Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.771
Filtrar
1.
Methods Mol Biol ; 2754: 237-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512671

RESUMO

The neuronal microtubule-associated tau protein is characterized in vivo by a large number of post-translational modifications along the entire primary sequence that modulates its function. The primary modification of tau is phosphorylation of serine/threonine or tyrosine residues that is involved in the regulation of microtubule binding and polymerization. In neurodegenerative disorders referred to as tauopathies including Alzheimer's disease, tau is abnormally hyperphosphorylated and forms fibrillar inclusions in neurons progressing throughout different brain area during the course of the disease. The O-ß-linked N-acetylglucosamine (O-GlcNAc) is another reversible post-translational modification of serine/threonine residues that is installed and removed by the unique O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA), respectively. This modification was described as a potential modulator of tau phosphorylation and functions in the physiopathology. Moreover, reducing protein O-GlcNAc levels in the brain upon treatment of tauopathy mouse models with an OGA inhibitor reveals a beneficial effect on tau pathology and neurodegeneration. However, whether the role of tau O-GlcNAcylation is responsible of the protective effect against tau toxicity remains to be determined. The production of O-GlcNAc modified recombinant tau protein is a valuable tool for the investigations of the impact of O-GlcNAcylation on tau functions, modulation of interactions with partners and crosstalk with other post-translational modifications, including but not restricted to phosphorylation. We describe here the in vitro O-GlcNAcylation of tau with recombinant OGT for which we provide an expression and purification protocol. The use of the O-GlcNAc tau protein in functional studies requires the analytical characterization of the O-GlcNAc pattern. Here, we describe a method for the O-GlcNAc modification of tau protein with recombinant OGT and the analytical characterization of the resulting O-GlcNAc pattern by a combination of methods for the overall characterization of tau O-GlcNAcylation by chemoenzymatic labeling and mass spectrometry, as well as the quantitative, site-specific pattern by NMR spectroscopy.


Assuntos
Tauopatias , Proteínas tau , Camundongos , Animais , Proteínas tau/metabolismo , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Processamento de Proteína Pós-Traducional , Tauopatias/genética , Tauopatias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Serina/metabolismo , Treonina/metabolismo
2.
Int J Med Mushrooms ; 26(2): 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421692

RESUMO

Type 1 allergic disease is a global challenge, hence the search for alternative therapies. Mushrooms have several medicinal and health benefits. However, scant data exist on the anti-allergic properties of polysaccharides from fruiting bodies (FB) and mycelia of mushrooms. We used an in vitro co-culture system comprising Caco-2 cells (intestinal epithelial colorectal carcinoma cell line) and RBL-2H3 cells (cell line from rat basophilic leukemia cells). Reduction in degranulation of mast cells indicated anti-allergy properties. The inhibitory effect of crude polysaccharides from different mushroom FB and mycelia on ß-hexosaminidase release from RBL-2H3 cells was measured. Results showed that crude polysaccharides from the FB of Inonotus obliquus exhibited a significant inhibitory effect on ß-hexosaminidase release and lowered it by 16%. Polysaccharides from the FB of Lentinus squarrosulus, and Pleurotus ostreatus did not exhibit a significant reduction in ß-hexosaminidase. However, crude polysaccharides from their mycelia had a significant inhibitory effect, resulting in up to a 23% reduction in ß-hexosaminidase activity. Among fungi showing degranulation properties, crude polysaccharides from their mycelia showed more potent action against degranulation than their corresponding FB. Polysaccharides extracted from FB and or mycelia, of selected mushrooms, possess anti-allergic properties that could be harnessed for use in alternative allergy therapies.


Assuntos
Agaricales , Antialérgicos , Hipersensibilidade , Animais , Ratos , Humanos , Antialérgicos/farmacologia , Células CACO-2 , beta-N-Acetil-Hexosaminidases
3.
J Agric Food Chem ; 72(9): 4849-4857, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386626

