Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.475
Filtrar
1.
Sci Total Environ ; 926: 172071, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554960

RESUMO

Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/ß-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of ß-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on ß-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/ß-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Esgotos , Poluentes Químicos da Água/análise , Estrogênios , Arilsulfatases , Glucuronidase
2.
Sci Rep ; 14(1): 292, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167636

RESUMO

The chemokine receptor CCR5 is known to exist in cell surface subpopulations that differ in their capacity to engage ligands. One proposed explanation for this phenomenon is the presence of CCR5 species with different levels of post-translational modifications (PTMs). Tyrosine sulfation and O-glycan sialylation are PTMs that add negative charges to the extracellular domain of CCR5 and make strong contributions to chemokine binding but it is not known whether cellular mechanisms to control their levels exist. In this study we used a combination of sulfation-sensitive and sulfation-insensitive CCR5 ligands to show that the rate of turnover of CCR5 tyrosine sulfation is more rapid than the rate of turnover of the receptor itself. This suggests that the steady state level of CCR5 sulfation is maintained through the combination of tyrosine protein sulfotransferase (TPST), the trans-Golgi network (TGN)-resident 'source enzyme, and a 'sink' activity that removes tyrosine sulfation from CCR5. By measuring the effects on ligand binding of knockdown and overexpression experiments, we provided evidence that non-lysosomal cellular arylsulfatases, particularly ARSG, ARSI and ARSJ, are CCR5 sulfation 'sink' enzymes. We also used targeted knockdown and sialylation-sensitive and insensitive chemokines to identify the sialidase NEU3 as a candidate 'sink' enzyme for CCR5 O-glycan sialylation. This study provides the first experimental evidence of activity of sulfatase and sialidase 'sink' enzymes on CCR5, providing a potential mechanism for cells to control steady-state levels of these PTMs and thereby exert dynamic control over receptor-ligand interactions at the cell surface and during receptor desensitization.


Assuntos
Arilsulfatases , Neuraminidase , Ligantes , Eletricidade Estática , Quimiocinas , Tirosina/metabolismo , Polissacarídeos , Receptores CCR5/metabolismo
3.
Toxicon ; 233: 107231, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517595

RESUMO

Research on centipede venoms has led to the discovery of a diverse array of novel proteins and peptides, including those with homology to previously discovered toxin families (e.g., phospholipase A2s and pM12a metalloproteases) and novel toxin families not previously detected in venoms (e.g., ß-pore forming toxins and scoloptoxins). Most of this research has focused on centipedes in the order Scolopendromorpha, particularly those in the families Scolopendridae, Cryptopidae, and Scolopocryptopidae. To generate the first high-throughput venom characterization for a centipede in the scolopendromorph family Plutoniumidae, we performed venom-gland transcriptomics and venom proteomics on two Theatops posticus. We identified a total of 64 venom toxins, 60 of which were detected in both the venom-gland transcriptome and venom proteome and four of which were only detected transcriptomically. We detected a single highly abundant arylsulfatase B (ARSB) toxin, the first ARSB toxin identified from centipede venoms. As ARSBs have been detected in other venomous species (e.g., scorpions), ARSBs in T. posticus highlights a new case of convergent evolution across venoms. Theatops posticus venom also contained a much higher abundance and diversity of phospholipase A2 toxins compared to other characterized centipede venoms. Conversely, we detected other common centipedes toxins, such as CAPs and scoloptoxins, at relatively low abundances and diversities. Our observation of a diverse set of toxins from T. posticus venom, including those from novel toxin families, emphasizes the importance of studying unexplored centipede taxonomic groups and the continued potential of centipede venoms for novel toxin discovery and unraveling the molecular mechanisms underlying trait evolution.


