Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.301
Filtrar
1.
Pestic Biochem Physiol ; 200: 105844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582571

RESUMO

Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 µM, 0.15 µM, and 0.025 µM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.


Assuntos
Clorpirifos , Inseticidas , Mariposas , Organotiofosfatos , Paraoxon/análogos & derivados , Piretrinas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Carboxilesterase/metabolismo , 60627 , Piretrinas/farmacologia , Piretrinas/metabolismo , Colinesterases , Resistência a Inseticidas
2.
J Microbiol Biotechnol ; 34(2): 249-261, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419324

RESUMO

New anti-lung cancer therapies are urgently required to improve clinical outcomes. Since ganodermanontriol (GDNT) has been identified as a potential antineoplastic agent, its role in lung adenocarcinoma (LUAD) is investigated in this study. Concretely, lung cancer cells were treated with GDNT and/or mycophenolate mofetil (MMF), after which MTT assay, flow cytometry and Western blot were conducted. Following bioinformatics analysis, carboxylesterase 2 (CES2) was knocked down and rescue assays were carried out in vitro. Xenograft experiment was performed on mice, followed by drug administration, measurement of tumor growth and determination of CES2, IMPDH1 and IMPDH2 expressions. As a result, the viability of lung cancer cells was reduced by GDNT or MMF. GDNT enhanced the effects of MMF on suppressing viability, promoting apoptosis and inducing cell cycle arrest in lung cancer cells. GDNT up-regulated CES2 level, and strengthened the effects of MMF on down-regulating IMPDH1 and IMPDH2 levels in the cells. IMPDH1 and IMPDH2 were highly expressed in LUAD samples. CES2 was a potential target for GDNT. CES2 knockdown reversed the synergistic effect of GDNT and MMF against lung cancer in vitro. GDNT potentiated the role of MMF in inhibiting tumor growth and expressions of CES2 and IMPDH1/2 in lung cancer in vivo. Collectively, GDNT suppresses the progression of LUAD by activating CES2 to enhance the metabolism of MMF.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Lanosterol/análogos & derivados , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Ácido Micofenólico/farmacologia , Antineoplásicos/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Carboxilesterase
3.
Proc Natl Acad Sci U S A ; 121(7): e2318586121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319969

RESUMO

Monoterpene indole alkaloids (MIAs) are a large and diverse class of plant natural products, and their biosynthetic construction has been a subject of intensive study for many years. The enzymatic basis for the production of aspidosperma and iboga alkaloids, which are produced exclusively by members of the Apocynaceae plant family, has recently been discovered. Three carboxylesterase (CXE)-like enzymes from Catharanthus roseus and Tabernanthe iboga catalyze regio- and enantiodivergent [4+2] cycloaddition reactions to generate the aspidosperma (tabersonine synthase, TS) and iboga (coronaridine synthase, CorS; catharanthine synthase, CS) scaffolds from a common biosynthetic intermediate. Here, we use a combined phylogenetic and biochemical approach to investigate the evolution and functional diversification of these cyclase enzymes. Through ancestral sequence reconstruction, we provide evidence for initial evolution of TS from an ancestral CXE followed by emergence of CorS in two separate lineages, leading in turn to CS exclusively in the Catharanthus genus. This progression from aspidosperma to iboga alkaloid biosynthesis is consistent with the chemotaxonomic distribution of these MIAs. We subsequently generate and test a panel of chimeras based on the ancestral cyclases to probe the molecular basis for differential cyclization activity. Finally, we show through partial heterologous reconstitution of tabersonine biosynthesis using non-pathway enzymes how aspidosperma alkaloids could have first appeared as "underground metabolites" via recruitment of promiscuous enzymes from common protein families. Our results provide insight into the evolution of biosynthetic enzymes and how new secondary metabolic pathways can emerge through small but important sequence changes following co-option of preexisting enzymatic functions.