RESUMO

ß-N-Acetylhexosaminidases have attracted much attention in the enzymatic synthesis of lacto-N-triose II (LNT2) as a backbone precursor of human milk oligosaccharides (HMOs). In this study, a novel glycoside hydrolase (GH) 20 family ß-N-acetylhexosaminidase, FlaNag2353, from Flavobacterium algicola was biochemically characterized and applied to synthesize LNT2. FlaNag2353 displayed optimal activity to p-nitrophenyl N-acetyl-ß-d-glucosaminide (pNP-GlcNAc) at 40 °C and pH 8.0. In addition to its excellent hydrolysis activity toward pNP-GlcNAc and chitooligosaccharides, FlaNag2353 showed trans-glycosylation activity. Under conditions of pH 9.0 and 55 °C for 2 h and utilizing 200 mM lactose and 10 mM pNP-GlcNAc, FlaNag2353 synthesized LNT2 with a conversion ratio of 4.15% calculated from pNP-GlcNAc. Moreover, when applied to LNT2 synthesis with 10 mM pNP-GlcNAc and 9.7% (w/v) industrial waste whey powder, FlaNag2353 achieved a conversion ratio of 2.39%. This study has significant implications for broadening the applications of GH20 ß-N-acetylhexosaminidases and promoting the high-value utilization of whey powder.


Assuntos
Flavobacterium , Trissacarídeos , beta-N-Acetil-Hexosaminidases , Humanos , beta-N-Acetil-Hexosaminidases/química , Pós , Oligossacarídeos/química , Acetilglucosaminidase
4.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256196

RESUMO

Diabetes mellitus is associated with various complications, mainly caused by the chronic exposure of the cells to high glucose (HG) concentrations. The effects of long-term HG exposure in vitro accompanied by lipopolysaccharide (LPS) application on astrocytes are relatively unknown. We used cell medium with normal (NG, 5.5 mM) or high glucose (HG, 25 mM) for rat astrocyte cultures and measured the release of NO, IL-6, ß-hexosaminidase and cell survival in response to LPS. We first demonstrated that HG long-term incubation of astrocytes increased the release of ß-hexosaminidase without decreasing MTT-detected cell survival, suggesting that there is no cell membrane damage or astrocyte death but could be lysosome exocytosis. Different from what was observed for NG, all LPS concentrations tested at HG resulted in an increase in IL-6, and this was detected for both 6 h and 48 h treatments. Interestingly, ß-hexosaminidase level increased after 48 h of LPS and only at HG. The NO release from astrocytes also increased with LPS application at HG but was less significant. These data endorsed the original hypothesis that long-term hyperglycemia increases proinflammatory activation of astrocytes, and ß-hexosaminidase could be a specific marker of excessive activation of astrocytes associated with exocytosis.


Assuntos
Astrócitos , Interleucina-6 , Animais , Ratos , Lipopolissacarídeos/toxicidade , Acetilglucosaminidase , beta-N-Acetil-Hexosaminidases , Glucose/farmacologia
5.
J Sep Sci ; 47(1): e2300545, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234026

RESUMO

Pseudoallergy is a typical and common adverse drug reaction to injections, especially in traditional Chinese medicine injections (TCMIs). At present, the evaluation methods for pseudoallergy include cell methods in vitro and animal methods in vivo. The mast cell evaluation method based on the ß-hexosaminidase (ß-Hex)-catalyzed substrate, 4-nitrophenyl-ß-N-acetyl-D-glucosaminide (4-NPG), is an important method for the evaluation of drug-induced pseudoallergy, but it is prone to false positive results and has insufficient sensitivity. In this study, a novel ß-Hex evaluation system with rat basophilic leukemia-2H3 cells based on high-performance liquid chromatography-fluorescence detection (HPLC-FLD) was established, which effectively increased the sensitivity and avoided false positive results. Cell viabilities were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay. In addition, a method for the determination of histamine, which is another indicator in the development of pseudoallergy, was established to validate the above method. The results of this novel method indicated that two TCMIs (Shuxuening injection and Shenqi Fuzheng injection), which were considered to be pseudoallergenic using 4-NPG, were not pseudoallergenic. Overall, the novel ß-Hex/HPLC-FLD evaluation system using Rat basophilic leukemia-2H3 cells established was effective and precise. It could be used for the evaluation of pseudoallergic reactions caused by TCMIs and other injections.


Assuntos
Medicamentos de Ervas Chinesas , Leucemia , Ratos , Animais , Medicina Tradicional Chinesa , beta-N-Acetil-Hexosaminidases , Injeções , Histamina
6.
Environ Microbiol ; 26(1): e16571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178319

RESUMO

Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-ß-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-ß-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-ß-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.