Assuntos
Venenos de Artrópodes , Artrópodes , Animais , Quilópodes/metabolismo , Artrópodes/química , Arilsulfatases/metabolismo , Fosfolipases/metabolismo , Venenos de Artrópodes/química , Transcriptoma
4.
Biotechnol Adv ; 67: 108207, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37406746

RESUMO

Arylsulfatase is a subset of sulfatase which catalyzes the hydrolysis of aryl sulfate ester. Arylsulfatase is widely distributed among microorganisms, mammals and green algae, but the arylsulfatase-encoding gene has not yet been found in the genomes of higher plants so far. Arylsulfatase plays an important role in the sulfur flows between nature and organisms. In this review, we present the maturation and catalytic mechanism of arylsulfatase, and the recent literature on the expression and production of arylsulfatase in wild-type and engineered microorganisms, as well as the modification of arylsulfatase by genetic engineering are summarized. We focus on arylsulfatases from microbial origin and give an overview of different assays and substrates used to determine the arylsulfatase activity. Furthermore, the researches about arylsulfatase application on the field of agar desulfation, soil sulfur cycle and soil evaluation are also discussed. Finally, the perspectives concerning the future research on arylsulfatase are prospected.


Assuntos
Arilsulfatases , Solo , Animais , Arilsulfatases/genética , Arilsulfatases/química , Arilsulfatases/metabolismo , Ágar/química , Ágar/metabolismo , Mamíferos
5.
J Neurosci ; 43(19): 3567-3581, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977578

RESUMO

Metachromatic leukodystrophy (MLD) is a rare, inherited, demyelinating lysosomal storage disorder caused by mutations in the arylsulfatase-A gene (ARSA). In patients, levels of functional ARSA enzyme are diminished and lead to deleterious accumulation of sulfatides. Herein, we demonstrate that intravenous administration of HSC15/ARSA restored the endogenous murine biodistribution of the corresponding enzyme, and overexpression of ARSA corrected disease biomarkers and ameliorated motor deficits in Arsa KO mice of either sex. In treated Arsa KO mice, when compared with intravenously administered AAV9/ARSA, significant increases in brain ARSA activity, transcript levels, and vector genomes were observed with HSC15/ARSA Durability of transgene expression was established in neonate and adult mice out to 12 and 52 weeks, respectively. Levels and correlation between changes in biomarkers and ARSA activity required to achieve functional motor benefit was also defined. Finally, we demonstrated blood-nerve, blood-spinal and blood-brain barrier crossing as well as the presence of circulating ARSA enzyme activity in the serum of healthy nonhuman primates of either sex. Together, these findings support the use of intravenous delivery of HSC15/ARSA-mediated gene therapy for the treatment of MLD.SIGNIFICANCE STATEMENT Herein, we describe the method of gene therapy adeno-associated virus (AAV) capsid and route of administration selection leading to an efficacious gene therapy in a mouse model of metachromatic leukodystrophy. We demonstrate the therapeutic outcome of a new naturally derived clade F AAV capsid (AAVHSC15) in a disease model and the importance of triangulating multiple end points to increase the translation into higher species via ARSA enzyme activity and biodistribution profile (with a focus on the CNS) with that of a key clinically relevant biomarker.


Assuntos
Arilsulfatases , Terapia Genética , Leucodistrofia Metacromática , Animais , Camundongos , Macaca fascicularis , Arilsulfatases/genética , Camundongos Knockout , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/fisiopatologia , Leucodistrofia Metacromática/terapia , Modelos Animais de Doenças , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Encéfalo/enzimologia , Transtornos Motores/genética , Transtornos Motores/terapia , Administração Intravenosa , Biomarcadores/análise , Barreira Hematoencefálica , Masculino , Feminino , Humanos
6.
Environ Technol ; 44(9): 1334-1350, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34719354

RESUMO

Microalgae biomass contributes to effluent bioremediation. It is a concentrated source of nutrients and organic carbon, making it a potential alternative as a soil biostimulant. In this context, this study aimed to evaluate the soil application of microalgae biomass produced from the meat processing industry effluent treatment. The biomass was applied dry and as a mixture to demonstrate its potential to increase plant production and soil metabolic functions, analyzed short-term. Doses of 0.25%, 0.5%, 1%, and 2% biomass were applied in soils from (i) Horizon A: taken at a depth between 0 and 10 cm and; (ii) Horizon B: taken at a depth between 20 and 40 cm. Corn growth (Zea Mays L.), basal soil respiration, microbial biomass carbon, total organic carbon, ß-glucosidase, acid phosphatase, arylsulfatase, and urease enzymatic activity were evaluated in each sample. It is concluded that applying 2% microalgae biomass led to higher basal soil respiration, microbial biomass carbon, and ß-glucosidase, acid phosphatase, arylsulfatase enzymatic activity in both soils. On the other hand, boron may have contributed to urease activity reduction in Soil A. Although 2% biomass led to higher soils characteristics, that dose did not promote higher plant growth. Hence, considering that plant growth must be in line with changes in soil characteristics, the result that provided the higher plant shoot dry matter mass was by applying 0.55% biomass in both soils. Therefore, the application of microalgae biomass produced from a meat processing industry effluent treatment promoted a biologically active soil and boosted plant growth.