Assuntos
Aspidosperma , Catharanthus , Alcaloides de Triptamina e Secologanina , Tabernaemontana , Tabernaemontana/metabolismo , Aspidosperma/metabolismo , Carboxilesterase/metabolismo , Filogenia , Alcaloides Indólicos/metabolismo , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/metabolismo , Plantas/metabolismo , Catharanthus/metabolismo
4.
Biomolecules ; 14(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397391

RESUMO

Pro-drugs, which ideally release their active compound only at the site of action, i.e., in a cancer cell, are a promising approach towards an increased specificity and hence reduced side effects in chemotherapy. A popular form of pro-drugs is esters, which are activated upon their hydrolysis. Since carboxylesterases that catalyse such a hydrolysis reaction are also abundant in normal tissue, it is of great interest whether a putative pro-drug is a probable substrate of such an enzyme and hence bears the danger of being activated not just in the target environment, i.e., in cancer cells. In this work, we study the binding mode of carboxylesters of the drug molecule camptothecin, which is an inhibitor of topoisomerase I, of varying size to human carboxylesterase 2 (HCE2) by molecular docking and molecular dynamics simulations. A comparison to irinotecan, known to be a substrate of HCE2, shows that all three pro-drugs analysed in this work can bind to the HCE2 protein, but not in a pose that is well suited for subsequent hydrolysis. Our data suggest, moreover, that for the irinotecan substrate, a reactant-competent pose is stabilised once the initial proton transfer from the putative nucleophile Ser202 to the His431 of the catalytic triad has already occurred. Our simulation work also shows that it is important to go beyond the static models obtained from molecular docking and include the flexibility of enzyme-ligand complexes in solvents and at a finite temperature. Under such conditions, the pro-drugs studied in this work are unlikely to be hydrolysed by the HCE2 enzyme, indicating a low risk of undesired drug release in normal tissue.


Assuntos
Camptotecina , Carboxilesterase , Irinotecano , Pró-Fármacos , Humanos , Camptotecina/química , Carboxilesterase/química , Irinotecano/química , Simulação de Acoplamento Molecular , Pró-Fármacos/química , Ligação Proteica
5.
Infect Dis (Lond) ; 56(4): 308-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315168

RESUMO

BACKGROUND: Rifampicin, a key drug against tuberculosis (TB), displays wide between-patient pharmacokinetics variability and concentration-dependent antimicrobial effect. We investigated variability in plasma rifampicin concentrations and the role of SLCO1B1, ABCB1, arylacetamide deacetylase (AADAC) and carboxylesterase 2 (CES-2) genotypes in Ethiopian patients with TB. METHODS: We enrolled adult patients with newly diagnosed TB (n = 119) who had received 2 weeks of rifampicin-based anti-TB therapy. Venous blood samples were obtained at three time points post-dose. Genotypes for SLCO1B1 (c.388A > G, c.521T > C), ABCB1 (c.3435C > T, c.4036A > G), AADACc.841G > A and CES-2 (c.269-965A > G) were determined. Rifampicin plasma concentration was quantified using LC-MS/MS. Predictors of rifampicin Cmax and AUC0-7 h were analysed. RESULTS: The median rifampicin Cmax and AUC0-7 were 6.76 µg/mL (IQR 5.37-8.48) and 17.05 µg·h/mL (IQR 13.87-22.26), respectively. Only 30.3% of patients achieved the therapeutic efficacy threshold (Cmax>8 µg/mL). The allele frequency for SLCO1B1*1B (c.388A > G), SLCO1B1*5 (c.521T > C), ABCB1 c.3435C > T, ABCB1c.4036A > G, AADAC c.841G > A and CES-2 c.269-965A > G were 2.2%, 20.2%, 24.4%, 14.6%, 86.1% and 30.6%, respectively. Sex, rifampicin dose and ABCB1c.4036A > G, genotypes were significant predictors of rifampicin Cmax and AUC0-7. AADACc.841G > A genotypes were significant predictors of rifampicin Cmax. There was no significant influence of SLCO1B1 (c.388A > G, c.521T > C), ABCB1c.3435C > T and CES-2 c.269-965A > G on rifampicin plasma exposure variability. CONCLUSIONS: Subtherapeutic rifampicin plasma concentrations occurred in two-thirds of Ethiopian TB patients. Rifampicin exposure varied with sex, dose and genotypes. AADACc.841G/G and ABCB1c.4036A/A genotypes and male patients are at higher risk of lower rifampicin plasma exposure. The impact on TB treatment outcomes and whether high-dose rifampicin is required to improve therapeutic efficacy requires further investigation.