Assuntos
Burkholderia pseudomallei , Quitosana , Melioidose , Oligossacarídeos , Humanos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Solo , Biofilmes , Quitina/metabolismo , Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Melioidose/microbiologia
7.
Curr Protoc ; 4(1): e950, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38197533

RESUMO

Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, in which proteins are individually selected for lysosomal degradation. CMA degradation targets bear a pentapeptide consensus motif that is recognized by the cytosolic chaperone HSPA8 (Hsc70), which participates in the trafficking of the target to the lysosomal surface. From there, it is translocated into the lysosomal lumen, independent of vesicle fusion, in a process dependent upon the lysosomal transmembrane protein LAMP2A. There are limited tools for studying CMA in whole cells and tissues, and many of the best techniques for studying CMA rely on the preparation of lysosome enriched fractions. Such experiments include (1) the in vitro evaluation of CMA substrate uptake activity, (2) the characterization of changes to lysosomal resident and CMA regulatory proteins, and (3) lysosomal targetomics, i.e., the use of quantitative proteomics to characterize lysosomal degradation targets. Previous studies using discontinuous metrizamide gradients have shown that a subpopulation of liver lysosomes is responsible for the majority of CMA activity ("CMA+ "). These CMA+ lysosomes are low density and have higher levels of MTORC2 relative to the "CMA- " lysosomes, which are high density and have higher levels of MTORC1. Because of safety concerns surrounding metrizamide, however, this compound is difficult to obtain, and it is impractically expensive. Here, we have provided protocols for isolation of lysosomal subpopulations for CMA-related analyses from mouse liver using Histodenz, a safe and affordable alternative to metrizamide. Supplementary protocols show how to perform CMA activity assays with appropriate statistical analysis, and how to analyze for lysosomal breakage/membrane integrity. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Isolation of lysosomal subpopulations from mouse liver using discontinuous Histodenz gradients Alternate Protocol: Isolation of lysosomes from cultured cells using discontinuous Histodenz gradients Support Protocol 1: Verifying enrichment of lysosomal markers in lysosome-enriched fractions Support Protocol 2: Measuring in vitro uptake of CMA substrates Support Protocol 3: Measuring lysosomal membrane integrity by hexosaminidase assay.


Assuntos
Autofagia Mediada por Chaperonas , Animais , Camundongos , Metrizamida , Lisossomos , beta-N-Acetil-Hexosaminidases , Bioensaio
8.
Talanta ; 271: 125715, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280264

RESUMO

Determining the activity of lysosomal ß-hexosaminidase in cells is of great importance for understanding the roles that these enzymes play in pathophysiological events. Herein, we designed the new fluorescent probe, ßGalNAc-Rhod-CM(NEt2), which consisted of a ßGalNAc-linked rhodol unit serving as a ß-hexosaminidase reactive fluorogenic moiety and a N,N'-diethylaminocoumarin (CM(NEt2)) group acting as a fluorescence marker for determining the degree of cell permeabilization. Treatment of ßGalNAc-Rhod-CM(NEt2) with ß-hexosaminidase promoted generation of Rhod-CM(NEt2), thereby leading to an increase in the intensity of fluorescence of Rhod. However, this probe did not respond to the functionally related glycosidase, O-GlcNAcase. The detection limit of ßGalNAc-Rhod-CM(NEt2) for ß-hexosaminidase was determined to be 0.52 nM, indicating that it has high sensitivity for this enzyme. Furthermore, the probe functioned as an excellent fluorogenic substrate for ß-hexosaminidase with kcat and Km values of 17 sec-1 and 22 µM, respectively. The results of cell studies using ßGalNAc-Rhod-CM(NEt2) showed that levels of ß-hexosaminidase activity in cells can be determined by measuring the intensity of fluorescence arising from Rhod and that the intensity of fluorescence of CM(NEt2) can be employed to determine the degree of cell permeabilization of the probe. Utilizing the new probe, we assessed ß-hexosaminidase activities in several types of cells and evaluated the effect of glucose concentrations in culture media on the activity of this enzyme.


