP systems in nature, very little was known about its Clp protease mechanism and the impact of ADEP molecules on ClpP. The significance of our research is in dissecting the functional mechanism of the assembled Clp degradation machinery, as well as the interaction between ADEP1 and the ClpP proteolytic chamber, by solving high-resolution structures of the substrate-bound Clp system in S. hawaiiensis. The findings shed light on our understanding of the Clp-dependent proteolysis in bacteria, which will enhance the development of antimicrobial drugs targeting the Clp protease system, and help fighting against bacterial multidrug resistance.


Assuntos
Adenosina Trifosfatases , Endopeptidase Clp , Streptomyces , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteólise , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Peptídeo Hidrolases/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Plant Cell Rep ; 43(3): 83, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441719

RESUMO

KEY MESSAGE: The transcription factor AmCBF1 deepens the leaf colour of transgenic cotton by binding to the promoter of the chloroplast development-related protein GhClpR1 to promote photosynthesis. The ATP-dependent caseinolytic protease (Clp protease) family plays a crucial role within chloroplasts, comprising several Clp proteins to maintain chloroplast homeostasis. At present, research on Clp proteins mainly focuses on Arabidopsis, leaving its function in other plants, particularly in crops, less explored. In this study, we overexpressed AmCBF1 from Ammopiptanthus mongolicus (A. mongolicus) in wild type (R15), and found a significant darkening of leaf colour in transgenic plants (L28 and L30). RNA-seq analysis showed an enrichment of pathways associated with photosynthesis. Subsequent screening of differentially expressed genes revealed a significant up-regulation of GhClpR1, a gene linked to chloroplast development, in the transgenic strain. In addition, GhClpR1 was consistently expressed in upland cotton, with the highest expression observed in leaves. Subcellular localization analysis revealed that the protein encoded by GhClpR1 was located in chloroplasts. Yeast one hybrid and dual luciferase experiments showed that the AmCBF1 transcription factor positively regulates the expression of GhClpR1. VIGs-mediated silencing of GhClpR1 led to a significant yellowing phenotype in the leaves. This was accompanied by a reduction in chlorophyll content, and microscopic examination of chloroplast ultrastructure revealed severe developmental impairment. Finally, yeast two-hybrid assays showed that GhClpR1 interacts with the Clp protease complex accessory protein GhClpT2. Our study provides a foundation for studying the function of the Clp protease complex and a new strategy for cultivating high-light-efficiency cotton resources.


Assuntos
Arabidopsis , Gossypium , Gossypium/genética , Endopeptidase Clp/genética , Cloroplastos , Fotossíntese , Arabidopsis/genética , Fatores de Transcrição/genética
3.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 356-365, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419499

RESUMO

Currently, platinum agents remain the mainstay of chemotherapy for ovarian cancer (OC). However, cisplatin (DDP) resistance is a major reason for chemotherapy failure. Thus, it is extremely important to elucidate the mechanism of resistance to DDP. Here, we establish two DDP-resistant ovarian cancer cell lines and find that caseinolytic protease P (CLPP) level is significantly downregulated in DDP-resistant cell lines compared to wild-type ovarian cancer cell lines (SK-OV-3 and OVcar3). Next, we investigate the functions of CLPP in DDP-resistant and wild-type ovarian cancer cells using various assays, including cell counting kit-8 assay, western blot analysis, immunofluorescence staining, and detection of reactive oxygen species (ROS) and apoptosis. Our results show that CLPP knockdown significantly increases the half maximal inhibitory concentration (IC 50) and mitophagy of wild-type SK-OV-3 and OVcar3 cells, while CLPP overexpression reduces the IC 50 values and mitophagy of DDP-resistant SK-OV-3 and OVcar3 cells. Next, we perform database predictions and confirmation experiments, which show that heat shock protein family A member 8 (HSPA8) regulates CLPP protein stability. The dynamic effects of the HSPA8/CLPP axis in ovarian cancer cells are also examined. HSPA8 increases mitophagy and the IC 50 values of SK-OV-3 and OVcar3 cells but inhibits their ROS production and apoptosis. In addition, CLPP partly reverses the effects induced by HSPA8 in SK-OV-3 and OVcar3 cells. In conclusion, CLPP increases DDP resistance in ovarian cancer by inhibiting mitophagy and promoting cellular stress. Meanwhile, HSPA8 promotes the degradation of CLPP protein by regulating its stability.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Endopeptidase Clp , Proteínas de Choque Térmico HSC70/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
ACS Synth Biol ; 13(2): 669-682, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38317378