Assuntos
Rifampina , Tuberculose , Adulto , Humanos , Masculino , Rifampina/uso terapêutico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Genótipo , Tuberculose/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carboxilesterase/genética
6.
Mol Pharm ; 21(4): 1952-1964, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423793

RESUMO

Intravenously administered chemotherapeutic cabazitaxel is used for palliative treatment of prostate cancer. An oral formulation would be more patient-friendly and reduce the need for hospitalization. We therefore study determinants of the oral pharmacokinetics of cabazitaxel in a ritonavir-boosted setting, which reduces the CYP3A-mediated first-pass metabolism of cabazitaxel. We here assessed the role of organic anion-transporting polypeptides (OATPs) in the disposition of orally boosted cabazitaxel and its active metabolites, using the Oatp1a/b-knockout and the OATP1B1/1B3-transgenic mice. These transporters may substantially affect plasma clearance and hepatic and intestinal drug disposition. The pharmacokinetics of cabazitaxel and DM2 were not significantly affected by Oatp1a/b and OATP1B1/1B3 activity. In contrast, the plasma AUC0-120 min of DM1 in Oatp1a/b-/- was 1.9-fold (p < 0.05) higher than that in wild-type mice, and that of docetaxel was 2.4-fold (p < 0.05) higher. We further observed impaired hepatic uptake and intestinal disposition for DM1 and docetaxel in the Oatp-ablated strains. None of these parameters showed rescue by the OATP1B1 or -1B3 transporters in the humanized mouse strains, suggesting a minimal role of OATP1B1/1B3. Ritonavir itself was also a potent substrate for mOatp1a/b, showing a 2.9-fold (p < 0.0001) increased plasma AUC0-120 min and 3.5-fold (p < 0.0001) decreased liver-to-plasma ratio in Oatp1a/b-/- compared to those in wild-type mice. Furthermore, we observed the tight binding of cabazitaxel and its active metabolites, including docetaxel, to plasma carboxylesterase (Ces1c) in mice, which may complicate the interpretation of pharmacokinetic and pharmacodynamic mouse studies. Collectively, these results will help to further optimize (pre)clinical research into the safety and efficacy of orally applied cabazitaxel.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Taxoides , Animais , Humanos , Masculino , Camundongos , Carboxilesterase/metabolismo , Docetaxel , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Camundongos Transgênicos , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ritonavir , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
7.
J Med Chem ; 67(3): 2019-2030, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38265364

RESUMO

As the primary enzyme responsible for the activatable conversion of Irinotecan (CPT-11) to SN-38, carboxylesterase 2 (CES2) is a significant predictive biomarker toward CPT-11-based treatments for pancreatic ductal adenocarcinoma (PDAC). High SN-38 levels from high CES2 activity lead to harmful effects, including life-threatening diarrhea. While alternate strategies have been explored, CES2 inhibition presents an effective strategy to directly alter the pharmacokinetics of CPT-11 conversion, ultimately controlling the amount of SN-38 produced. To address this, we conducted a high-throughput screening to discover 18 small-molecule CES2 inhibitors. The inhibitors are validated by dose-response and counter-screening and 16 of these inhibitors demonstrate selectivity for CES2. These 16 inhibitors inhibit CES2 in cells, indicating cell permeability, and they show inhibition of CPT-11 conversion with the purified enzyme. The top five inhibitors prohibited cell death mediated by CPT-11 when preincubated in PDAC cells. Three of these inhibitors displayed a tight-binding mechanism of action with a strong binding affinity.