Assuntos
Corantes Fluorescentes , beta-N-Acetil-Hexosaminidases , Corantes Fluorescentes/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Lisossomos/metabolismo , Acetilglucosaminidase/metabolismo
9.
Mol Genet Metab ; 141(3): 108140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262289

RESUMO

Tay-Sachs disease is a rare lysosomal storage disorder (LSD) caused by a mutation in the HexA gene coding ß-hexosaminidase A enzyme. The disruption of the HexA gene causes the accumulation of GM2 ganglioside resulting in progressive neurodegeneration in humans. Surprisingly, Hexa-/- mice did not show neurological phenotypes. Our group recently generated a murine model of Tay-Sachs disease exhibiting excessive GM2 accumulation and severe neuropathological abnormalities mimicking Tay-Sachs patients. Previously, we reported impaired autophagic flux in the brain of Hexa/-Neu3-/- mice. However, regulation of autophagic flux using inducers has not been clarified in Tay-Sachs disease cells. Here, we evaluated the effects of lithium treatment on dysfunctional autophagic flux using LC3 and p62 in the fibroblast and neuroglia of Hexa-/-Neu3-/- mice and Tay-Sachs patients. We discovered the clearance of accumulating autophagosomes, aggregate-prone metabolites, and GM2 ganglioside under lithium-induced conditions. Our data suggest that targeting autophagic flux with an autophagy inducer might be a rational therapeutic strategy for the treatment of Tay-Sachs disease.


Assuntos
Doença de Tay-Sachs , Humanos , Camundongos , Animais , Doença de Tay-Sachs/tratamento farmacológico , Doença de Tay-Sachs/genética , Lítio/farmacologia , Lítio/uso terapêutico , Gangliosídeo G(M2) , Autofagia , Compostos de Lítio/uso terapêutico , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/uso terapêutico
10.
J Ethnopharmacol ; 321: 117529, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042384

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma longa, known as turmeric, is an herbaceous perennial plant belonging to the genus Curcuma. It is dispersed throughout tropical and subtropical regions worldwide. Since ancient times, turmeric has been used as an ethnomedicinal plant in the Ayurvedic system, particularly in Asian countries. Rhizomes of turmeric possess several pharmacological properties that give high value as a medicinal remedy for treating a range of conditions, including inflammation, pain, allergies, and digestive issues. Moreover, turmeric leaves and pseudostems also contain a variety of health-enhancing secondary metabolites, such as curcumin, flavonoids, and other phenolic compounds, which exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant properties. AIM OF THE STUDY: Allergic diseases are a group of immune-mediated disorders mainly caused by an immunoglobulin E (IgE)-dependent immunological response to an innocuous allergen. Therefore, this study aimed to investigate the effect of leaves and pseudostems extract of turmeric (TLSWE-8510) on IgE/bovine serum albumin (BSA)-stimulated allergic responses in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. MATERIALS AND METHODS: The effect of TLSWE-8510 on mast cell degranulation has been evaluated by investigating the release of ß-hexosaminidase and histamine in IgE/BSA-stimulated BMCMCs. Additionally, anti-allergic properties of TLSWE-8510 on IgE/BSA-stimulated BMCMCs were investigated using suppression of nuclear factor-kappa B (NF-κB), and spleen tyrosine kinase (Syk)-linker for T-cell activation (LAT)-extracellular-signal-regulated kinase (ERK)-GRB2 associated binding protein 2 (Gab2) signaling pathway and downregulation of allergy-related cytokines and chemokines expression. Furthermore, in vivo, studies were conducted using IgE-mediated PCA in BALB/c mice. RESULTS: TLSWE-8510 treatment significantly inhibited the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine dose-dependently. Additionally, TLSWE-8510 reduced the expression of high-affinity IgE receptors (Fc epsilon receptor I-FcεRI) on the surface of BMCMCs and the binding of IgE to FcεRI. Besides, the expression of cytokines and chemokines is triggered by IgE/BSA stimulation via activating the allergy-related signaling pathways. TLSWE-8510 dose-dependently downregulated the mRNA expression and the production of allergy-related cytokines (interleukin (IL)-1ß, IL-3, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), and chemokines (thymus and activation-regulated chemokine (TARC), and regulated upon activation, normal T cell expressed and secreted (RANTES)) by regulating the phosphorylation of downstream signaling molecules, NF-κB, and Syk, LAT, ERK and Gab2 in IgE/BSA-stimulated BMCMCs. Moreover, PCA reaction in IgE/BSA-stimulated BALB/c mice ears was effectively decreased by TLSWE-8510 treatment in a dose-dependent manner. CONCLUSIONS: These results collectively demonstrated that TLSWE-8510 suppressed mast cell degranulation by inhibiting the release of chemical mediators related to allergies. TLSWE-8510 downregulated the allergy-related cytokines and chemokines expression and phosphorylation of downstream signaling molecules in IgE/BSA-stimulated BMCMCs. Furthermore, in vivo studies with IgE-mediated PCA reaction in the BALB/c mice ears were attenuated by TLSWE-8510 treatment. These findings revealed that TLSWE-8510 has the potential as a therapeutic agent for the treatment of allergic diseases.