RESUMO

Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte/genética , Proteólise , 60652 , Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo
5.
Biomolecules ; 14(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397478

RESUMO

The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.


Assuntos
Avena , Eucariotos , Animais , Camundongos , Arginina , Avena/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Eucariotos/metabolismo , Heme/metabolismo , Histidina , Transportadores de Ânions Orgânicos
6.
Biophys Chem ; 307: 107200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367540

RESUMO

In this study, we conducted Ferguson plot analyses using both agarose and polyacrylamide gels in native electrophoresis and SDS-PAGE. The results revealed intriguing differences in the behavior of bovine serum albumin (BSA) and other model proteins. Specifically, BSA exhibited Ferguson plot slopes that were dependent on the oligomer size in agarose native gel electrophoresis, while such size-dependent behavior was not observed in native-PAGE or SDS-PAGE. These findings suggest that Ferguson plot analysis is a suitable approach when using agarose gel under the electrophoretic conditions employed in this study. Furthermore, our investigation extended to model proteins with acidic isoelectric points and larger molecular weights, namely Ferritin and caseinolytic peptidase B (ClpB). Notably, these proteins displayed distinct Ferguson plot slopes when subjected to agarose gel electrophoresis. Intriguingly, when polyacrylamide gel was employed, ClpB exhibited multiple bands, each with its unique Ferguson plot slope, deviating from the expected behavior based on molecular size. This divergence in Ferguson plot characteristics between agarose and polyacrylamide gels points to an interesting and complex interplay between protein properties and gel electrophoresis conditions.


Assuntos
Resinas Acrílicas , Endopeptidase Clp , Proteínas , Sefarose , Eletroforese em Gel de Poliacrilamida , Eletroforese em Gel de Ágar/métodos , Géis
7.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339144

RESUMO

Mitochondrial unfolded protein stress response (mtUPR) plays a critical role in regulating cellular and metabolic stress response and helps maintain protein homeostasis. Caseinolytic peptidase P (CLPP) is one of the key regulators of mtUPR and promotes unfolded protein degradation. Previous studies demonstrated that global deletion of Clpp resulted in female infertility, whereas no impairment was found in the mouse model with targeted deletion of Clpp in cumulus/granulosa cells. These results suggest the need to delineate the function of Clpp in oocytes. In this study, we aimed to further explore the role of mtUPR in female reproductive competence and senescence using a mouse model. Oocyte-specific targeted deletion of Clpp in mice resulted in female subfertility associated with metabolic and functional abnormalities in oocytes, thus highlighting the importance of CLPP-mediated protein homeostasis in oocyte competence and reproductive function.


Assuntos
Endopeptidase Clp , Infertilidade Feminina , Mitocôndrias , Feminino , Fertilidade/genética , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Mitocôndrias/metabolismo , Oócitos/metabolismo , Resposta a Proteínas não Dobradas/genética , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Animais , Camundongos
8.
Sci Rep ; 14(1): 2572, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296985