Assuntos
Carboxilesterase , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camptotecina/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Irinotecano/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Carboxilesterase/antagonistas & inibidores
8.
J Mater Chem B ; 12(6): 1530-1537, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251432

RESUMO

Carboxylesterases (CESs) are critical for metabolizing ester-containing biomolecules and are specifically important in liver metabolic disorders. The modulation of CESs is also an important issue in pharmacology and clinical applications. Herein, we present a near-infrared (NIR) CES fluorescent probe (NCES) based on the protection-deprotection of the hydroxyl group for monitoring CES levels in living systems. The NCES probe has good selectivity and sensitivity for CESs with a limit of detection (LOD) of 5.24 mU mL-1, which allows for tracing the fluctuation of cellular CES after treatment with anticancer drugs and under inflammation and apoptosis states. Furthermore, NCES can be successfully applied for guiding liver cancer surgery with high-contrast in vivo imaging and detecting clinical serum samples from liver cancer patients. This work showed that the NCES probe has great potential in drug development, imaging applications for medical diagnosis, and early-stage detection for clinical liver diseases.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Carboxilesterase , Hidrolases de Éster Carboxílico , Imagem Óptica/métodos
9.
Luminescence ; 39(1): e4625, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947027

RESUMO

A carboxylesterase fluorescent probe (Probe 1) was developed for determination of carboxylesterase to guide detection of carbamate pesticide. The probe uses benzothiazole as fluorescence group and phenyldimethyl carbamate as recognition group. The solution of the fluorescent probe gradually changes from light blue to dark blue as the concentration of carbamate pesticides increases. The concentration of carbamate pesticides can be quickly calculated according to the colour of the probe solution through Get Color software on a smartphone. It showed that Probe 1 can be used as a rapid detection tool to achieve rapid detection of carbamate pesticides in juice samples without professional personnel and equipment. Furthermore, the probe has been successfully used to detect carbamate pesticides in fruit juice and vegetable juice.


Assuntos
Carboxilesterase , Praguicidas , Corantes Fluorescentes , Fluorescência , Praguicidas/análise , Carbamatos
10.
Pest Manag Sci ; 80(3): 1501-1509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948435

RESUMO

BACKGROUND: Tetranychus cinnabarinus is a polyphagous pest mite commonly found in agriculture. As an excellent acaricide, fenpropathrin (FEN) is frequently used to control T. cinnabarinus in agriculture. However, commercial FEN is a racemate with two enantiomers, R-FEN and S-FEN. Considering that investigations on the metabolism of FEN by T. cinnabarinus are based on racemate FEN, it is important to investigate the enantioselective metabolism of FEN in T. cinnabarinus. RESULTS: S-FEN was more toxic to T. cinnabarinus than R-FEN by more than 68.8-fold. Moreover, the synergist bioassay revealed that carboxylesterase and cytochrome P450 were the primary enzymes engaged in the detoxification of FEN in T. cinnabarinus, with carboxylesterase playing a leading role. Seven genes were substantially different after the induction of S-FEN and R-FEN. TcCCE06 was screened and selected as a key gene that related to FEN metabolism in T. cinnabarinus. The metabolic results showed that the recombinant TcCCE06 effectively metabolized 32.1% of the R-FEN and 13.8% of the S-FEN within 4 h of incubation. Moreover, R-FEN was demonstrated to have a higher affinity for the TcCCE06 protein than S-FEN based on molecular docking. CONCLUSION: Our results indicated that TcCCE06 mediates the enantioselective metabolism of FEN in T. cinnabarinus. Our findings will contribute to a more comprehensive understanding of the mechanisms underlying the differential toxicity of the FEN enantiomers against T. cinnabarinus. Furthermore, they also provide a new perspective for the development of enantiomer-enriched acaricides with higher activity and lower pesticide dosage and pollution risks. © 2023 Society of Chemical Industry.


Assuntos
Acaricidas , Piretrinas , Tetranychidae , Animais , Simulação de Acoplamento Molecular , Estereoisomerismo , Carboxilesterase , Acaricidas/farmacologia
11.
Int J Biol Macromol ; 256(Pt 1): 128331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013084