Assuntos
Microalgas , Solo , Biomassa , Urease , Glucosilceramidase , Carbono , Arilsulfatases , Monoéster Fosfórico Hidrolases , Microbiologia do Solo
7.
J Eukaryot Microbiol ; 70(1): e12943, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36018447

RESUMO

Sulfur is a required macroelement for all organisms, and sulfate deficiency causes growth and developmental defects. Arylsulfatases (ARS) hydrolyze sulfate from sulfate esters and make sulfate bioavailable for plant uptake. These enzymes are found in microorganisms and animals; however, plant genomes do not encode any ARS gene. Our database searches found nineteen ARS genes in the genome of Chlamydomonas reinhardtii. Among these, ARS1 and ARS2 were studied in the literature; however, the remaining seventeen gene models were not studied. Our results show that putative polypeptide sequences of the ARS gene models all have the sulfatase domain and sulfatase motifs found in known ARSs. Phylogenetic analyses show that C. reinhardtii proteins are in close branches with Volvox carterii proteins while they were clustered in a separate group from Homo sapiens and bacterial species (Pseudomonas aeruginosa and Rhodopirellula baltica SH1), except human Sulf1, Sulf2, and GNS are clustered with algal ARSs. RT-PCR analyses showed that transcription of ARS6, ARS7, ARS11, ARS12, ARS13, ARS17, and ARS19 increased under sulfate deficiency. However, this increase was not as high as the increase seen in ARS2. Since plant genomes do not encode any ARS gene, our results highlight the importance of microbial ARS genes.


Assuntos
Arilsulfatases , Chlamydomonas reinhardtii , Animais , Humanos , Arilsulfatases/genética , Arilsulfatases/metabolismo , Filogenia , Chlamydomonas reinhardtii/genética , Sulfatases/genética , Sulfatos/metabolismo
8.
Environ Sci Pollut Res Int ; 30(7): 17644-17656, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36197608

RESUMO

Antimony (Sb), a toxic metalloid, is ubiquitous in the environment and threatens human and ecological health. Soil arylsulfatase (ARS) activity indicates heavy metal pollution. However, the enzyme's substrate concentration can affect the toxicity evaluation of heavy metals using enzyme activity. Enzyme kinetic parameters directly reflect the potency of heavy metals, and the magnitude of these parameters does not change with the substrate concentration of soil enzyme. In this work, seventeen soils were exposed to Sb contamination to investigate the change of kinetic parameters of soil arylsulfatase under Sb stress. Results showed that Sb inhibited soil arylsulfatase activity. The maximum reaction rate (Vmax) of soil arylsulfatase was reduced by 11.58-46.72% in 16 tested soils and unchanged in S15 when exposed to Sb. The Michaelis constant (Km) presented three trends: unchanged, increased by 28.46-41.27%, and decreased by 19.71-29.91% under Sb stress. The catalytic efficiency (Ka as the ratio of Vmax to Km) decreased by 12.56-55.17% in all soils except for S12 and S16. Antimony acted as a non-competitive and linear mixed inhibitor by decreasing ARS activity in S1-S12, S14, and S17-S18 soils, as an uncompetitive inhibitor in S13 and S16 soils and as a competitive inhibitor in S15. The competitive and uncompetitive inhibition constants (Kic and Kiu) were 0.058-0.142 mM and 0.075-0.503 mM. The ecological dose values of Sb to catalytic efficiency (Ka) of ARS (ED10-Ka) ranged from 50 to 1315 mg kg-1. Soil pH and total phosphorus (TP) contents were the dominant factors responsible for Sb toxicity on Ka by affecting the interaction of inhibitor (Sb) with enzyme-substrate (ES) complex. The findings of this study advance the current knowledge on Sb toxicity to soil enzymes and have significant implications for the risk assessment of Sb in soils.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Antimônio/análise , Solo/química , Arilsulfatases , Poluição Ambiental , Poluentes do Solo/análise
9.
Drug Discov Ther ; 16(6): 280-285, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36450504