Assuntos
Anafilaxia , Hipersensibilidade , Camundongos , Animais , Imunoglobulina E , Curcuma , Soroalbumina Bovina , NF-kappa B/metabolismo , Histamina/metabolismo , Mastócitos , Anafilaxia Cutânea Passiva , Camundongos Endogâmicos BALB C , Medula Óssea , Hipersensibilidade/tratamento farmacológico , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Quimiocinas/metabolismo , Degranulação Celular
11.
Biosci Biotechnol Biochem ; 88(2): 181-188, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37968134

RESUMO

Type I hypersensitivity is triggered by mast cell degranulation, a stimulus-induced exocytosis of preformed secretory granules (SGs) containing various inflammatory mediators. The degree of degranulation is generally expressed as a percentage of secretory granule markers (such as ß-hexosaminidase and histamine) released into the external solution, and considerable time and labor are required for the quantification of markers in both the supernatants and cell lysates. In this study, we developed a simple fluorimetry-based degranulation assay using rat basophilic leukemia (RBL-2H3) mast cells. During degranulation, the styryl dye FM1-43 in the external solution fluorescently labeled the newly exocytosed SGs, whose increase in intensity was successively measured using a fluorescence microplate reader. In addition to the rate of ß-hexosaminidase secretion, the cellular FM1-43 intensity successfully represented the degree and kinetics of degranulation under various conditions, suggesting that this method facilitates multi-sample and/or multi-time-point analyses required for screening substances regulating mast cell degranulation.


Assuntos
Degranulação Celular , Compostos de Piridínio , Compostos de Amônio Quaternário , Ratos , Animais , Vesículas Secretórias/metabolismo , Mastócitos , beta-N-Acetil-Hexosaminidases
12.
J Microbiol Biotechnol ; 34(2): 379-386, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38037338

RESUMO

Basophils and mast cells are specialized effector cells in allergic reactions. Haliotis discus hannai (abalone), is valuable seafood. Abalone male viscera, which has a brownish color and has not been previously reported to show anti-allergic activities, was extracted with acetone. Six different acetone/hexane fractions (0, 10, 20, 30, 40, and 100%) were obtained using a silica column via ß-hexosaminidase release inhibitory activity-guided selection in phorbol myristate acetate and a calcium ionophore, A23187 (PMACI)-induced human basophils, KU812F cells. The 40% acetone/hexane fraction (A40) exhibited the strongest inhibition of PMACI-induced-ß-hexosaminidase release. This fraction dose-dependently inhibited reactive oxygen species (ROS) production and calcium mobilization without cytotoxicity. Western blot analysis revealed that A40 down-regulated PMACI-induced MAPK (ERK 1/2, p-38, and JNK) phosphorylation, and the NF-κB translocation from the cytosol to membrane. Moreover, A40 inhibited PMACI-induced interleukin (IL)-1ß, IL-6, and IL-8 production. Anti-allergic activities of A40 were confirmed based on inhibitory effects on IL-4 and tumor necrosis factor alpha (TNF-α) production in compound (com) 48/80-induced rat basophilic leukemia (RBL)-2H3 cells. A40 inhibited ß-hexosaminidase release and cytokine production such as IL-4 and TNF-α produced by com 48/80-stimulated RBL-2H3 cells. Furthermore, it's fraction attenuated the IgE/DNP-induced passive cutaneous anaphylaxis (PCA) reaction in the ears of BALB/c mice. Our results suggest that abalone contains the active fraction, A40 is a potent therapeutic and functional material to treat allergic diseases.


