Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.216
Filtrar
1.
BMC Endocr Disord ; 24(1): 47, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622573

RESUMO

BACKGROUND: Familial chylomicronemia syndrome (FCS) is a rare monogenic form of severe hypertriglyceridemia, caused by mutations in genes involved in triglyceride metabolism. Herein, we report the case of a Korean family with familial chylomicronemia syndrome caused by compound heterozygous deletions of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). CASE PRESENTATION: A 4-year-old boy was referred for the evaluation of severe hypertriglyceridemia (3734 mg/dL) that was incidentally detected 4 months prior. His elder brother also demonstrated an elevated triglyceride level of 2133 mg/dL at the age of 9. Lipoprotein electrophoresis revealed the presence of chylomicrons, an increase in the proportion of pre-beta lipoproteins, and low serum lipoprotein lipase levels. The patient's parents and first elder brother had stable lipid profiles. For suspected FCS, genetic testing was performed using the next-generation sequencing-based analysis of 31 lipid metabolism-associated genes, which revealed no pathogenic variants. However, copy number variant screening using sequencing depth information suggested large heterozygous deletion encompassing all the coding exons of GPIHBP1. A real-time quantitative polymerase chain reaction was performed to validate the deletion site. The results showed that the siblings had two heterozygous copy number variants consisting of the whole gene and an exon 4 deletion, each inherited from their parents. During the follow-up period of 17 months, the patient did not develop pancreatitis, following dietary intervention. CONCLUSION: These siblings' case of familial chylomicronemia syndrome caused by rare GPIHBP1 deletions highlight the implementation of copy number variants-beyond next-generation sequencing-as an important consideration in diagnosis. Accurate genetic diagnosis is necessary to establish the etiology of severe hypertriglyceridemia, which increases the risk of pancreatitis.


Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Pancreatite , Receptores de Lipoproteínas , Pré-Escolar , Humanos , Masculino , Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/etiologia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/metabolismo , Irmãos , Triglicerídeos , Criança
2.
Proc Natl Acad Sci U S A ; 121(17): e2322332121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625948

RESUMO

Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.


Assuntos
Apolipoproteínas , Lipase Lipoproteica , Camundongos , Humanos , Animais , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Lipase Lipoproteica/metabolismo , Proteína 3 Semelhante a Angiopoietina , Aminoácidos , Triglicerídeos/metabolismo , Apolipoproteína A-V/genética
3.
Lipids Health Dis ; 23(1): 92, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561841

RESUMO

BACKGROUND: Lipoprotein lipase (LPL) plays a crucial role in triglyceride hydrolysis. Rare biallelic variants in the LPL gene leading to complete or near-complete loss of function cause autosomal recessive familial chylomicronemia syndrome. However, rare biallelic LPL variants resulting in significant but partial loss of function are rarely documented. This study reports a novel occurrence of such rare biallelic LPL variants in a Chinese patient with hypertriglyceridemia-induced acute pancreatitis (HTG-AP) during pregnancy and provides an in-depth functional characterization. METHODS: The complete coding sequences and adjacent intronic regions of the LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes were analyzed by Sanger sequencing. The aim was to identify rare variants, including nonsense, frameshift, missense, small in-frame deletions or insertions, and canonical splice site mutations. The functional impact of identified LPL missense variants on protein expression, secretion, and activity was assessed in HEK293T cells through single and co-transfection experiments, with and without heparin treatment. RESULTS: Two rare LPL missense variants were identified in the patient: the previously reported c.809G > A (p.Arg270His) and a novel c.331G > C (p.Val111Leu). Genetic testing confirmed these variants were inherited biallelically. Functional analysis showed that the p.Arg270His variant resulted in a near-complete loss of LPL function due to effects on protein synthesis/stability, secretion, and enzymatic activity. In contrast, the p.Val111Leu variant retained approximately 32.3% of wild-type activity, without impacting protein synthesis, stability, or secretion. Co-transfection experiments indicated a combined activity level of 20.7%, suggesting no dominant negative interaction between the variants. The patient's post-heparin plasma LPL activity was about 35% of control levels. CONCLUSIONS: This study presents a novel case of partial but significant loss-of-function biallelic LPL variants in a patient with HTG-AP during pregnancy. Our findings enhance the understanding of the nuanced relationship between LPL genotypes and clinical phenotypes, highlighting the importance of residual LPL function in disease manifestation and severity. Additionally, our study underscores the challenges in classifying partial loss-of-function variants in classical Mendelian disease genes according to the American College of Medical Genetics and Genomics (ACMG)'s variant classification guidelines.


