Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Mais filtros










Filtros aplicados
Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(51): 32386-32394, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288716

RESUMO

In translation elongation, two translational guanosine triphosphatase (trGTPase) factors EF1A and EF2 alternately bind to the ribosome and promote polypeptide elongation. The ribosomal stalk is a multimeric ribosomal protein complex which plays an essential role in the recruitment of EF1A and EF2 to the ribosome and their GTP hydrolysis for efficient and accurate translation elongation. However, due to the flexible nature of the ribosomal stalk, its structural dynamics and mechanism of action remain unclear. Here, we applied high-speed atomic force microscopy (HS-AFM) to directly visualize the action of the archaeal ribosomal heptameric stalk complex, aP0•(aP1•aP1)3 (P-stalk). HS-AFM movies clearly demonstrated the wobbling motion of the P-stalk on the large ribosomal subunit where the stalk base adopted two conformational states, a predicted canonical state, and a newly identified flipped state. Moreover, we showed that up to seven molecules of archaeal EF1A (aEF1A) and archaeal EF2 (aEF2) assembled around the ribosomal P-stalk, corresponding to the copy number of the common C-terminal factor-binding site of the P-stalk. These results provide visual evidence for the factor-pooling mechanism by the P-stalk within the ribosome and reveal that the ribosomal P-stalk promotes translation elongation by increasing the local concentration of translational GTPase factors.


Assuntos
Proteínas Arqueais/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Microscopia de Força Atômica/métodos , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores/química , Proteínas Arqueais/metabolismo , Escherichia coli/genética , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Elongação Traducional da Cadeia Peptídica , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo
2.
J Comput Biol ; 25(2): 121-129, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28771374

RESUMO

We study a simple abstract problem motivated by a variety of applications in protein sequence analysis. Consider a string of 0s and 1s of length L, and containing D 1s. If we believe that some or all of the 1s may be clustered near the start of the sequence, which subset is the most significantly so clustered, and how significant is this clustering? We approach this question using the minimum description length principle and illustrate its application by analyzing residues that distinguish translational initiation and elongation factor guanosine triphosphatases (GTPases) from other P-loop GTPases. Within a structure of yeast elongation factor 1[Formula: see text], these residues form a significant cluster centered on a region implicated in guanine nucleotide exchange. Various biomedical questions may be cast as the abstract problem considered here.


Assuntos
Biologia Computacional/métodos , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Proteínas de Saccharomyces cerevisiae/química , Análise de Sequência de Proteína/métodos , Análise por Conglomerados
3.
J Biol Chem ; 291(25): 12943-50, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27137929

RESUMO

Elongation factor 4 (EF4) is a member of the family of ribosome-dependent translational GTPase factors, along with elongation factor G and BPI-inducible protein A. Although EF4 is highly conserved in bacterial, mitochondrial, and chloroplast genomes, its exact biological function remains controversial. Here we present the cryo-EM reconstitution of the GTP form of EF4 bound to the ribosome with P and E site tRNAs at 3.8-Å resolution. Interestingly, our structure reveals an unrotated ribosome rather than a clockwise-rotated ribosome, as observed in the presence of EF4-GDP and P site tRNA. In addition, we also observed a counterclockwise-rotated form of the above complex at 5.7-Å resolution. Taken together, our results shed light on the interactions formed between EF4, the ribosome, and the P site tRNA and illuminate the GTPase activation mechanism at previously unresolved detail.


Assuntos
Proteínas de Bactérias/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Thermus thermophilus , Domínio Catalítico , Microscopia Crioeletrônica , Guanosina Difosfato/química , Guanosina Trifosfato/química , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Ligação Proteica
4.
Annu Rev Biochem ; 82: 203-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23746255

RESUMO

The sequential addition of amino acids to a growing polypeptide chain is carried out by the ribosome in a complicated multistep process called the elongation cycle. It involves accurate selection of each aminoacyl tRNA as dictated by the mRNA codon, catalysis of peptide bond formation, and movement of the tRNAs and mRNA through the ribosome. The process requires the GTPase factors elongation factor Tu (EF-Tu) and EF-G. Not surprisingly, large conformational changes in both the ribosome and its tRNA substrates occur throughout protein elongation. Major advances in our understanding of the elongation cycle have been made in the past few years as a result of high-resolution crystal structures that capture various states of the process, as well as biochemical and computational studies.