Assuntos
Anafilaxia , Antialérgicos , Ratos , Camundongos , Masculino , Humanos , Animais , Anafilaxia/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Basófilos/metabolismo , Hexanos , Imunoglobulina E , Acetona , Interleucina-4/metabolismo , Vísceras/metabolismo , Antialérgicos/farmacologia , p-Metoxi-N-metilfenetilamina/farmacologia , beta-N-Acetil-Hexosaminidases , Citocinas/metabolismo
13.
PeerJ ; 11: e16417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144177

RESUMO

Jellyfish are economically important organisms in diverse countries, carnivorous organisms that consume various prey (crustaceans, mollusks, bivalves, etc.) and dissolved carbohydrates in marine waters. This study was focused on detecting and quantifying the activity of digestive glycosidases from the cannonball jellyfish (Stomolophus sp. 2) to understand carbohydrate digestion and its temporal-spatial variation. Twenty-three jellyfish gastric pouches were collected in 2015 and 2016 in the Gulf of California in three localities (Las Guásimas, Hermosillo, and Caborca). Nine samples were in intra-localities from Las Guásimas. Chitinase (Ch), ß-glucosidase (ß-glu), and ß-N-acetylhexosaminidase (ß-NAHA) were detected in the gastric pouches. However, cellulase, exoglucanase, α-amylase, polygalacturonase, xylanase, and κ-carrageenase were undetected. Detected enzymes showed halotolerant glycolytic activity (i = 0-4 M NaCl), optimal pH, and temperature at 5.0 and 30-50 °C, respectively. At least five ß-glucosidase and two ß-N-acetylhexosaminidase were detected using zymograms; however, the number of proteins with chitinase activity is not precise. The annual variation of cannonball jellyfish digestive glycosidases from Las Guásimas between 2015-2016 does not show significant differences despite the difference in phytoplankton measured as chlorophyll α (1.9 and 3.4 mg/m3, respectively). In the inter-localities, the glycosidase activity was statistically different in all localities, except for ß-N-acetylhexosaminidase activity between Caborca and Hermosillo (3,009.08 ± 87.95 and 3,101.81 ± 281.11 mU/g of the gastric pouch, respectively), with chlorophyll α concentrations of 2.6, 3.4 mg/m3, respectively. For intra-localities, the glycosidase activity did not show significant differences, with a mean chlorophyll α of 1.3 ± 0.1 mg/m3. These results suggest that digestive glycosidases from Stomolophus sp. 2 can hydrolyze several carbohydrates that may belong to their prey or carbohydrates dissolved in marine waters, with salinity over ≥ 0.6 M NaCl and diverse temperature (4-80 °C) conditions. Also, chlorophyll α is related to glycosidase activity in both seasons and inter-localities, except for chitinase activity in an intra-locality (Las Guásimas).


Assuntos
Celulases , Quitinases , Cifozoários , Animais , Glicosídeo Hidrolases , Cloreto de Sódio , Cifozoários/química , beta-N-Acetil-Hexosaminidases , Carboidratos , Clorofila
14.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132111

RESUMO

Tay-Sachs disease (TSD) is a progressive heritable neurodegenerative disorder characterized by the deficiency of the lysosomal ß-hexosaminidase enzyme (Hex-/-) and the storage of GM2 ganglioside, as well as other related glycoconjugates. Along with motor difficulties, TSD patients also manifest a gradual loss of skills and behavioral problems, followed by early death. Unfortunately, there is no cure for TSD; however, research on treatments and therapeutic approaches is ongoing. This study underlines the importance of gemfibrozil (GFB), an FDA-approved lipid-lowering drug, in inhibiting the disease process in a transgenic mouse model of Tay-Sachs. Oral administration of GFB significantly suppressed glial activation and inflammation, while also reducing the accumulation of GM2 gangliosides/glycoconjugates in the motor cortex of Tay-Sachs mice. Furthermore, oral GFB improved behavioral performance and increased the life expectancy of Tay-Sachs mice. While investigating the mechanism, we found that oral administration of GFB increased the level of peroxisome proliferator-activated receptor α (PPARα) in the brain of Tay-Sachs mice, and that GFB remained unable to reduce glycoconjugates and improve behavior and survival in Tay-Sachs mice lacking PPARα. Our results indicate a beneficial function of GFB that employs a PPARα-dependent mechanism to halt the progression of TSD and increase longevity in Tay-Sachs mice.