RESUMO

Lipolytic enzymes are important contributors in industrial processes from lipid hydrolysis to biofuel production or even polyester biodegradation. While these enzymes can be used in numerous applications, the genotype-phenotype space of certain promising enzymes is still poorly explored. This limits the effective application of such biocatalysts. In this work the genotype space of a 55 kDa carboxylesterase GDEst-95 from Geobacillus sp. 95 was explored using site-directed mutagenesis and directed evolution methods. In this study four site-directed mutants (Gly108Arg, Ala410Arg, Leu226Arg, Leu411Ala) were created based on previous analysis of GDEst-95 carboxylesterase. Error-prone PCR resulted three mutants: two of them with distal mutations: GDEst-RM1 (Arg75Gln), GDEst-RM2 (Gly20Ser Arg75Gln) and the third, GDEst-RM3, with a distal (Ser210Gly) and Tyr317Ala (amino acid position near to the active site) mutation. Mutants with Ala substitution displayed approximately twofold higher specific activity. Arg mutations lead a reduced specific activity, retaining 2.86 % (Gly108Arg), 10.95 % (Ala410Arg), and 44.23 % (Leu226Arg) of lipolytic activity. All three random mutants displayed increased specific activity as well as improved catalytic properties. This research provides the first deeper insights into the functionality of understudied Geobacillus spp. carboxylesterases with 55 kDa in size.


Assuntos
Carboxilesterase , Geobacillus , Carboxilesterase/química , Mutagênese , Hidrolases de Éster Carboxílico/química , Mutagênese Sítio-Dirigida
12.
Endocrine ; 83(1): 99-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726640

RESUMO

OBJECTIVE: CEL-related maturity-onset diabetes of the young (CEL-MODY, MODY8) is a special type of monogenetic diabetes caused by mutations in the carboxyl-ester lipase (CEL) gene. This study aimed to summarize the genetic and clinical characteristics of CEL-MODY patients and to determine the prevalence of the disease among Chinese patients with early-onset type 2 diabetes (EOD). METHODS: We systematically reviewed the literature associated with CEL-MODY in PubMed, Embase, Web of Science, China National Knowledge Infrastructure and Wanfang Data to analyze the features of patients with CEL-MODY. We screened and evaluated rare variants of the CEL gene in a cohort of 679 Chinese patients with EOD to estimate the prevalence of CEL-MODY in China. RESULTS: In total, 21 individuals reported in previous studies were diagnosed with CEL-MODY based on the combination of diabetes and pancreatic exocrine dysfunction as well as frameshift mutations in exon 11 of the CEL gene. CEL-MODY patients were nonobese and presented with exocrine pancreatic affection (e.g., chronic pancreatitis, low fecal elastase levels, pancreas atrophy and lipomatosis) followed by insulin-dependent diabetes. No carriers of CEL missense mutations were reported with exocrine pancreatic dysfunction. Sequencing of CEL in Chinese EOD patients led to the identification of the variant p.Val736Cysfs*22 in two patients. However, these patients could not be diagnosed with CEL-MODY because there were no signs that the exocrine pancreas was afflicted. CONCLUSION: CEL-MODY is a very rare disease caused by frameshift mutations affecting the proximal VNTR segments of the CEL gene. Signs of exocrine pancreatic dysfunction provide diagnostic clues for CEL-MODY, and genetic testing is vital for proper diagnosis. Further research in larger cohorts is needed to investigate the characteristics and prevalence of CEL-MODY in the Chinese population.


Assuntos
Diabetes Mellitus Tipo 2 , Pâncreas Exócrino , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Carboxilesterase/genética , Pâncreas , Mutação
13.
Plant Physiol Biochem ; 206: 108140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134738

RESUMO

Carboxylesterase (CXE) is a class of hydrolases that contain an α/ß folding domain, which plays critical roles in plant growth, development, and stress responses. Based on the genomic and transcriptomic data of Salvia miltiorrhiza, the SmCXE family was systematically analyzed using bioinformatics. The results revealed 34 SmCXE family members in S. miltiorrhiza, and the SmCXE family could be divided into five groups (Group I, Group II, Group III, Group IV, and Group V). Cis-regulatory elements indicated that the SmCXE promoter region contained tissue-specific and development-related, hormone-related, stress-related, and photoresponsive elements. Transcriptome analysis revealed that the expression levels of SmCXE2 were highest in roots and flowers (SmCXE8 was highest in stems and SmCXE19 was highest in leaves). Further, two GA receptors SmCXE1 (SmGID1A) and SmCXE2 (SmGID1B) were isolated from the SmCXE family, which are homologous to other plants. SmGID1A and SmGID1B have conserved HGGSF motifs and active amino acid sites (Ser-Asp-Val/IIe), which are required to maintain their GA-binding activities. SmGID1A and SmGID1B were significantly responsive to gibberellic acid (GA3) and methyl jasmonate (MeJA) treatment. A subcellular assay revealed that SmCXE1 and SmCXE2 resided within the nucleus. SmGID1B can interact with SmDELLAs regardless of whether GA3 exists, whereas SmGID1A can only interact with SmDELLAs in the presence of GA3. A Further assay showed that the GRAS domain mediated the interactions between SmGID1s and SmDELLAs. This study lays a foundation for further elucidating the role of SmCXE in the growth and development of S. miltiorrhiza.