Assuntos
Hiperlipidemias , Hipertrigliceridemia , Pancreatite , Humanos , Lipase Lipoproteica/genética , Doença Aguda , Células HEK293 , Pancreatite/genética , Heparina
4.
Arch Endocrinol Metab ; 68: e230195, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38530959

RESUMO

Objective: The study aims to explore the relationship between lipoprotein lipase (LPL) variants and hyperlipidemic acute pancreatitis (HLAP) in the southeastern Chinese population. Subjects and methods: In total, 80 participants were involved in this study (54 patients with HLAP and 26 controls). All coding regions and intron-exon boundaries of the LPL gene were sequenced. The correlations between variants and phenotypes were also analysed. Results: The rate of rare LPL variants in the HLAP group is 14.81% (8 of 54), higher than in controls. Among the detected four variants (rs3735959, rs371282890, rs761886494 and rs761265900), the most common variant was rs371282890. Further analysis demonstrated that subjects with rs371282890 "GC" genotype had a 2.843-fold higher risk for HLAP (odds ratio [OR]: 2.843, 95% confidence interval [CI]: 1.119-7.225, p = 0.028) than subjects with the "CC" genotype. After adjusting for sex, the association remained significant (adjusted OR: 3.083, 95% CI: 1.208-7.869, p = 0.018). Subjects with rs371282890 "GC" genotype also exhibited significantly elevated total cholesterol, triglyceride and non-high-density lipoprotein cholesterol levels in all the participants and the HLAP group (p < 0.05). Conclusion: Detecting rare variants in LPL might be valuable for identifying higher-risk patients with HLAP and guiding future individualised therapeutic strategies.


Assuntos
Pancreatite , Humanos , Doença Aguda , China/epidemiologia , Genótipo , Lipase Lipoproteica/genética , Pancreatite/diagnóstico , Pancreatite/genética , Triglicerídeos
5.
Nutr J ; 23(1): 30, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429792

RESUMO

BACKGROUND: Metabolic syndrome (MetS), a cluster of metabolic and cardiovascular risk factors is influenced by environmental, lifestyle, and genetic factors. We explored whether coffee consumption and the rs301 variant of the lipoprotein lipase (LPL) gene are related to MetS. METHODS: We conducted multiple logistic regression analyses using data gathered from 9523 subjects in Taiwan Biobank (TWB). RESULTS: Our findings indicated that individuals who consumed coffee had a reduced odds ratio (OR) for MetS (0.750 (95% confidence interval [CI] 0.653-0.861) compared to non-coffee drinkers. Additionally, the risk of MetS was lower for individuals with the 'TC' and 'CC' genotypes of rs301 compared to those with the 'TT' genotype. Specifically, the OR for MetS was 0.827 (95% CI 0.721-0.949) for the 'TC' genotype and 0.848 (95% CI 0.610-1.177) for the 'CC' genotype. We observed an interaction between coffee consumption and the rs301 variant, with a p-value for the interaction of 0.0437. Compared to the reference group ('no coffee drinking/TT'), the ORs for MetS were 0.836 (95% CI 0.706-0.992) for 'coffee drinking/TT', 0.557 (95% CI 0.438-0.707) for 'coffee drinking/TC', and 0.544 (95% CI 0.319-0.927) for 'coffee drinking/CC'. Notably, MetS was not observed in non-coffee drinkers regardless of their rs301 genotype. CONCLUSION: Our findings suggest that rs301 genotypes may protect against MetS in Taiwanese adults who consume coffee compared to non-coffee drinkers.