RESUMO

Bacterial caseinolytic protease P subunit (ClpP) is important and vital for cell survival and infectivity. Recent publications describe and discuss the complex structure-function relationship of ClpP and its processive activity mediated by 14 catalytic sites. Even so, there are several aspects yet to be further elucidated, such as the paradoxical allosteric modulation of ClpP by peptidomimetic boronates. These compounds bind to all catalytic sites, and in specific conditions, they stimulate a dysregulated degradation of peptides and globular proteins, instead of inhibiting the enzymatic activity, as expected for serine proteases in general. Aiming to explore and explain this paradoxical effect, we solved and refined the crystal structure of native ClpP from Staphylococcus epidermidis (Se), an opportunistic pathogen involved in nosocomial infections, as well as ClpP in complex with ixazomib at 1.90 Å and 2.33 Å resolution, respectively. The interpretation of the crystal structures, in combination with complementary biochemical and biophysical data, shed light on how ixazomib affects the ClpP conformational state and activity. Moreover, SEC-SAXS and DLS measurements show, for the first time, that a peptidomimetic boronate compound also induces the assembly of the tetradecameric structure from isolated homomeric heptameric rings of a gram-positive organism.


Assuntos
Glicina/análogos & derivados , Peptidomiméticos , Peptidomiméticos/farmacologia , Espalhamento a Baixo Ângulo , Difração de Raios X , Compostos de Boro/farmacologia , Compostos de Boro/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Bactérias/metabolismo
9.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38270563

RESUMO

CLPB is a mitochondrial intermembrane space AAA+ domain-containing disaggregase. CLPB mutations are associated with 3-methylglutaconic aciduria and neutropenia; however, the molecular mechanism underscoring disease and the contribution of CLPB substrates to disease pathology remains unknown. Interactions between CLPB and mitochondrial quality control (QC) factors, including PARL and OPA1, have been reported, hinting at dysregulation of organelle QC in disease. Utilizing proteomic and biochemical approaches, we show a stress-specific aggregation phenotype in a CLPB-null environment and define the CLPB substrate profile. We illustrate an interplay between intermembrane space proteins including CLPB, HAX1, HTRA2, and the inner membrane quality control proteins (STOML2, PARL, YME1L1; SPY complex), with CLPB deficiency impeding SPY complex function by virtue of protein aggregation in the intermembrane space. We conclude that there is an interdependency of mitochondrial QC components at the intermembrane space/inner membrane interface, and perturbations to this network may underscore CLPB disease pathology.


Assuntos
Endopeptidase Clp , Membranas Intracelulares , Proteínas de Membrana , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteólise , Proteômica , Humanos , Endopeptidase Clp/genética
10.
Mol Microbiol ; 121(1): 98-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041395

RESUMO

Bacterial cell division requires the coordinated assembly and disassembly of a large protein complex called the divisome; however, the exact role of molecular chaperones in this critical process remains unclear. We here provide genetic evidence that ClpX unfoldase activity is a determinant for proper coordination of bacterial cell division by showing the growth defect of a Staphylococcus aureus clpX mutant is rescued by a spontaneously acquired G325V substitution in the ATP-binding domain of the essential FtsA cell division protein. The polymerization state of FtsA is thought to control initiation of bacterial septum synthesis and, while restoring the aberrant FtsA dynamics in clpX cells, the FtsAG325V variant displayed reduced ability to interact with itself and other cell division proteins. In wild-type cells, the ftsAG325V allele shared phenotypes with Escherichia coli superfission ftsA mutants and accelerated the cell cycle, increased the risk of daughter cell lysis, and conferred sensitivity to heat and antibiotics inhibiting cell wall synthesis. Strikingly, lethality was mitigated by spontaneous mutations that inactivate ClpX. Taken together, our results suggest that ClpX promotes septum synthesis by antagonizing FtsA interactions and illuminates the critical role of a protein unfoldase in coordinating bacterial cell division.