Assuntos
Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Carboxilesterase/genética , Carboxilesterase/metabolismo , Proteínas de Plantas/metabolismo , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
14.
Xenobiotica ; 54(1): 10-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142303

RESUMO

1. Carboxylesterase (CES) has been studied extensively, mostly with substrates in the monoester structures. We investigated the relationship between indomethacin diester prodrugs and metabolic activation by microsomes and recombinant human CES.2. Eight indomethacin diester prodrugs were synthesised in two steps. They were used as substrates and hydrolysis rates were calculated.3. As a result, the major hydrolysis enzyme was CES. The hydrolysis rate of recombinant CES2A1 was comparable to that of recombinant CES1A1.4. In this study, by changing the structure of the prodrug to a diester structure, it was found that CES2 activity was equivalent to CES1 activity.5. It should be noted that the use of diester prodrugs in prodrug discovery, where organ-specific hydrolysis reactions are expected, may not yield the expected results.


Assuntos
Hidrolases de Éster Carboxílico , Pró-Fármacos , Humanos , Hidrolases de Éster Carboxílico/metabolismo , Indometacina , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Carboxilesterase/metabolismo , Microssomos/metabolismo , Hidrólise
15.
Commun Biol ; 6(1): 1135, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945666

RESUMO

Recently developed enzymes for the depolymerization of polyethylene terephthalate (PET) such as FAST-PETase and LCC-ICCG are inhibited by the intermediate PET product mono(2-hydroxyethyl) terephthalate (MHET). Consequently, the conversion of PET enzymatically into its constituent monomers terephthalic acid (TPA) and ethylene glycol (EG) is inefficient. In this study, a protein scaffold (1TQH) corresponding to a thermophilic carboxylesterase (Est30) was selected from the structural database and redesigned in silico. Among designs, a double variant KL-MHETase (I171K/G130L) with a similar protein melting temperature (67.58 °C) to that of the PET hydrolase FAST-PETase (67.80 °C) exhibited a 67-fold higher activity for MHET hydrolysis than FAST-PETase. A fused dual enzyme system comprising KL-MHETase and FAST-PETase exhibited a 2.6-fold faster PET depolymerization rate than FAST-PETase alone. Synergy increased the yield of TPA by 1.64 fold, and its purity in the released aromatic products reached 99.5%. In large reaction systems with 100 g/L substrate concentrations, the dual enzyme system KL36F achieved over 90% PET depolymerization into monomers, demonstrating its potential applicability in the industrial recycling of PET plastics. Therefore, a dual enzyme system can greatly reduce the reaction and separation cost for sustainable enzymatic PET recycling.


Assuntos
Hidrolases , Polietilenotereftalatos , Hidrolases/química , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Hidrólise , Carboxilesterase , Plásticos/química
16.
Bull Environ Contam Toxicol ; 111(5): 60, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903889

RESUMO

Benzophenone-3 (BP-3) is an active ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet rays. Given its worldwide dissemination, it has been linked with harmful effects on aquatic biota; however, its impact is not fully understood calling for further studies. To understand the impacts on an important economically and ecologically species, we evaluated the toxicity of BP-3 during the embryonic development of Octopus maya. Embryos were exposed to increasing concentrations of up to 500 µg BP-3/L until hatching. Antioxidant enzyme activities, oxidative-stress indicators, and B-esterases activities were measured at different developmental phases (organogenesis, activation, and growth). There were no significant differences between treatments, suggesting the lack of production of toxic metabolites that may be related to a protective chorion, an underdeveloped detoxification system, and the experimental conditions that limited phototoxicity.