Assuntos
Café , Lipase Lipoproteica , Síndrome Metabólica , Adulto , Humanos , Genótipo , Estilo de Vida , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , Fatores de Risco , Taiwan , População do Leste Asiático , Lipase Lipoproteica/genética
6.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542527

RESUMO

Angiopoietin-like protein 3 (ANGPTL3) is a plasmatic protein that plays a crucial role in lipoprotein metabolism by inhibiting the lipoprotein lipase (LPL) and the endothelial lipase (EL) responsible for the hydrolysis of phospholipids on high-density lipoprotein (HDL). Interest in developing new pharmacological therapies aimed at inhibiting ANGPTL3 has been growing due to the hypolipidemic and antiatherogenic profile observed in its absence. The goal of this study was the in silico characterization of the interaction between ANGPTL3 and EL. Because of the lack of any structural information on both the trimeric coiled-coil N-terminal domain of ANGPTL3 and the EL homodimer as well as data regarding their interactions, the first step was to obtain the three-dimensional model of these two proteins. The models were then refined via molecular dynamics (MD) simulations and used to investigate the interaction mechanism. The analysis of interactions in different docking poses and their refinement via MD allowed the identification of three specific glutamates of ANGPTL3 that recognize a positively charged patch on the surface of EL. These ANGPTL3 key residues, i.e., Glu154, Glu157, and Glu160, could form a putative molecular recognition site for EL. This study paves the way for future investigations aimed at confirming the recognition site and at designing novel inhibitors of ANGPTL3.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Lipase , Proteínas Semelhantes a Angiopoietina , Lipase/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas HDL/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos , Angiopoietinas/metabolismo
7.
J Biosci Bioeng ; 137(5): 381-387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429186

RESUMO

The adjunct product with enzymatic activity from Aspergillus oryzae is beneficial for flavor enrichment in the ripened cheese. However, an excessive lipolytic reaction leads to the release of volatile free fatty acids. Accordingly, a strong off-flavor (i.e., rancidity) has been detected when A. oryzae AHU 7139 is used. To identify the rancidity-related lipase from this strain, we evaluated the substrate specificity and lipase distribution using five mutants cultured on a whey-based solid medium under different initial pH conditions. The results showed a higher diacylglycerol lipase activity than triacylglycerol lipase activity. Moreover, an initial pH of 6.5 for the culture resulted in higher lipolytic activity than a pH of 4.0, and most of the activity was found in the extracellular fraction. Based on the gene expression analysis by real-time polymerase chain reaction and location and substrate specificity, five genes (No. 1, No. 19, mdlB, tglA, and cutL) were selected among 25 annotated lipase genes to identify the respective knockout strains. Because ΔtglA and ΔmdlB showed an outstanding involvement in the release of free fatty acids, these strains were applied to in vitro cheese curd experiments. In conclusion, we posit that triacylglycerol lipase (TglA) plays a key role as the trigger of rancidity and the resulting diglycerides have to be exposed to diacylglycerol lipase (MdlB) to stimulate rancidity in cheese made with A. oryzae AHU 7139. This finding could help screen suitable A.oryzae strains as cheese adjuncts to prevent the generation of the rancid-off flavor.