Assuntos
Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Elongação Traducional da Cadeia Peptídica , RNA de Transferência/química , Ribossomos/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/genética , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
5.
Nucleic Acids Res ; 40(21): 10851-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22965132

RESUMO

Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases-regardless of their different specific functions-use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Ligação ao GTP/química , Chaperonas Moleculares/química , Proteínas Ribossômicas/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Eletricidade Estática , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
6.
J Struct Biol ; 177(2): 561-70, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22019767

RESUMO

Cryo-elecron microscopy (cryo-EM) can provide important structural information of large macromolecular assemblies in different conformational states. Recent years have seen an increase in structures deposited in the Protein Data Bank (PDB) by fitting a high-resolution structure into its low-resolution cryo-EM map. A commonly used protocol for accommodating the conformational changes between the X-ray structure and the cryo-EM map is rigid body fitting of individual domains. With the emergence of different flexible fitting approaches, there is a need to compare and revise these different protocols for the fitting. We have applied three diverse automated flexible fitting approaches on a protein dataset for which rigid domain fitting (RDF) models have been deposited in the PDB. In general, a consensus is observed in the conformations, which indicates a convergence from these theoretically different approaches to the most probable solution corresponding to the cryo-EM map. However, the result shows that the convergence might not be observed for proteins with complex conformational changes or with missing densities in cryo-EM map. In contrast, RDF structures deposited in the PDB can represent conformations that not only differ from the consensus obtained by flexible fitting but also from X-ray crystallography. Thus, this study emphasizes that a "consensus" achieved by the use of several automated flexible fitting approaches can provide a higher level of confidence in the modeled configurations. Following this protocol not only increases the confidence level of fitting, but also highlights protein regions with uncertain fitting. Hence, this protocol can lead to better interpretation of cryo-EM data.


Assuntos
Microscopia Crioeletrônica/métodos , Interpretação Estatística de Dados , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Fatores de Terminação de Peptídeos/química , Conformação Proteica , Software
7.
RNA Biol ; 7(5): 521-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20657179

RESUMO

The GTPase super-family comprises a variety of G proteins found in all three domains of life. Although they are participating in completely different processes like signal transduction, protein biosynthesis and regulation of cell proliferation, they all share a highly conserved G domain and use a common mechanism for GTP hydrolysis. Exact timing in hydrolyzing the bound GTP serves as a molecular switch to initiate diverse cellular reactions. Classical GTPases depend on external proteins to fire GTP hydrolysis (GAPs), and following the GTPase reaction to exchange GDP for GTP (GEFs), converting the GTPase into the active state again. In recent years it became clear that there are many GTPases that do not follow this classical switch mode scheme. Certain ribosome-associated GTPases are not reliant on other GEF proteins to exchange GDP for GTP. Furthermore many of these G proteins are not activated by external GAPs, but by evolutionarily ancient molecules, namely by RNA.


Assuntos
Ativadores de GTP Fosfo-Hidrolase/metabolismo , GTP Fosfo-Hidrolases/metabolismo , RNA/metabolismo , Ribossomos/enzimologia , Bactérias/metabolismo , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ribossomos/metabolismo
8.
Annu Rev Biophys ; 39: 227-44, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192776

RESUMO

Protein biosynthesis, or translation, occurs on the ribosome, a large RNA-protein assembly universally conserved in all forms of life. Over the last decade, structures of the small and large ribosomal subunits and of the intact ribosome have begun to reveal the molecular details of how the ribosome works. Both cryo-electron microscopy and X-ray crystallography continue to provide fresh insights into the mechanism of translation. In this review, we describe the most recent structural models of the bacterial ribosome that shed light on the movement of messenger RNA and transfer RNA on the ribosome after each peptide bond is formed, a process termed translocation. We also discuss recent structures that reveal the molecular basis for stop codon recognition during translation termination. Finally, we review recent advances in understanding how bacteria handle errors in both translocation and termination.


Assuntos
Elongação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , Ribossomos/química , Ribossomos/metabolismo , Animais , Códon de Terminação , Escherichia coli/química , Escherichia coli/metabolismo , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Humanos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo
9.
Nucleic Acids Symp Ser (Oxf) ; (52): 497-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18776471

RESUMO

The wheat germ cell-free protein synthesis is a powerful and versatile method for preparation of proteins based on the accumulated DNA sequence information. As the cell extract used for it contains many factors that are unknown or do not directly involve in protein synthesis, details of the translation reaction is yet to be understood. Therefore, we have decided to try reconstitution of protein synthesis, which would be useful for better understanding of the mechanisms supporting eukaryotic protein synthesis and translational regulation and probably applicable to synthetic biology. In the present study, we fractionated an extract from crude wheat germ according to published protocols to obtain the fractions containing the eukaryotic elongation factors (eEFs) 1A, 1B, and 2. The eEF1A and eEF2 fractions supported polyphenylalanine synthesis.