Assuntos
Doença de Tay-Sachs , Humanos , Animais , Camundongos , Doença de Tay-Sachs/tratamento farmacológico , PPAR alfa/uso terapêutico , Genfibrozila/farmacologia , Genfibrozila/uso terapêutico , beta-N-Acetil-Hexosaminidases , Hipolipemiantes/uso terapêutico , Glicoconjugados
15.
J Nucl Med ; 64(10): 1588-1593, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37934021

RESUMO

O-GlcNAcylation is thought to play a role in the development of tau pathology in Alzheimer's disease because of its ability to modulate tau's aggregation propensity. O-GlcNAcylation is regulated by 2 enzymes: O-GlcNAc transferase and O-GlcNAcase (OGA). Development of a PET tracer would therefore be an essential tool for developing therapeutic small-molecule inhibitors of OGA, enabling clinical testing of target engagement and dose selection. Methods: A collection of small-molecule compounds was screened for inhibitory activity and high-affinity binding to OGA, as well as favorable PET tracer attributes (multidrug resistance protein 1 efflux, central nervous system PET multiparameter optimization, etc.). Two lead compounds with high affinity and selectivity for OGA were selected for further profiling, including OGA binding to tissue homogenate using a radioligand competition binding assay. In vivo pharmacokinetics were established using a microdosing approach with unlabeled compounds in rats. In vivo imaging studies were performed in rodents and nonhuman primates (NHPs) with 11C-labeled compounds. Results: Two selected candidates, BIO-735 and BIO-578, displayed promising attributes in vitro. After radiolabeling with tritium, [3H]BIO-735 and [3H]BIO-578 binding in rodent brain homogenates demonstrated dissociation constants of 0.6 and 2.3 nM, respectively. Binding was inhibited, concentration-dependently, by homologous compounds and thiamet G, a well-characterized and structurally diverse OGA inhibitor. Imaging studies in rats and NHPs showed both tracers had high uptake in the brain and inhibition of binding to OGA in the presence of a nonradioactive compound. However, only BIO-578 demonstrated reversible binding kinetics within the time frame of a PET study with a 11C-labeled molecule to enable quantification using kinetic modeling. Specificity of tracer uptake was confirmed with a 10 mg/kg blocking dose of thiamet G. Conclusion: We describe the development and testing of 2 11C PET tracers targeting the protein OGA. The lead compound BIO-578 demonstrated high affinity and selectivity for OGA in rodent and human postmortem brain tissue, leading to its further testing in NHPs. NHP PET imaging studies showed that the tracer had excellent brain kinetics, with full inhibition of specific binding by thiamet G. These results suggest that the tracer [11C]BIO-578 is well suited for further characterization in humans.


Assuntos
Encéfalo , beta-N-Acetil-Hexosaminidases , Humanos , Ratos , Animais , Piranos
16.
J Biol Chem ; 299(12): 105411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918804

RESUMO

O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.


Assuntos
Doença de Alzheimer , N-Acetilglucosaminiltransferases , Doença de Parkinson , Humanos , Acetilglucosamina/metabolismo , Doença de Alzheimer/enzimologia , Precursor de Proteína beta-Amiloide/metabolismo , beta-N-Acetil-Hexosaminidases/genética , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Doença de Parkinson/enzimologia , Processamento de Proteína Pós-Traducional , Inibidores Enzimáticos/farmacologia
17.
J Agric Food Chem ; 71(47): 18333-18344, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967522

RESUMO

Chitinase has been identified as an important target for insecticides. In this study, a series of novel chitinase inhibitors was designed and synthesized with nitrobenzoxadiazoles. Compound 8d, which contains the N-methylcarbamoylguanidinyl, exhibited high enzyme inhibitory activity and achieved nanomolar inhibition against OfChtI (IC50 = 12.3 nM). Delightfully, it was also found to possess significant inhibitory activity against OfHex1 (IC50 = 1.76 µM). The computational simulation results indicated that compound 8d interacted with OfChtI and OfHex1 in similar modes through hydrogen bonds and hydrophobic and π-π interactions. Insecticidal activity studies revealed that compound 8d showed high mortality against the Lepidoptera Plutella xylostella (mortality rate = 81%) at 200 mg/L. Toxicity studies indicated that compound 8d exhibited negligible toxicity to the natural enemy Trichogramma ostriniae. These results indicate that compound 8d may be a promising candidate for the development of environmentally friendly chitinase inhibitors. Moreover, this study provides a new angle for the design of innovative inhibitors of chitinolytic enzymes.