Assuntos
Aspergillus oryzae , Queijo , Lipase Lipoproteica/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipase/genética , Lipase/metabolismo
8.
Lipids Health Dis ; 23(1): 44, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331899

RESUMO

BACKGROUND AND AIMS: To study the role of gene mutations in the development of severe hypertriglyceridemia (HTG) in patients with hyperlipidemic acute pancreatitis (HLAP), especially different apolipoprotein A5 (APOA5) mutations. METHODS: Whole-exome sequencing was performed on 163 patients with HLAP and 30 patients with biliary acute pancreatitis (BAP). The pathogenicity of mutations was then assessed by combining clinical information, predictions of bioinformatics programs, information from multiple gene databases, and residue location and conservation. The pathogenic mutations of APOA5 were visualized using the software. RESULTS: 1. Compared with BAP patients, pathogenic mutations of APOA5 were frequent in HLAP patients; among them, the heterozygous mutation of p.G185C was the most common. 2. All six pathogenic mutations of APOA5 identified in this study (p.S35N, p.D167V, p.G185C, p.K188I, p.R223C, and p.H182fs) were positively correlated with severe HTG; they were all in the important domains of apolipoprotein A-V (apoA-V). Residue 223 is strictly conserved in multiple mammals and is located in the lipoprotein lipase (LPL)-binding domain (Pro215-Phe261). When Arg 223 is mutated to Cys 223, the positive charge of this residue is reduced, which is potentially destructive to the binding function of apoA-V to LPL. 3. Four new APOA5 mutations were identified, namely c.563A > T, c.667C > T, c.788G > A, and c.544_545 insGGTGC. CONCLUSIONS: The pathogenic mutations of APOA5 were specific to the patients with HLAP and severe HTG in China, and identifying such mutations had clinical significance in elucidating the etiology and subsequent treatment.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Apolipoproteína A-V/genética , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Doença Aguda , Pancreatite/genética , Lipase Lipoproteica/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/genética , Mutação
9.
Genes (Basel) ; 15(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38397180

RESUMO

Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Lipase Lipoproteica/genética , Doença Aguda , Pancreatite/genética , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicações , Triglicerídeos/genética
10.
Eur J Clin Invest ; 54(5): e14169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287209

RESUMO

BACKGROUND: Atherosclerosis is the salient, underlying cause of cardiovascular diseases, such as arrhythmia, coronary artery disease, cardiomyopathy, pulmonary embolism and myocardial infarction. In recent years, atherosclerosis pathophysiology has evolved from a lipid-based to an inflammation-centric ideology. METHODS: This narrative review is comprised of review and original articles that were found through the PubMed search engine. The following search terms or amalgamation of terms were used: "cardiovascular disease," "atherosclerosis," "inflammation," "GRP78," "Hsp60," "oxidative low-density lipoproteins," "aldehyde dehydrogenase," "ß2-glycoprotein," "lipoprotein lipase A," "human cytomegalovirus." "SARS-CoV-2," "chlamydia pneumonia," "autophagy," "thrombosis" and "therapeutics." RESULTS: Emerging evidence supports the concept that atherosclerosis is associated with the interaction between cell surface expression of stress response chaperones, including GRP78 and Hsp60, and their respective autoantibodies. Moreover, various other autoantigens and their autoantibodies have displayed a compelling connection with the development of atherosclerosis, including oxidative low-density lipoproteins, aldehyde dehydrogenase, ß2-glycoprotein and lipoprotein lipase A. Atherosclerosis progression is also concurrent with viral and bacterial activators of various diseases. This narrative review will focus on the contributions of human cytomegalovirus as well as SARS-CoV-2 and chlamydia pneumonia in atherosclerosis development. Notably, the interaction of an autoantigen with their respective autoantibodies or the presence of a foreign antigen can enhance inflammation development, which leads to atherosclerotic lesion progression. CONCLUSION: We will highlight and discuss the complex role of the interaction between autoantigens and autoantibodies, and the presence of foreign antigens in the development of atherosclerotic lesions in relationship to pro-inflammatory responses.