Assuntos
Octopodiformes , Animais , Carboxilesterase/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Desenvolvimento Embrionário
17.
World J Microbiol Biotechnol ; 39(12): 348, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855845

RESUMO

Over recent years, Alicyclobacillus acidocaldarius, a Gram-positive nonpathogenic rod-shaped thermo-acid-tolerant bacterium, has posed numerous challenges for the fruit juice industry. However, the bacterium's unique characteristics, particularly its nonpathogenic and thermophilic capabilities, offer significant opportunities for genetic exploration by biotechnologists. This study presents the computational proteogenomics report on the carboxylesterase (CE) enzyme in A. acidocaldarius, shedding light on structural and evolutional of CEs from this bacterium. Our analysis revealed that the average molecular weight of CEs in A. acidocaldarius was 41 kDa, with an isoelectric point around 5. The amino acid composition favored negative amino acids over positive ones. The aliphatic index and hydropathicity were approximately 88 and - 0.15, respectively. While the protein sequence showed no disulfide bonds in the CEs' structure, the presence of Cys amino acids was observed in the structure of CEs. Phylogenetic analysis presented more than 99% similarity between CEs, indicating their close evolutionary relationship. By applying homology modeling, the 3-dimensional structural models of the carboxylesterase were constructed, which with the help of structural conservation and solvent accessibility analysis highlighted key residues and regions responsible for enzyme stability and conformation. The specific patterns presented the total solvent accessibility of less than 25 (Å2) was in considerable position as well as Gly residues were noticeably have high accessibility to solvent in all structures. Ala was the more frequent amino acids in the conserved-SASA of carboxylesterases. Furthermore, unsupervised agglomerative hierarchical clustering based on solvent accessibility feature successfully clustered and even distinguished this enzyme from proteases from the same genome. These findings contribute to a deeper understanding of the nonpathogenic A. acidocaldarius carboxylesterase and its potential applications in biotechnology. Additionally, structural analysis of CEs would help to address potential solutions in fruit juice industry with utilization of computational structural biology.


Assuntos
Alicyclobacillus , Proteogenômica , Carboxilesterase/genética , Carboxilesterase/química , Carboxilesterase/metabolismo , Filogenia , Alicyclobacillus/genética , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Frutas/microbiologia , Aminoácidos/genética , Solventes
18.
Anal Chem ; 95(42): 15665-15672, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37782032

RESUMO

Human carboxylesterase 2A (hCES2A) is an important endoplasmic reticulum (ER)-resident enzyme that is responsible for the hydrolytic metabolism or activation of numerous ester-bearing drugs and environmental toxins. The previously reported hCES2A fluorogenic substrates suffer from limited emission wavelength, low specificity, and poor localization accuracy, thereby greatly limiting the in situ functional imaging of hCES2A and drug discovery. Herein, a rational ligand design strategy was adopted to construct a highly specific near-infrared (NIR) substrate for hCES2A. Following scaffold screening and recognition group optimization, HTCF was identified as a desirable NIR fluorophore with excellent photophysical properties and high ER accumulation ability, while several HTCF esters held a high potential to be good hCES2A substrates. Further investigations revealed that TP-HTCF (the tert-pentyl ester of HTCF) was an ideal substrate with ultrahigh sensitivity, excellent specificity, and a substantial signal-to-noise ratio. Upon the addition of hCES2A, TP-HTCF could be rapidly hydrolyzed to release HTCF, a chemically stable product that emitted bright fluorescent signals at around 670 nm. A TP-HTCF-based biochemical assay was then established for the high-throughput screening of potent and cell-active hCES2A inhibitors from an in-house compound library. Furthermore, TP-HTCF displayed high imaging resolution for imaging hCES2A in living cells as well as mouse liver slices and tumor-xenograft mice. Collectively, this study demonstrates a rational strategy for developing highly specific fluorogenic substrates for an ER-resident target enzyme, while TP-HTCF can act as a practical tool for sensing hCES2A in living systems.