Assuntos
Quitinases , Inseticidas , Lepidópteros , Animais , Simulação de Acoplamento Molecular , Inseticidas/química , beta-N-Acetil-Hexosaminidases
18.
Bioorg Chem ; 140: 106819, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666109

RESUMO

A new class of compounds inhibiting de-O-glycosylation of proteins has been identified. Highly substituted diaminocyclopentanes are impressively selective reversible non-transition state O-ß-N-acetyl-d-glucosaminidase (O-GlcNAcase) inhibitors. The ease of preparative access and remarkable biological activities provide highly viable leads for the development of anti-tau-phosphorylation agents with a view to eventually ameliorating Alzheimer's disease.


Assuntos
Doença de Alzheimer , beta-N-Acetil-Hexosaminidases , Humanos , Hexosaminidases , Glicosilação
19.
J Cell Mol Med ; 27(22): 3628-3636, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37680043

RESUMO

This study was to explore the activation of mast cells by microbubbles, with the focus on transient receptor potential (TRP) channels mediated degranulation and calcium influx. Bone marrow-derived mast cells (BMMCs) were primarily obtained from femurs in mice and induced differentiation for 4 weeks. After the purity identification, BMMCs were contacted by homogeneous microbubbles with the diameter of 1 mm for 1 h. ß-hexosaminidase and histamine levels in supernatants were assessed by enzyme-linked immunosorbent assay (ELISA) and the CD63 expression was tested by flow cytometry. The intracellular calcium binding with Fluo-4 AM dyes in BMMCs was observed under the fluorescence microscope and the mean fluorescence intensity was quantitatively measured by flow cytometry. ß-hexosaminidase release, histamine concentration, CD63 expression and calcium influx were significantly increased in BMMCs group upon microbubble stimulation compared to the control groups. After preconditioning with the available inhibitors and microbubble contact, only transient receptor potential vanilloid 1 (TRPV1) and TRPV4 inhibitors robustly suppressed the microbubble-induced degranulation. Likewise, the elevated fluorescence intensity of cytosolic calcium level was also significantly weaken. The results demonstrated microbubble stimulus effectively promoted BMMCs degranulation, which could be substantially restrained by inhibitors targeted for blocking TRPV1 or TRPV4 channel. The alternation of intracellular calcium level in BMMCs was consistent with the changes of degranulation capacity. It's suggested that the activation of BMMCs by microbubbles may involve specific TRP calcium dependent channels.


Assuntos
Histamina , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Histamina/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Microbolhas , Cálcio/metabolismo , Mastócitos/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/farmacologia , Células da Medula Óssea/metabolismo
20.
Biochemistry ; 62(16): 2358-2362, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37498728

RESUMO

Engineering glycoside hydrolases is a major route to obtaining catalysts forming glycosidic bonds. Glycosynthases, thioglycoligases, and transglycosylases represent the main strategies, each having advantages and drawbacks. Here, we show that an engineered enzyme from the GH84 family, the acid-base mutant TtOGA-D120N, is an efficient O-, N-, and S-glycoligase, able to use Ssp3, Osp3, Nsp2, and Nsp nucleophiles. Moreover, TtOGA-D120N catalyzes the formation and release of N-acetyl-d-glucosamine 1,2-oxazoline, the intermediate of hexosaminidases displaying substrate-assisted catalysis. This release of an activated intermediate allows cascade synthesis by combination with transglycosylases or glycosynthases, here exemplified by synthesis of the human milk oligosaccharide lacto-N-triose II.


Assuntos
Hexosaminidases , beta-N-Acetil-Hexosaminidases , Humanos , Glicosilação , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/metabolismo , Glicosiltransferases , Glicosídeo Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...