Assuntos
Aterosclerose , Pneumonia , Humanos , Chaperona BiP do Retículo Endoplasmático , Lipase Lipoproteica , Aterosclerose/metabolismo , Autoanticorpos , Inflamação , Autoantígenos , beta 2-Glicoproteína I , Lipoproteínas LDL , Aldeído Desidrogenase
11.
Psychopharmacology (Berl) ; 241(3): 569-584, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182791

RESUMO

Acquisition and extinction of associative fear memories are critical for guiding adaptive behavioral responses to environmental threats, and dysregulation of these processes is thought to represent important neurobehavioral substrates of trauma and stress-related disorders including posttraumatic stress disorder (PTSD). Endogenous cannabinoid (eCB) signaling has been heavily implicated in the extinction of aversive fear memories and we have recently shown that pharmacological inhibition of 2-arachidonoylglycerol (2-AG) synthesis, a major eCB regulating synaptic suppression, impairs fear extinction in an auditory cue conditioning paradigm. Despite these data, the role of 2-AG signaling in contextual fear conditioning is not well understood. Here, we show that systemic pharmacological blockade of diacylglycerol lipase, the rate-limiting enzyme catalyzing in the synthesis of 2-AG, enhances contextual fear learning and impairs within-session extinction. In sham-conditioned mice, 2-AG synthesis inhibition causes a small increase in unconditioned freezing behavior. No effects of 2-AG synthesis inhibition were noted in the Elevated Plus Maze in mice tested after fear extinction. These data provide support for 2-AG signaling in the suppression of contextual fear learning and the expression of within-session extinction of contextual fear memories.


Assuntos
Extinção Psicológica , Lipase Lipoproteica , Camundongos , Animais , Extinção Psicológica/fisiologia , Lipase Lipoproteica/farmacologia , Medo/fisiologia , Aprendizagem , Inibição Psicológica
12.
Mol Ther ; 32(1): 59-73, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37974401

RESUMO

GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.


Assuntos
Hipertrigliceridemia , Pancreatite , Receptores de Lipoproteínas , Animais , Humanos , Camundongos , Ratos , Doença Aguda , Dependovirus/genética , Dependovirus/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/terapia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Pancreatite/genética , Pancreatite/terapia , Pancreatite/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 44(1): 177-191, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150518

RESUMO

BACKGROUND: The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS: VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS: In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS: Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insulina , Ratos , Animais , Insulina/farmacologia , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Ratos Wistar , Miócitos Cardíacos/metabolismo , Ácidos Graxos/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Triglicerídeos/metabolismo , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo
14.
J Lipid Res ; 65(2): 100495, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160757

RESUMO

Angiopoietin-like protein (ANGPTL) complexes 3/8 and 4/8 are established inhibitors of LPL and novel therapeutic targets for dyslipidemia. However, the effects of regular exercise on ANGPTL3/8 and ANGPTL4/8 are unknown. We characterized ANGPTL3/8 and ANGPTL4/8 and their relationship with in vivo measurements of lipase activities and cardiometabolic traits before and after a 5-month endurance exercise training intervention in 642 adults from the HERITAGE (HEalth, RIsk factors, exercise Training And GEnetics) Family Study. At baseline, higher levels of both ANGPTL3/8 and ANGPTL4/8 were associated with a worse lipid, lipoprotein, and cardiometabolic profile, with only ANGPTL3/8 associated with postheparin LPL and HL activities. ANGPTL3/8 significantly decreased with exercise training, which corresponded with increases in LPL activity and decreases in HL activity, plasma triglycerides, apoB, visceral fat, and fasting insulin (all P < 5.1 × 10-4). Exercise-induced changes in ANGPTL4/8 were directly correlated to concomitant changes in total cholesterol, LDL-C, apoB, and HDL-triglycerides and inversely related to change in insulin sensitivity index (all P < 7.0 × 10-4). In conclusion, exercise-induced decreases in ANGPTL3/8 and ANGPTL4/8 were related to concomitant improvements in lipase activity, lipid profile, and cardiometabolic risk factors. These findings reveal the ANGPTL3-4-8 model as a potential molecular mechanism contributing to adaptations in lipid metabolism in response to exercise training.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Doenças Cardiovasculares , Adulto , Humanos , Proteínas Semelhantes a Angiopoietina/metabolismo , Triglicerídeos/metabolismo , Lipase , Exercício Físico , Apolipoproteínas B , Lipase Lipoproteica/genética , Proteína 4 Semelhante a Angiopoietina
15.
Proc Natl Acad Sci U S A ; 120(52): e2304900120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109529