Assuntos
Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/isolamento & purificação , Biossíntese de Proteínas , Sistema Livre de Células , Fator 1 de Elongação de Peptídeos/isolamento & purificação , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/isolamento & purificação , Fator 2 de Elongação de Peptídeos/metabolismo , Peptídeos/metabolismo , Triticum/química , Triticum/embriologia
10.
Cell Mol Life Sci ; 65(9): 1335-46, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18213444

RESUMO

The elongation and termination steps of protein synthesis are controlled by elongation and release factors, respectively. Elongation factors deliver the aminoacyl tRNA to the ribosomal A site, ensuring the elongation of the nascent polypeptide chain by one amino acid at a time, while release factors recognize the stop codons and trigger the release of the polypeptide from the ribosome. Recently, high-resolution crystal structures of ribosomes as well as translation factors on and off the ribosome have contributed a great deal to our understanding of the molecular basis of protein synthesis. This review concentrates on recent developments in our understanding of the elongation and termination steps of protein synthesis, particularly the roles of translation factors and their similarities and differences in the eukaryotic cytosol and prokaryotic systems, through a combination of structural and biochemical studies.


Assuntos
Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Elongação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/química , Cristalografia , Modelos Moleculares , Fator 1 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/química
11.
BMC Evol Biol ; 7: 82, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17521426

RESUMO

BACKGROUND: EFL (or elongation factor-like) is a member of the translation superfamily of GTPase proteins. It is restricted to eukaryotes, where it is found in a punctate distribution that is almost mutually exclusive with elongation factor-1 alpha (EF-1alpha). EF-1alpha is a core translation factor previously thought to be essential in eukaryotes, so its relationship to EFL has prompted the suggestion that EFL has spread by horizontal or lateral gene transfer (HGT or LGT) and replaced EF-1alpha multiple times. Among green algae, trebouxiophyceans and chlorophyceans have EFL, but the ulvophycean Acetabularia and the sister group to green algae, land plants, have EF-1alpha. This distribution singles out green algae as a particularly promising group to understand the origin of EFL and the effects of its presence on EF-1alpha. RESULTS: We have sampled all major lineages of green algae for both EFL and EF-1alpha. EFL is unexpectedly broad in its distribution, being found in all green algal lineages (chlorophyceans, trebouxiophyceans, ulvophyceans, prasinophyceans, and mesostigmatophyceans), except charophyceans and the genus Acetabularia. The presence of EFL in the genus Mesostigma and EF-1alpha in Acetabularia are of particular interest, since the opposite is true of all their closest relatives. The phylogeny of EFL is poorly resolved, but the Acetabularia EF-1alpha is clearly related to homologues from land plants and charophyceans, demonstrating that EF-1alpha was present in the common ancestor of the green lineage. CONCLUSION: The distribution of EFL and EF-1alpha in the green lineage is not consistent with the phylogeny of the organisms, indicating a complex history of both genes. Overall, we suggest that after the introduction of EFL (in the ancestor of green algae or earlier), both genes co-existed in green algal genomes for some time before one or the other was lost on multiple occasions.


Assuntos
Proteínas de Algas/genética , Clorófitas/genética , Evolução Molecular , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/genética , Fator 1 de Elongação de Peptídeos/genética , Dados de Sequência Molecular , Filogenia
12.
Mol Biol (Mosk) ; 39(5): 746-61, 2005.
Artigo em Russo | MEDLINE | ID: mdl-16240709