Assuntos
Proteínas de Escherichia coli , Infecções Estafilocócicas , Humanos , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Staphylococcus aureus/metabolismo , Divisão Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
11.
Angew Chem Int Ed Engl ; 63(3): e202314028, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029352

RESUMO

The caseinolytic protease is a highly conserved serine protease, crucial to prokaryotic and eukaryotic protein homeostasis, and a promising antibacterial and anticancer drug target. Herein, we describe the potent cystargolides as the first natural ß-lactone inhibitors of the proteolytic core ClpP. Based on the discovery of two clpP genes next to the cystargolide biosynthetic gene cluster in Kitasatospora cystarginea, we explored ClpP as a potential cystargolide target. We show the inhibition of Staphylococcus aureus ClpP by cystargolide A and B by different biochemical methods in vitro. Synthesis of semisynthetic derivatives and probes with improved cell penetration allowed us to confirm ClpP as a specific target in S. aureus cells and to demonstrate the anti-virulence activity of this natural product class. Crystal structures show cystargolide A covalently bound to all 14 active sites of ClpP from S. aureus, Aquifex aeolicus, and Photorhabdus laumondii, and reveal the molecular mechanism of ClpP inhibition by ß-lactones, the predominant class of ClpP inhibitors.


Assuntos
Dipeptídeos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Domínio Catalítico , Dipeptídeos/metabolismo , Virulência , Endopeptidase Clp/metabolismo
12.
Curr Drug Targets ; 25(2): 108-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38151841

RESUMO

Antimicrobial resistance (AMR) to currently available antibiotics/drugs is a global threat. It is desirable to develop new drugs that work through a novel target(s) to avoid drug resistance. This review discusses the potential of the caseinolytic protease P (ClpP) peptidase complex as a novel target for finding novel antibiotics, emphasising the ClpP's structure and function. ClpP contributes to the survival of bacteria via its ability to destroy misfolded or aggregated proteins. In consequence, its inhibition may lead to microbial death. Drugs inhibiting ClpP activity are currently being tested, but no drug against this target has been approved yet. It was demonstrated that Nblocked dipeptides are essential for activating ClpP's proteolytic activity. Hence, compounds mimicking these dipeptides could act as inhibitors of the formation of an active ClpP complex. Drugs, including Bortezomib, Cisplatin, Cefmetazole, and Ixazomib, inhibit ClpP activation. However, they were not approved as drugs against the target because of their high toxicity, likely due to the presence of strong electrophiles in their warheads. The modifications of these warheads could be a good strategy to reduce the toxicity of these molecules. For instance, a boronate warhead was replaced by a chloromethyl ketone, and this new molecule was shown to exhibit selectivity for prokaryotic ClpP. A better understanding of the structure and function of the ClpP complex would benefit the search for compounds mimicking N-blocked dipeptides that would inhibit ClpP complex activity and cause bacterial death.


Assuntos
Antibacterianos , Peptídeo Hidrolases , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeo Hidrolases/metabolismo , Bactérias/metabolismo , Dipeptídeos/metabolismo , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo
13.
Nucleic Acids Res ; 52(3): 1341-1358, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113276

RESUMO

MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Peptídeo Hidrolases , tRNA Metiltransferases , Humanos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Peptídeo Hidrolases/genética , Proteólise , RNA Mitocondrial/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , Proteínas Mitocondriais/metabolismo
14.
J Biol Chem ; 300(2): 105568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103640

RESUMO

Upon Mg2+ starvation, a condition often associated with virulence, enterobacteria inhibit the ClpXP-dependent proteolysis of the master transcriptional regulator, σs, via IraM, a poorly understood antiadaptor that prevents RssB-dependent loading of σs onto ClpXP. This inhibition results in σs accumulation and expression of stress resistance genes. Here, we report on the structural analysis of RssB bound to IraM, which reveals that IraM induces two folding transitions within RssB, amplified via a segmented helical linker. These conformational changes result in an open, yet inhibited RssB structure in which IraM associates with both the C-terminal and N-terminal domains of RssB and prevents binding of σs to the 4-5-5 face of the N-terminal receiver domain. This work highlights the remarkable structural plasticity of RssB and reveals how a stress-specific RssB antagonist modulates a core stress response pathway that could be leveraged to control biofilm formation, virulence, and the development of antibiotic resistance.