RESUMO

Diacylglycerol lipase-beta (DAGLß) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLß ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLß in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLß blockade, thereby directly supporting DAGLß-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.


Assuntos
Endocanabinoides , Glicerídeos , Humanos , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Lipase Lipoproteica/metabolismo , Ácidos Araquidônicos/metabolismo , Dor
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(12): 1293-1298, 2023 Dec 15.
Artigo em Chinês | MEDLINE | ID: mdl-38112150

RESUMO

This report presents a case of a male infant, aged 32 days, who was admitted to the hospital due to 2 days of bloody stools and 1 day of fever. Upon admission, venous blood samples were collected, which appeared pink. Blood biochemistry tests revealed elevated levels of triglycerides and total cholesterol. The familial whole genome sequencing revealed a compound heterozygous variation in the LPL gene, with one variation inherited from the father and the other from the mother. The patient was diagnosed with lipoprotein lipase deficiency-related hyperlipoproteinemia. Acute symptoms including bloody stools, fever, and bloody ascites led to the consideration of acute pancreatitis, and the treatment involved fasting, plasma exchange, and whole blood exchange. Following the definitive diagnosis based on the genetic results, the patient was given a low-fat diet and received treatment with fat-soluble vitamins and trace elements, as well as adjustments to the feeding plan. After a 4-week hospitalization, the patient's condition improved and he was discharged. Follow-up showed a decrease in triglycerides and total cholesterol levels. At the age of 1 year, the patient's growth and psychomotor development were normal. This article emphasizes the multidisciplinary diagnosis and treatment of familial hyperlipoproteinemia presenting with symptoms suggestive of acute pancreatitis, including bloody ascites, in the neonatal period.


Assuntos
Hiperlipoproteinemia Tipo I , Hiperlipoproteinemias , Pancreatite , Humanos , Lactente , Masculino , Doença Aguda , Ascite , Colesterol , Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/genética , Lipase Lipoproteica/genética , Triglicerídeos
17.
Sci Rep ; 13(1): 22646, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114521

RESUMO

Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.


Assuntos
Hipertrigliceridemia , Lipase Lipoproteica , Animais , Humanos , Masculino , Ratos , Ésteres do Colesterol/metabolismo , Lipase Lipoproteica/metabolismo , Ratos Wistar , Triglicerídeos
18.
Biomed Pharmacother ; 169: 115874, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37951027

RESUMO

GPIHBP1 is a protein found in the endothelial cells of capillaries that is anchored by glycosylphosphatidylinositol and binds to high-density lipoproteins. GPIHBP1 attaches to lipoprotein lipase (LPL), subsequently carrying the enzyme and anchoring it to the capillary lumen. Enabling lipid metabolism is essential for the marginalization of lipoproteins alongside capillaries. Studies underscore the significance of GPIHBP1 in transporting, stabilizing, and aiding in the marginalization of LPL. The intricate interplay between GPIHBP1 and LPL has provided novel insights into chylomicronemia in recent years. Mutations hindering the formation or reducing the efficiency of the GPIHBP1-LPL complex are central to the onset of chylomicronemia. This review delves into the structural nuances of the GPIHBP1-LPL interaction, the consequences of mutations in the complex leading to chylomicronemia, and cutting-edge advancements in chylomicronemia treatment.