RESUMO

Protein biosynthesis is a complex biochemical process. It integrates multiple steps where different translation factors specifically interact with the ribosome in a precisely defined order. Among the translation factors one can find multiple GTP-binding or G-proteins. Their functioning is accompanied by GTP hydrolysis to the GDP and inorganic phosphate ion Pi. Ribosome stimulates the GTPase activity of the translation factors, thus playing a role analogues to GTPase-activating proteins (GAP). Translation factors--GTPases interact with the ribosome at all stages of protein biosynthesis. Initiation factor 2 (IF2) catalyse initiator tRNA binding to the ribosomal P-site and subsequent subunit joining. Elongation factor Tu (EF-Tu) is responsible for the aminoacyl-tRNA binding to the ribosomal A-site, while elongation factor G (EF-G) catalyses translocation of mRNA in the ribosome by one codon, accompanied by tRNA movement between the binding sites. In its turn, release factor 3 (RF3) catalyse dissociation of the ribosomal complex with release factors 1 or 2 (RF1 or RF2) following the peptide release. This review is devoted to the functional peculiarities of translational GTPases as related to other G-proteins. Particularly, to the putative GTPase activation mechanism, structure and functional cycles.


Assuntos
Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Biossíntese de Proteínas , Ativação Enzimática , Guanosina Trifosfato/metabolismo , Ribossomos/metabolismo
13.
J Mol Biol ; 317(1): 41-72, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11916378

RESUMO

Sequences and available structures were compared for all the widely distributed representatives of the P-loop GTPases and GTPase-related proteins with the aim of constructing an evolutionary classification for this superclass of proteins and reconstructing the principal events in their evolution. The GTPase superclass can be divided into two large classes, each of which has a unique set of sequence and structural signatures (synapomorphies). The first class, designated TRAFAC (after translation factors) includes enzymes involved in translation (initiation, elongation, and release factors), signal transduction (in particular, the extended Ras-like family), cell motility, and intracellular transport. The second class, designated SIMIBI (after signal recognition particle, MinD, and BioD), consists of signal recognition particle (SRP) GTPases, the assemblage of MinD-like ATPases, which are involved in protein localization, chromosome partitioning, and membrane transport, and a group of metabolic enzymes with kinase or related phosphate transferase activity. These two classes together contain over 20 distinct families that are further subdivided into 57 subfamilies (ancient lineages) on the basis of conserved sequence motifs, shared structural features, and domain architectures. Ten subfamilies show a universal phyletic distribution compatible with presence in the last universal common ancestor of the extant life forms (LUCA). These include four translation factors, two OBG-like GTPases, the YawG/YlqF-like GTPases (these two subfamilies also consist of predicted translation factors), the two signal-recognition-associated GTPases, and the MRP subfamily of MinD-like ATPases. The distribution of nucleotide specificity among the proteins of the GTPase superclass indicates that the common ancestor of the entire superclass was a GTPase and that a secondary switch to ATPase activity has occurred on several independent occasions during evolution. The functions of most GTPases that are traceable to LUCA are associated with translation. However, in contrast to other superclasses of P-loop NTPases (RecA-F1/F0, AAA+, helicases, ABC), GTPases do not participate in NTP-dependent nucleic acid unwinding and reorganizing activities. Hence, we hypothesize that the ancestral GTPase was an enzyme with a generic regulatory role in translation, with subsequent diversification resulting in acquisition of diverse functions in transport, protein trafficking, and signaling. In addition to the classification of previously known families of GTPases and related ATPases, we introduce several previously undetected families and describe new functional predictions.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/classificação , Evolução Molecular , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/classificação , Sequência de Aminoácidos , Animais , Biologia Computacional , Sequência Conservada , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/classificação , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/classificação , Humanos , Cinesinas/química , Cinesinas/classificação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/classificação , Família Multigênica/genética , Miosinas/química , Miosinas/classificação , Filogenia , Conformação Proteica , Alinhamento de Sequência , Partícula de Reconhecimento de Sinal/química
14.
Biochemistry ; 40(51): 15699-706, 2001 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-11747446

RESUMO

Rab GTPases function as essential regulators of vesicle transport between subcellular compartments of eukaryotic cells. Mss4, an evolutionarily conserved Rab accessory factor, facilitates nucleotide release and binds tightly to the nucleotide-free form of exocytic but not endocytic Rab GTPases. A structure-based mutational analysis of residues that are conserved only in exocytic Rab GTPases reveals three residues that are critical determinants of the broad specificity recognition of exocytic Rab GTPases by Mss4. One of these residues is located at the N-terminus of the switch I region near the nucleotide binding site whereas the other two flank an exposed hydrophobic triad previously implicated in effector recognition. The spatial disposition of these residues with respect to the structure of Rab3A correlates with the dimensions of the elongated Rab interaction epitope in Mss4 and supports a mode of interaction similar to that of other exchange factor-GTPase complexes. The complementarity of the corresponding interaction surfaces suggests a hypothetical structural model for the complex between Mss4 and Rab GTPases.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Guanosina Difosfato/análogos & derivados , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Análise Mutacional de DNA , Exocitose/genética , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas/química , Proteínas/genética , Ratos , Alinhamento de Sequência , Eletricidade Estática , ortoaminobenzoatos/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteína rab3A de Ligação ao GTP/química , Proteína rab3A de Ligação ao GTP/genética , Proteína rab3A de Ligação ao GTP/metabolismo
15.
Mol Microbiol ; 41(2): 289-97, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11489118