Assuntos
Proteínas de Escherichia coli , Modelos Moleculares , Fatores de Transcrição , Endopeptidase Clp/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Terciária de Proteína , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
15.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139332

RESUMO

The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.


Assuntos
Endopeptidase Clp , Perda Auditiva , Mitocôndrias , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Respiração/genética , Biossíntese de Proteínas/genética
16.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139184

RESUMO

The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP147th) of SulA, a cell-division inhibitor recognized by ClpYQ and that the Phe143rd residue in degron site is necessary for SulA native folded structure. However, the functional association of this degron site with the ClpYQ degrader is unknown. Here, we investigated the molecular insights into substrate recognition and discrimination by the ClpYQ protease. We found that the point mutants ClpYY91FQ, ClpYY91HQ, and ClpYY91WQ, carrying a ring structure at the 91st residue of ClpY, efficiently degraded their natural substrates, evidenced by the suppressed bacterial methyl-methane-sulfonate (MMS) sensitivity, the reduced ß-galactosidase activity of cpsB::lacZ, and the lowest amounts of MBP-SulA in both in vivo and in vitro degradation analyses. Alternatively, mimicking the wild-type SulA, SulAF143H, SulAF143K and SulAF143W, harboring a ring structure or a cation side-group in 143rd residue of SulA, were efficiently degraded by ClpYQ in the bacterial cells, also revealing shorter half-lives at 41 °C and higher binding affinities towards ClpY in pull-down assays. Finally, ClpYY91FQ and ClpYY91HQ, were capable of effectively degrading SulAF143H and SulAF143K, highlighting a correspondingly functional interaction between the SulA 143rd and ClpY 91st residues. According to the interchangeable substituted amino acids, our results uniquely indicate that a transient π-π or cation-π interaction between the SulA 143rd and ClpY 91st residues could be aptly gripped between the degron site of substrates and the pore site of proteases (degraders) for substrate recognition and discrimination of the processive degradation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeo Hidrolases/metabolismo , 60652 , Endopeptidases/metabolismo , Proteases Dependentes de ATP/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo
17.
J Biol Chem ; 299(12): 105440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949227

RESUMO

In enterobacteria such as Escherichia coli, the general stress response is mediated by σs, the stationary phase dissociable promoter specificity subunit of RNA polymerase. σs is degraded by ClpXP during active growth in a process dependent on the RssB adaptor, which is thought to be stimulated by the phosphorylation of a conserved aspartate in its N-terminal receiver domain. Here we present the crystal structure of full-length RssB bound to a beryllofluoride phosphomimic. Compared to the structure of RssB bound to the IraD anti-adaptor, our new RssB structure with bound beryllofluoride reveals conformational differences and coil-to-helix transitions in the C-terminal region of the RssB receiver domain and in the interdomain segmented helical linker. These are accompanied by masking of the α4-ß5-α5 (4-5-5) "signaling" face of the RssB receiver domain by its C-terminal domain. Critically, using hydrogen-deuterium exchange mass spectrometry, we identify σs-binding determinants on the 4-5-5 face, implying that this surface needs to be unmasked to effect an interdomain interface switch and enable full σs engagement and hand-off to ClpXP. In activated receiver domains, the 4-5-5 face is often the locus of intermolecular interactions, but its masking by intramolecular contacts upon phosphorylation is unusual, emphasizing that RssB is a response regulator that undergoes atypical regulation.