RESUMO

We found the activity of arylsulfatase in the midgut contents of the silkworm, Bombyx mori. We identified a 60-kDa protein that comigrates with the activity on a column chromatography following ammonium sulfate precipitation. Based on its partial amino acid sequence, we searched for its coding gene using Basic Local Alignment Search Tool (BLAST) and identified KWMTBOMO05106. Transcriptional data suggest a specific expression of the gene in middle silk glands. The majority (80%) of arylsulfatase activity was found in the silk glands, concurring the specific transcription in the silk gland. Observing the feeding behaviour of the silkworm, we found that silkworms smear a mucus secretes from the spinneret on the food pellet as they feed on. Arylsulfatase activity was also detected in the food pellet bitten by the silkworm as well as in the gut content. Furthermore, arylsulfatase activity was not detected either in the food pellet and in the gut content when silkworms had obstructed the spinneret. These results suggest that arylsulfatase is secreted from the silk glands and may contribute to digestive function.


Assuntos
Bombyx , Animais , Bombyx/química , Seda/genética , Seda/metabolismo , Arilsulfatases/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
10.
BMC Microbiol ; 22(1): 238, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199015

RESUMO

BACKGROUND: Campylobacter spp. are the leading cause of bacterial food-borne illness in humans worldwide, with Campylobacter jejuni responsible for 80% of these infections. There is an urgent need to understand fundamental C. jejuni biology for the development of new strategies to prevent and treat infections. The range of molecular tools available to regulate gene expression in C. jejuni is limited, which in turn constrains our ability to interrogate the function of essential and conditionally essential genes. We have addressed this by developing and utilising a CRISPR-based interference system known as CRISPRi in C. jejuni to control gene expression. To achieve this, a catalytically inactive ("dead") cas9 and sgRNA backbone from the Streptococcus pyogenes CRISPRi system was combined with C. jejuni-derived promoters of predetermined expression activities to develop a CRISPRi-based repression tool in C. jejuni strains M1Cam and 81-176. RESULTS: The CRISPRi tool was validated through successful repression of the arylsulphatase-encoding gene astA using a range of sgRNA target sequences spanning the astA gene. The tool was also applied to target astA in an M1Cam CRISPR-Cas9 deletion strain, which showed that the presence of an endogenous CRISPR-Cas9 system did not affect the activity of the CRISPRi-based repression tool. The tool was further validated against the hippicurase-encoding gene hipO. Following this, the flagella genes flgR, flaA, flaB and both flaA and flaB were targeted for CRISPRi-based repression, which resulted in varying levels of motility reduction and flagella phenotypes as determined by phenotypical assays and transmission electron microscopy (TEM). CONCLUSIONS: This is the first report of a CRISPRi-based tool in C. jejuni, which will provide a valuable resource to the Campylobacter community.


Assuntos
Campylobacter jejuni , Arilsulfatases/genética , Arilsulfatases/metabolismo , Sistemas CRISPR-Cas , Campylobacter jejuni/metabolismo , Flagelos/genética , Regulação da Expressão Gênica , Humanos , Streptococcus pyogenes/genética
11.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36191061

RESUMO

Steroid sulfate esters are important metabolites for anti-doping efforts in sports, pathology and research. Analysis of these metabolites is facilitated by hydrolysis using either acid or enzymatic catalysis. Although enzymatic hydrolysis is preferred for operating at neutral pH, no known enzyme is capable of hydrolyzing all steroid sulfate metabolites. Pseudomonas aeruginosa arylsulfatase (PaS) is ideal for the hydrolysis of ß-configured steroid sulfates but like other known class I sulfatases it is inefficient at hydrolyzing α-configured steroid sulfates. We have used directed evolution with liquid chromatography mass spectrometry screening to find variants capable of hydrolyzing a α-configured steroid sulfate: etiocholanolone sulfate (ECS). After targeting two regions of PaS, four residues were identified and optimized to yield a final variant with a total of seven mutations (DRN-PaS) capable of hydrolyzing ECS ~80 times faster than the best PaS variant previously available. This DRN-PaS also shows improved activity for other α-configured steroid sulfates. Simultaneous mutagenesis was essential to obtain DRN-PaS due to complementarity between targeted residues.