Assuntos
Carboxilesterase , Corantes Fluorescentes , Humanos , Camundongos , Animais , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Hidrólise , Ésteres
19.
Br J Anaesth ; 131(6): 1072-1081, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821342

RESUMO

BACKGROUND: Opioids are metabolised by enzymes the activities of which vary with the circadian rhythm. We examined whether opioid infusions administered at different times of the day produce varying degrees of opioid-induced hyperalgesia (OIH) in animal experiments and clinical studies. METHODS: Male Sprague-Dawley rats received remifentanil infusions (1 µg kg-1·min-1 for 1 h) at Zeitgeber times (ZT) 0, 4, 8, 12, 16, or 20 h. Rhythmicity of mechanical hypersensitivity was assayed after the infusion. Mechanical hypersensitivity, drug concentration, and metabolic enzyme activity of Wistar rats that received sufentanil (10 µg kg-1; four consecutive i.p. injections at 15-min intervals) or remifentanil infusion at ZT0 or ZT8 were assayed. Sixty patients who underwent abdominal laparoscopic surgery under general anaesthesia received remifentanil infusion (0.15 µg kg-1 min-1) and sufentanil injection (0.2 µg kg-1) at induction and skin incision, respectively. Postoperative pressure pain sensitivity, pain Numeric Rating Scale (NRS), drug concentrations, and nonspecific esterase activity were assessed. RESULTS: Sprague-Dawley rats that received remifentanil infusion exhibited a robust rhythmic paw withdrawal threshold (JTK_CYCLE: P=0.001, Q=0.001, Phase=26). Wistar rats infused with remifentanil or sufentanil at ZT8 exhibited greater OIH (P<0.001) than those infused at ZT0, with higher blood concentrations (P<0.001) and lower metabolic enzyme activities (P=0.026 and P=0.028, respectively). Patients in the afternoon group exhibited higher pressure pain sensitivity at forearm (P=0.002), higher NRS (P<0.05), higher drug concentrations (sufentanil: P=0.037, remifentanil: P=0.005), and lower nonspecific esterase activity (P=0.024) than the morning group. CONCLUSIONS: Opioid infusions administered at different times of day produced varying degrees of OIH, possibly related to circadian rhythms of metabolic enzyme activities. CLINICAL TRIAL REGISTRATION: NCT05234697.


Assuntos
Analgésicos Opioides , Hiperalgesia , Humanos , Ratos , Animais , Masculino , Remifentanil/efeitos adversos , Hiperalgesia/induzido quimicamente , Sufentanil/efeitos adversos , Ratos Sprague-Dawley , Piperidinas , Ratos Wistar , Carboxilesterase , Dor Pós-Operatória/tratamento farmacológico
20.
Pestic Biochem Physiol ; 195: 105539, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666589

RESUMO

The fall armyworm, Spodoptera frugiperda, is a highly polyphagous agricultural pest that is widely distributed around the world and causes severe crop yield loss. Carvacrol showed adverse effects on many pests, such as larval death and growth inhibition. While the effects of carvacrol on S. frugiperda larvae are not yet known. In this study, the effects of carvacrol on S. frugiperda, including larval growth inhibition and mortality induction, were observed. The detoxification and digestive enzyme activities of larvae with 1.0 and 2.0 g/kg carvacrol treatments were analyzed. Carvacrol boosted the enzyme activities of carboxylesterase (CarE) and glutathione S-transferase (GST) while decreasing the activities of α-amylase (AMS), lipase (LIP), and trypsin. A total of 3422 differentially expressed genes were identified in the larvae treated with 2.0 g/kg carvacrol, of which the DEGs involved in xenobiotic detoxification, food digestion, and insecticidal targets were further examined. These results suggest that carvacrol could regulate growth and development by affecting the process of food digestion, and exert its toxicity on the larvae through interaction with a variety of insecticidal targets. While the altered expressions of detoxification enzymes might be related to the detoxification and metabolism of carvacrol. Our findings offer a theoretical foundation for the use of carvacrol for S. frugiperda control in the field.


Assuntos
Inseticidas , Transcriptoma , Animais , Spodoptera/genética , Agricultura , Carboxilesterase/genética , Inseticidas/toxicidade , Larva/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...