Assuntos
Células Endoteliais , Lipase Lipoproteica , Lipase Lipoproteica/metabolismo , Células Endoteliais/metabolismo , Triglicerídeos , Mutação , Metabolismo dos Lipídeos/genética
19.
J Obes ; 2023: 7392513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901192

RESUMO

Obesity develops largely due to genetic factors, with the genetic polymorphism of lipid metabolism enzymes being of particular importance. However, it is still unclear how the genetic variants of one of the key enzymes in lipid transport, lipoprotein lipase (LPL), are associated with the endocrine function of mesenchymal tissues in obesity. The current study was aimed at the investigation of the LPL rs328 gene variant association with adipokines and myokines levels, as well as lipid metabolism indices in the blood of children and adolescents of both genders with obesity. We found that LPL polymorphism rs328 is not characterized by the differences in the levels of hormones, adipokines, and myokines and in the blood of healthy children and adolescents; however, it significantly affects these indices during obesity in gender-dependent manner. The shifts in hormones, adipokines, and myokines manifest mostly in the obese individuals with Ser447Ser genotype rather than with 447Ter genotype. Obese boys homozygous for Ser447Ser have more elevated leptin levels than girls. They also demonstrate lower adiponectin, apelin, prolactin, and osteocrine levels than those in obese girls with the same genotype. The gender-based differences are less pronounced in individuals with 447Ter genotype than in the homozygotes for 447Ser. Thus, we conclude that the polymorphism rs328 of the lipoprotein lipase gene is accompanied by the changes in hormones, adipokines, and myokines levels in the blood of children and adolescents with obesity in gender-dependent manner.


Assuntos
Lipase Lipoproteica , Obesidade Pediátrica , Adolescente , Criança , Feminino , Humanos , Masculino , Adipocinas/sangue , Adiponectina , Genótipo , Lipase Lipoproteica/genética , Obesidade Pediátrica/genética
20.
J Clin Lipidol ; 17(6): 808-817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37858495

RESUMO

BACKGROUND: Lipoprotein lipase (LPL) deficiency, the most common familial chylomicronemia syndrome (FCS), is a rare autosomal recessive disease characterized by chylomicronemia and severe hypertriglyceridemia (HTG), with limited clinical and genetic characterization. OBJECTIVE: To describe the manifestations and management of 19 pediatric patients with LPL-FCS. METHODS: LPL-FCS patients from 2014 to 2022 were divided into low-fat (LF), very-low-fat (VLF) and medium-chain-triglyceride (MCT) groups. Their clinical data were evaluated to investigate the effect of different diets. The genotype-phenotype relationship was assessed. Linear regression comparing long-chain triglyceride (LCT) intake and TG levels was analyzed. RESULTS: Nine novel LPL variants were identified in 19 LPL-FCS pediatric patients. At baseline, eruptive xanthomas occurred in 3/19 patients, acute pancreatitis in 2/19, splenomegaly in 6/19 and hepatomegaly in 3/19. The median triglyceride (TG) level (30.3 mmol/L) was markedly increased. The MCT group and VLF group with LCT intakes <20 en% (energy percentage) had considerably lower TG levels than the LF group (both p<0.05). The LF group presented with severe HTG and significantly decreased TG levels after restricting LCT intakes to <20 en% (p<0.05). Six infants decreased TG levels to <10 mmol/L by keeping LCT intake <10 en%. TG levels and LCT intake were positively correlated in both patients under 2 years (r=0.84) and those aged 2-9 years (r=0.89). No genotype-phenotype relationship was observed. CONCLUSIONS: This study broadens the clinical and genetic spectra of LPL-FCS. The primary therapy for LPL-FCS pediatric patients is restricting dietary LCTs to <10 en% or <20 en% depending on different ages. MCTs potentially provide extra energy.


Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Pancreatite , Lactente , Humanos , Criança , Hiperlipoproteinemia Tipo I/terapia , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Doença Aguda , Perfil Genético , Pancreatite/genética , Hipertrigliceridemia/genética , Triglicerídeos , China , Lipase Lipoproteica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...