Assuntos
Arilsulfatases , Pseudomonas aeruginosa , Arilsulfatases/genética , Arilsulfatases/química , Arilsulfatases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Hidrólise , Sulfatases/genética , Sulfatases/química , Sulfatos/química , Sulfatos/metabolismo , Esteroides
12.
Artigo em Inglês | MEDLINE | ID: mdl-36232214

RESUMO

The huge volumes of currently generated agricultural waste pose a challenge to the economy of the 21st century. One of the directions for their reuse may be as fertilizer. Spent mushroom substrate (SMS) could become an alternative to manure (M). A three-year field experiment was carried out, in which the purpose was to test and compare the effect of SMS alone, as well as in multiple variants with mineral fertilization, and in manure with a variety of soil quality indices-such as enzymatic activity, soil phytotoxicity, and greenhouse gas emissions, i.e., CO2. The use of SMS resulted in significant stimulation of respiratory and dehydrogenase activity. Inhibition of acid phosphatase and arylsulfatase activity via SMS was recorded. SMS showed varying effects on soil phytotoxicity, dependent on time. A positive effect was noted for the growth index (GI), while inhibition of root growth was observed in the first two years of the experiment. The effect of M on soil respiratory and dehydrogenase activity was significantly weaker compared to SMS. Therefore, M is a safer fertilizer as it does not cause a significant persistent increase in CO2 emissions. Changes in the phytotoxicity parameters of the soil fertilized with manure, however, showed a similar trend as in the soil fertilized with SMS.


Assuntos
Agaricales , Gases de Efeito Estufa , Fosfatase Ácida , Arilsulfatases , Dióxido de Carbono/toxicidade , Fertilizantes/toxicidade , Efeito Estufa , Esterco , Oxirredutases , Solo
13.
Fish Shellfish Immunol ; 130: 164-174, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108802

RESUMO

In the framework of investigations aimed to detect new available bioindicators in marine environment, haemolymph cells and ctenidia of the Mediterranean spiny oyster, Spondylus gaederopus, have been investigated. Haemocyte count and characterisation, phagocytosis and superoxide anion production and enzyme activity assays, have been carried out. TEM observations have been performed. After gross anatomy observations, cito-histological determinations have been carried out, especially focused on ctenidia structure and function. Main results concerned the relatively low number of circulating cells, and the rich in granules granulocytes, most of which were lysosomes. Release of lysosomal enzymes was confirmed a shared trait inside bivalves. Glycogen deposits as probable result of conversion of bacteria carbohydrates, have been detected, as well as the occurrence of both acidophilic and basophilic haemocytes. Phagocytosis, both in granulocytes and agranulocytes, has been recorded, together with the production of superoxide anion. Haemocytes were found positive to acid phosphatase, alkaline phosphatase, ß-glucuronidase, chloroacetylesterase and arylsulphatase. Ctenidia showed a complex organization, including two demibranch to each ctenidium, two different kinds of lamellae filament and specialized structures as ciliated disks connecting filaments in "eutherorhabdic ctenidia". The occurrence of three different types of mucous cells in the same region of ordinary filaments has been underlined. Such features, suggesting high resistance to environmental stress and disease, allow to consider spiny oysters as promising bioindicators, although deserving of further investigations to evaluate the physiological responses to stress in controlled conditions. Present data, moreover, providing basic information on the biology of S. gaederopus, notably implement the present knowledge on the Mediterranean spiny oysters, whose under-evaluated ecological role should be carefully considered.