RESUMO

The GTPases comprise a protein superfamily of highly conserved molecular switches adapted to many diverse functions. These proteins are found in all domains of life and often perform essential roles in fundamental cellular processes. Analysis of data from genome sequencing projects demonstrates that bacteria possess a core of 11 universally conserved GTPases (elongation factor G and Tu, initiation factor 2, LepA, Era, Obg, ThdF/TrmE, Ffh, FtsY, EngA and YchF). Investigations aimed at understanding the function of GTPases indicate that a second conserved feature of these proteins is that they elicit their function through interaction with RNA and/or ribosomes. An emerging concept suggests that the 11 universal GTPases are either necessary for ribosome function or transmitting information from the ribosome to downstream targets for the purpose of generating specific cellular responses. Furthermore, it is suggested that progenitor GTPases were early regulators of RNA function and may have existed in precursors of cellular systems driven by catalytic RNA. If this is the case, then a corollary of this hypothesis is that GTPases that do not bind RNA arose at a later time from an RNA-binding progenitor that lost the capability to bind RNA.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Evolução Molecular , GTP Fosfo-Hidrolases/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Bactérias/metabolismo , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/genética , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética
16.
Eur J Biochem ; 267(21): 6321-30, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11029573

RESUMO

The synthesis of many mammalian proteins associated with the translational apparatus is selectively regulated by mitogenic and nutritional stimuli, at the translational level. The apparent advantages of the regulation of gene expression at the translational level are the speed and the readily reversible nature of the response to altering physiological conditions. These two features enable cells to rapidly repress the biosynthesis of the translational machinery upon shortage of amino acids or growth arrest, thus rapidly blocking unnecessary energy wastage. Likewise, when amino acids are replenished or mitogenic stimulation is applied, then cells can rapidly respond in resuming the costly biosynthesis of the translational apparatus. A structural hallmark, common to mRNAs encoding many components of the translational machinery, is the presence of a 5' terminal oligopyrimidine tract (5'TOP), referred to as TOP mRNAs. This structural motif comprises the core of the translational cis-regulatory element of these mRNAs. The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli. A special emphasis is put on the pivotal role played by ribosomal protein S6 kinase (S6K) in this mode of regulation, and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K. Finally, the possible involvement of pyrimidine-binding proteins in the translational control of TOP mRNAs is discussed.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas/fisiologia , Aminoácidos/deficiência , Aminoácidos/genética , Aminoácidos/fisiologia , Animais , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/biossíntese , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/genética , Humanos , Proteínas de Ligação a Poli(A) , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Transdução de Sinais , Transativadores/fisiologia
17.
Biol Chem ; 381(2): 113-9, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10746742

RESUMO

Effects of the active aldehyde group of ribose C1' at position 4324 of rat 28S rRNA, in the inactivated ribosome generated by RNA N-glycosidases (trichosanthin, A-chain of cinnamomin and ricin), on peptide elongation have been studied. The aldehyde group inhibits the activities of eEF1A-dependent aminoacyl-tRNA binding to the inactivated ribosome and eEF1A-dependent GTPase, but increases eEF2-dependent activity. At a high concentration of RNA N-glycosidase, the generated aldehyde group also inhibits aminoacyl-tRNA binding to the inactivated ribosome in the absence of elongation factor and translocation activity. When the aldehyde group is reduced into a hydroxyl group by sodium borohydride or blocked with an amino acid through nucleophilic addition, the activities of eEF1A-dependent aminoacyl-tRNA binding and eEF1A-dependent GTPase of the inactivated ribosome are partially restored, but the altered activities of eEF2-dependent GTPase, translocation and aminoacyl-tRNA binding in the absence of elongation factor are not normalized. Thus, reduction or blockage of the aldehyde group with sodium borohydride or amino acids might change the conformation of the S/R domain in rat 28S ribosomal RNA to meet the requirement for eEF1A-dependent reactions, but not eEF2-involved reactions.