Assuntos
Proteínas de Ligação a DNA , Endopeptidase Clp , Proteínas de Escherichia coli , Escherichia coli , Proteólise , Fator sigma , Fatores de Transcrição , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Ativação Enzimática , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Fosforilação , Domínios Proteicos , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
Nat Commun ; 14(1): 7281, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949857

RESUMO

AAA+ proteases degrade intracellular proteins in a highly specific manner. E. coli ClpXP, for example, relies on a C-terminal ssrA tag or other terminal degron sequences to recognize proteins, which are then unfolded by ClpX and subsequently translocated through its axial channel and into the degradation chamber of ClpP for proteolysis. Prior cryo-EM structures reveal that the ssrA tag initially binds to a ClpX conformation in which the axial channel is closed by a pore-2 loop. Here, we show that substrate-free ClpXP has a nearly identical closed-channel conformation. We destabilize this closed-channel conformation by deleting residues from the ClpX pore-2 loop. Strikingly, open-channel ClpXP variants degrade non-native proteins lacking degrons faster than the parental enzymes in vitro but degraded GFP-ssrA more slowly. When expressed in E. coli, these open channel variants behave similarly to the wild-type enzyme in assays of filamentation and phage-Mu plating but resulted in reduced growth phenotypes at elevated temperatures or when cells were exposed to sub-lethal antibiotic concentrations. Thus, channel closure is an important determinant of ClpXP degradation specificity.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/metabolismo , Proteólise , Translocação Genética
19.
Nat Commun ; 14(1): 7069, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923710

RESUMO

Chemo-activation of mitochondrial ClpP exhibits promising anticancer properties. However, we are currently unaware of any studies using selective and potent ClpP activators in lung squamous cell carcinoma. In this work, we report on such an activator, ZK53, which exhibits therapeutic effects on lung squamous cell carcinoma in vivo. The crystal structure of ZK53/ClpP complex reveals a π-π stacking effect that is essential for ligand binding selectively to the mitochondrial ClpP. ZK53 features on a simple scaffold, which is distinct from the activators with rigid scaffolds, such as acyldepsipeptides and imipridones. ZK53 treatment causes a decrease of the electron transport chain in a ClpP-dependent manner, which results in declined oxidative phosphorylation and ATP production in lung tumor cells. Mechanistically, ZK53 inhibits the adenoviral early region 2 binding factor targets and activates the ataxia-telangiectasia mutated-mediated DNA damage response, eventually triggering cell cycle arrest. Lastly, ZK53 exhibits therapeutic effects on lung squamous cell carcinoma cells in xenograft and autochthonous mouse models.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/patologia , Endopeptidase Clp/metabolismo
20.
Commun Biol ; 6(1): 1012, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798322

RESUMO

Caseinolytic protease proteolytic subunit (ClpP) and caseinolytic protease X (ClpX) are mitochondrial matrix peptidases that activate mitochondrial unfolded protein response to maintain protein homeostasis in the mitochondria. However, the role of ClpP and ClpX in spermatogenesis remains largely unknown. In this study, we demonstrated the importance of ClpP/ClpX for meiosis and spermatogenesis with two conditional knockout (cKO) mouse models. We found that ClpP/ClpX deficiency reduced mitochondrial functions and quantity in spermatocytes, affected energy supply during meiosis and attenuated zygotene-pachytene transformation of the male germ cells. The dysregulated spermatocytes finally underwent apoptosis resulting in decreased testicular size and vacuolar structures within the seminiferous tubules. We found mTORC1 pathway was over-activated after deletion of ClpP/ClpX in spermatocytes. Long-term inhibition of the mTORC1 signaling via rapamycin treatment in vivo partially rescue spermatogenesis. The data reveal the critical roles of ClpP and ClpX in regulating meiosis and spermatogenesis.


Assuntos
Endopeptidase Clp , Mitocôndrias , Peptídeo Hidrolases , Animais , Masculino , Camundongos , Mitocôndrias/metabolismo , Peptídeo Hidrolases/metabolismo , Serina Endopeptidases/metabolismo , Espermatócitos/metabolismo , Espermatogênese , Endopeptidase Clp/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...