Assuntos
Bivalves , Ostreidae , Fosfatase Ácida , Fosfatase Alcalina , Animais , Arilsulfatases , Bivalves/fisiologia , Biomarcadores Ambientais , Brânquias , Glucuronidase , Glicogênio , Hemócitos , Fagocitose , Superóxidos
14.
Environ Res ; 215(Pt 3): 114363, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174759

RESUMO

Glyphosate (N-(phosphonomethyl)glycine) is broad-spectrum herbicide that is extensively used worldwide, but its effects on the soil microbiome are inconsistent. To provide a sound scientific basis for herbicide re-review and registration decisions, we conducted a four-year (2013-2016) study in which we consecutively applied glyphosate to a wheat (Triticum aestivum L.)-field pea (Pisum sativum L.)-canola (Brassica napus L.)-wheat crop rotation at five sites in the Canadian prairies. The glyphosate rates were 0, 1, 2, 4 and 8 kg ae ha-1, applied pre-seeding and post-harvest every year. The wheat rhizosphere was sampled in the final year of the study and analysed for microbial biomass C (MBC), the composition and diversity of the microbiome, and activities of ß-glucosidase, N-acetyl-ß-glucosiminidase, acid phosphomonoesterase and arylsulphatase. Glyphosate did not affect MBC, the composition and diversity of prokaryotes and fungi, and the activities of three of the four enzymes measured in the wheat rhizosphere. The one effect of glyphosate was a wave-like response of N-acetyl-ß-glucosaminidase activity with increasing application rates. The experimental sites had much greater effects, driven by soil pH and organic C, on the soil microbiome composition and enzyme activities than glyphosate. Soil pH was positively correlated with the relative abundance of Acidobacteriota but negatively correlated with that of Actinobacteriota and Basidiomycota. Soil organic C was positively correlated with the relative abundances of Proteobacteriota and Verrucomicrobiota, but negatively correlated with the relative abundance of Crenachaeota. The activity of acid phosphomonoesterase declined with increasing relative abundance of Acidobacteriota, but increased with that of Actinobacteriota and Basidiomycota. The activity of N-acetyl-ß-glucosaminidase also increased with increasing relative abundance of Actinobacteriota but decreased with that of Mortierellomycota. ß-glucosidase activity also decreased with increasing relative abundance of Mortierellomycota. The core fungal species observed in at least 90% of the samples were Humicola nigrescens, Gibberella tricincta and Giberella fujikuroi. Therefore, this multi-site study on the Canadian prairies revealed no significant effects of 4-year applications of glyphosate applied at different rates on most soil microbial properties despite differences in the properties among sites. However, it is important to keep evaluating glyphosate effects on the soil microbiome and its functioning because it is the most widely used herbicide worldwide.


Assuntos
Celulases , Herbicidas , Microbiota , Arilsulfatases/farmacologia , Bactérias , Canadá , Celulases/farmacologia , Glicina/análogos & derivados , Herbicidas/toxicidade , Hexosaminidases/farmacologia , Monoéster Fosfórico Hidrolases/farmacologia , Rizosfera , Solo/química , Microbiologia do Solo , Triticum
15.
Aging Cell ; 21(10): e13707, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087066

RESUMO

Senescent cells accumulate in tissues over time, favoring the onset and progression of multiple age-related diseases. Senescent cells present a remarkable increase in lysosomal mass and elevated autophagic activity. Here, we report that two main autophagic pathways macroautophagy (MA) and chaperone-mediated autophagy (CMA) are constitutively upregulated in senescent cells. Proteomic analyses of the subpopulations of lysosomes preferentially engaged in each of these types of autophagy revealed profound quantitative and qualitative changes in senescent cells, affecting both lysosomal resident proteins and cargo proteins delivered to lysosomes for degradation. These studies have led us to identify resident lysosomal proteins that are highly augmented in senescent cells and can be used as novel markers of senescence, such as arylsulfatase ARSA. The abundant secretome of senescent cells, known as SASP, is considered their main pathological mediator; however, little is known about the mechanisms of SASP secretion. Some secretory cells, including melanocytes, use the small GTPase RAB27A to perform lysosomal secretion. We found that this process is exacerbated in the case of senescent melanoma cells, as revealed by the exposure of lysosomal membrane integral proteins LAMP1 and LAMP2 in their plasma membrane. Interestingly, a subset of SASP components, including cytokines CCL2, CCL3, CXCL12, cathepsin CTSD, or the protease inhibitor SERPINE1, are secreted in a RAB27A-dependent manner in senescent melanoma cells. Finally, proteins previously identified as plasma biomarkers of aging are highly enriched in the lysosomes of senescent cells, including CTSD. We conclude that the lysosomal proteome of senescent cells is profoundly reconfigured, and that some senescent cells can be highly active in lysosomal exocytosis.