Assuntos
Aldeídos/metabolismo , Aldeídos/farmacologia , Endorribonucleases/química , Proteínas Fúngicas , N-Glicosil Hidrolases/metabolismo , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Ribossômico 28S/metabolismo , RNA Ribossômico 28S/farmacologia , Ricina/química , Proteínas de Algas , Animais , Antineoplásicos/metabolismo , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Citotoxinas/genética , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/farmacologia , GTP Fosfo-Hidrolases/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Fator 1 de Elongação de Peptídeos/farmacologia , Fatores de Alongamento de Peptídeos/farmacologia , Fenilalanina , Estrutura Terciária de Proteína , Inibidores da Síntese de Proteínas/metabolismo , Proteínas/metabolismo , Aminoacil-RNA de Transferência/efeitos dos fármacos , Aminoacil-RNA de Transferência/metabolismo , Ratos , Proteínas Inativadoras de Ribossomos , Proteínas Inativadoras de Ribossomos Tipo 2 , Tricosantina/metabolismo
18.
EMBO J ; 19(4): 489-95, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10675317

RESUMO

Some proteins have been shown to mimic the overall shape and structure of nucleic acids. For some of the proteins involved in translating the genetic information into proteins on the ribosome particle, there are indications that such observations of macromolecular mimicry even extend to similarity in interaction with and function on the ribosome. A small number of structural results obtained outside the protein biosynthesis machinery could indicate that the concept of macromolecular mimicry between proteins and nucleic acids is more general. The implications for the function and evolution of protein biosynthesis are discussed.


Assuntos
Mimetismo Molecular , Animais , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Humanos , Substâncias Macromoleculares , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Nucleotídeos/química , Biossíntese de Proteínas , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , RNA de Transferência/química , RNA de Transferência/metabolismo
19.
Proc Natl Acad Sci U S A ; 96(17): 9586-90, 1999 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-10449736

RESUMO

The region around position 1067 in domain II of 23S rRNA frequently is referred to as the GTPase center of the ribosome. The notion is based on the observation that the binding of the antibiotic thiostrepton to this region inhibited GTP hydrolysis by elongation factor G (EF-G) on the ribosome at the conditions of multiple turnover. In the present work, we have reanalyzed the mechanism of action of thiostrepton. Results obtained by biochemical and fast kinetic techniques show that thiostrepton binding to the ribosome does not interfere with factor binding or with single-round GTP hydrolysis. Rather, the antibiotic inhibits the function of EF-G in subsequent steps, including release of inorganic phosphate from EF-G after GTP hydrolysis, tRNA translocation, and the dissociation of the factor from the ribosome, thereby inhibiting the turnover reaction. Structurally, thiostrepton interferes with EF-G footprints in the alpha-sarcin stem loop (A2660, A2662) located in domain VI of 23S rRNA. The results indicate that thiostrepton inhibits a structural transition of the 1067 region of 23S rRNA that is important for functions of EF-G after GTP hydrolysis.


Assuntos
Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/metabolismo , Tioestreptona/farmacologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Guanosina Trifosfato , Cinética , Fator G para Elongação de Peptídeos , Fosfatos/metabolismo , RNA Ribossômico 23S/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Translocação Genética
20.
FEBS Lett ; 452(3): 155-9, 1999 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-10386581

RESUMO

Two truncated variants of elongation factor G from Thermus thermophilus with deletion of its domain IV have been constructed and the mutated genes were expressed in Escherichia coli. The truncated factors were produced in a soluble form and retained a high thermostability. It was demonstrated that mutated factors possessed (1) a reduced affinity to the ribosomes with an uncleavable GTP analog and (2) a specific ribosome-dependent GTPase activity. At the same time, in contrast to the wild-type elongation factor G, they were incapable to promote translocation. The conclusions are drawn that (1) domain IV is not involved in the GTPase activity of elongation factor G, (2) it contributes to the binding of elongation factor G with the ribosome and (3) is strictly required for translocation. These results suggest that domain IV might be directly involved in translocation and GTPase activity of the factor is not directly coupled with translocation.


Assuntos
Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Clonagem Molecular , Escherichia coli , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Cinética , Modelos Moleculares , Mutagênese , Fator G para Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/genética , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...