Assuntos
Melanoma , Proteínas Monoméricas de Ligação ao GTP , Arilsulfatases/metabolismo , Autofagia , Biomarcadores/metabolismo , Catepsinas , Senescência Celular , Citocinas/metabolismo , Humanos , Lisossomos/metabolismo , Melanoma/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Inibidores de Proteases/metabolismo , Proteoma/metabolismo , Proteômica , Secretoma
16.
Environ Sci Pollut Res Int ; 29(42): 64244-64251, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35918583

RESUMO

Arylsulfatase and ß-glucuronidase are the two substantial enzymes having a significant role in the cleavage of conjugated natural estrogens (C-NEs). The present study reports that arylsulfatase and ß-glucuronidase have been abundantly found in the digestive tracts of Cipangopaludina chinensis; in which, their corresponding activities were 60 and 5 U/g wet waste, respectively. The arylsulfatase from Cipangopaludina chinensis could show high activity at low temperatures. Hence, its activity still remained at 53.2% of maximal activity even at an extremely low temperature of 4 ℃; while the corresponding activities of arylsulfatase from Helix pomatia or activated sludge were less than 20% and 10%, respectively. The arylsulfatase and ß-glucuronidase from Cipangopaludina chinensis could efficiently cleave C-NEs suggesting that they could be alternative enzymes derived from Helix pomatia that are used for cleavage of conjugated compounds in environmental or biological sample analysis. Meanwhile, they might also be used to enhance the cleavage of C-NEs in municipal wastewater.


Assuntos
Arilsulfatases , Gastrópodes , Animais , Estrogênios , Estrogênios Conjugados (USP) , Trato Gastrointestinal , Glucuronidase/química , Caracois Helix , Esgotos , Águas Residuárias
17.
Andrology ; 10(8): 1625-1631, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36026611

RESUMO

BACKGROUND: The translocation of SRY onto one of the two X chromosomes results in a 46,XX testicular disorder of sex development; this is supposedly because of non-allelic homologous recombination between the protein kinase X gene (PRKX) and the inverted protein kinase Y pseudogene (PRKY). Although 46,XX SRY-positive men are infertile, the literature data indicate that some of these individuals are of short stature (relative to the general population). We sought to determine whether short stature was linked to additional, more complex chromosomal rearrangements. METHODS: Twelve laboratories gathered detailed clinical, anthropomorphic, cytogenetic and genetic data (including chromosome microarray data) on patients with 46,XX SRY-positive male syndrome. RESULTS: SRY was present (suggesting a der(X)t(X;Y)) in 34 of the 38 cases (89.5%). When considering only the 20 patients with chromosome microarray data, we identified several chromosomal rearrangements and breakpoints, especially on the X chromosome. In the five cases for whom the X chromosome breakpoint was located in the pseudoautosomal region, there was partial duplication of the derivate X chromosome. In contrast, in the 15 cases for whom the breakpoint was located downstream of the pseudoautosomal region, part of the derivate X chromosome had been deleted (included the arylsulfatase E [ARSE] gene in 11 patients). For patients with versus without ARSE deletion, the mean height was, respectively, 167.7 ± 4.5 and 173.1 ± 4.0 cm; this difference was not statistically significant (p = 0.1005). CONCLUSION: Although 46,XX SRY-positive male syndromes were mainly because of imbalanced crossover between the X and Y chromosome during meiosis, the breakpoints differed markedly from one patient to another (especially on the X chromosome); this suggests the presence of a replication-based mechanism for recombination between non-homologous sequences. In some patients, the translocation of SRY to the X chromosome was associated with ARSE gene deletion, which might have led to short stature. With a view to explaining this disorder of sex development, whole exome sequencing could be suggested for SRY-negative patients.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual , Arilsulfatases , Doenças Testiculares , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Arilsulfatases/genética , Humanos , Masculino , Proteínas Quinases , Translocação Genética
18.
J Clin Lab Anal ; 36(9): e24600, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35870182

RESUMO

BACKGROUND: Sulfatase gene family members mediate various biological functions in tumor stroma and tumor cell environments. However, the expressions and prognostic value of Arylsulfatase I (ARSI), a sulfatase gene family member, in head and neck squamous cell carcinoma (HNSC) have not been fully established. METHODS: Arylsulfatase I expressions in pan-cancer were profiled using publicly available databases. Then, univariate Cox regression, Kaplan-Meier, and the Pearson's correlation analyses were performed to determine correlations between ARSI expressions and cancer prognosis, immune cell status, and drug sensitivity. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were used to assess the potential mechanisms underlying ARSI functions in HNSC. RESULTS: Arylsulfatase I was highly expressed in 15 cancer types, with significant expressions in HNSC. Elevated ARSI levels were associated with worse prognostic outcomes in HNSC patients. In addition, GSVA and GSEA showed that ARSI was highly involved in tumor cell escape and inflammatory responses. Expressions of ARSI negatively correlated with tumor mutation burden or microsatellite instability and positively correlated with immune-related genes. Elevated ARSI expressions conferred poor tolerance to daporinad and sinularin, but increased cell sensitivity to dasatinib and XAV939. CONCLUSION: Arylsulfatase I is a promising prognostic and therapeutic target for HNSC.


Assuntos
Neoplasias de Cabeça e Pescoço , Arilsulfatases , Biomarcadores Tumorais/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Humanos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Sulfatases
19.
Sci Rep ; 12(1): 1985, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132132

RESUMO

Corn stover is a global resource used in many industrial sectors including bioenergy, fuel, and livestock operations. However, stover removal can negatively impact soil nutrient availability, especially nitrogen (N) and phosphorus (P), biological activity, and soil health. We evaluated the effects of corn stover management combined with N and P fertilization on soil quality, using soil chemical (nitrate, ammonium and Bray-1 P) and biological parameters (ß-glucosidase, alkaline phosphatase, arylsulfatase activities and fluorescein diacetate hydrolysis-FDA). The experiment was performed on a Mollisol (Typic Endoaquoll) in a continuous corn system from 2013 to 2015 in Minnesota, USA. The treatments tested included six N rates (0 to 200 kg N ha-1), five P rates (0 to 100 kg P2O5 ha-1), and two residue management strategies (residue removed or incorporated) totalling 60 treatments. Corn stover management significantly impacted soil mineral-N forms and enzyme activity. In general, plots where residue was incorporated were found to have high NH4+ and enzyme activity compared to plots where residue was removed. In contrast, fields where residue was removed showed higher NO3- than plots where residue was incorporated. Residue management had little effect on soil available P. Soil enzyme activity was affected by both nutrient and residue management. In most cases, activity of the enzymes measured in plots where residue was removed frequently showed a positive response to added N and P. In contrast, soil enzyme responses to applied N and P in plots where residue was incorporated were less evident. Soil available nutrients tended to decrease in plots where residue was removed compared with plots where residue was incorporated. In conclusion, stover removal was found to have significant potential to change soil chemical and biological properties and caution should be taken when significant amounts of stover are removed from continuous corn fields. The residue removal could decrease different enzymes related to C-cycle (ß-glucosidase) and soil microbial activity (FDA) over continuous cropping seasons, impairing soil health.


Assuntos
Agricultura/métodos , Fertilizantes , Nutrientes , Solo/química , Zea mays , Fosfatase Alcalina , Compostos de Amônio , Arilsulfatases , Hidrólise , Minnesota , Nitratos , Nitrogênio , Fósforo , Microbiologia do Solo , beta-Glucosidase
20.
Hum Genet ; 141(11): 1723-1738, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35226187

RESUMO

Usher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.


Assuntos
Retinite Pigmentosa , Síndromes de Usher , Arilsulfatases , Humanos , Proteínas Mutantes , Retinite Pigmentosa/genética , Sulfatases , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...