Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.569
Filtrar
1.
Pflugers Arch ; 476(4): 457-465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581526

RESUMO

Soluble adenylyl cyclase (sAC) differs from transmembrane adenylyl cyclases (tmAC) in many aspects. In particular, the activity of sAC is not regulated by G-proteins but by the prevailing bicarbonate concentrations inside cells. Therefore, sAC serves as an exquisite intracellular pH sensor, with the capacity to translate pH changes into the regulation of localization and/or activity of cellular proteins involved in pH homeostasis. In this review, we provide an overview of literature describing the regulation of sAC activity by bicarbonate, pinpointing the importance of compartmentalization of intracellular cAMP signaling cascades. In addition, examples of processes involving proton and bicarbonate transport in different cell types, in which sAC plays an important regulatory role, were described in detail.


Assuntos
Adenilil Ciclases , AMP Cíclico , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Bicarbonatos/metabolismo , Transdução de Sinais/fisiologia , Concentração de Íons de Hidrogênio
2.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593080

RESUMO

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Assuntos
Marchantia , Masculino , Animais , Marchantia/genética , AMP Cíclico/metabolismo , Motilidade dos Espermatozoides/genética , Sementes/metabolismo , Adenilil Ciclases/metabolismo , Espermatozoides/metabolismo
3.
Cell Commun Signal ; 22(1): 218, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581012

RESUMO

Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/ß5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/ß5 loop, the α4 helix, and the α4/ß6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.


Assuntos
Adenilil Ciclases , GTP Fosfo-Hidrolases , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Transporte , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473855

RESUMO

In order to determine the behavior of the right ventricle, we have reviewed the existing literature in the area of cardiac remodeling, signal transduction pathways, subcellular mechanisms, ß-adrenoreceptor-adenylyl cyclase system and myocardial catecholamine content during the development of left ventricular failure due to myocardial infarction. The right ventricle exhibited adaptive cardiac hypertrophy due to increases in different signal transduction pathways involving the activation of protein kinase C, phospholipase C and protein kinase A systems by elevated levels of vasoactive hormones such as catecholamines and angiotensin II in the circulation at early and moderate stages of heart failure. An increase in the sarcoplasmic reticulum Ca2+ transport without any changes in myofibrillar Ca2+-stimulated ATPase was observed in the right ventricle at early and moderate stages of heart failure. On the other hand, the right ventricle showed maladaptive cardiac hypertrophy at the severe stages of heart failure due to myocardial infarction. The upregulation and downregulation of ß-adrenoreceptor-mediated signal transduction pathways were observed in the right ventricle at moderate and late stages of heart failure, respectively. The catalytic activity of adenylate cyclase, as well as the regulation of this enzyme by Gs proteins, were seen to be augmented in the hypertrophied right ventricle at early, moderate and severe stages of heart failure. Furthermore, catecholamine stores and catecholamine uptake in the right ventricle were also affected as a consequence of changes in the sympathetic nervous system at different stages of heart failure. It is suggested that the hypertrophied right ventricle may serve as a compensatory mechanism to the left ventricle during the development of early and moderate stages of heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ventrículos do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Catecolaminas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo
5.
Calcif Tissue Int ; 114(4): 430-443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483547

RESUMO

Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients.


Assuntos
Aminopiridinas , Benzamidas , Reabsorção Óssea , Inibidores da Fosfodiesterase 4 , Humanos , Camundongos , Animais , Rolipram/farmacologia , Rolipram/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/metabolismo , Osteoclastos/metabolismo , Adenilil Ciclases/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Canais de Cloreto/genética , Ciclopropanos
6.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38433340

RESUMO

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Assuntos
Tubarões , Animais , Tubarões/metabolismo , Glândula de Sal/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Cação (Peixe)/metabolismo , Adenilil Ciclases/metabolismo , Adenilil Ciclases/farmacologia , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Sódio/metabolismo , Sódio/farmacologia , Potássio/metabolismo , Potássio/farmacologia
7.
Mol Brain ; 17(1): 11, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389098

RESUMO

Adenylyl cyclase 1 (AC1) is a selective subtype of ACs, which is selectively expressed in neurons. The activation of AC1 is activity-dependent, and AC1 plays an important role in cortical excitation that contributes to chronic pain and related emotional disorders. Previous studies have reported that human-used NB001 (hNB001, a selective AC1 inhibitor) produced analgesic effects in different animal models of chronic pain. However, the potential effects of hNB001 on learning and memory have been less investigated. In the present study, we found that hNB001 affected neither the induction nor the expression of trace fear, but selectively enhanced the relearning ability during the extinction in aged mice. By contrast, the same application of hNB001 did not affect recent, remote auditory fear memory, or remote fear extinction in either adult or aged mice. Furthermore, a single or consecutive 30-day oral administration of hNB001 did not affect acute nociceptive response, motor function, or anxiety-like behavior in either adult or aged mice. Our results are consistent with previous findings that inhibition of AC1 did not affect general sensory, emotional, and motor functions in adult mice, and provide strong evidence that inhibiting the activity of AC1 may be beneficial for certain forms of learning and memory in aged mice.


Assuntos
Dor Crônica , Medo , Humanos , Camundongos , Animais , Medo/fisiologia , Extinção Psicológica , Adenilil Ciclases/metabolismo , Neurônios/metabolismo
8.
Sci Rep ; 14(1): 4440, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396287

RESUMO

3',5'-Cyclic adenosine monophosphate (cAMP), the first identified second messenger, is implicated in diverse cellular processes involving cellular metabolism, cell proliferation and differentiation, apoptosis, and gene expression. cAMP is synthesized by adenylyl cyclase (AC), which converts ATP to cAMP upon activation of Gαs-protein coupled receptors (GPCRs) in most cases and hydrolyzed by cyclic nucleotide phosphodiesterases (PDEs) to 5'-AMP. Dysregulation of cAMP signaling is implicated in a wide range of pathophysiological conditions such as cardiovascular diseases, neurodegenerative and behavioral disorders, cancers, diabetes, obesity, cataracts, and others. Therefore, cAMP targeted therapies have been and are still undergoing intense investigation for the treatment of these and other diseases. This highlights the need for developing assays to detect and monitor cAMP levels. In this study, we show cAMP Lumit assay as a highly specific homogeneous bioluminescent assay suitable for high throughput screenings with a large assay window and a wide dynamic range for cAMP detection. We believe that this assay will aid and simplify drug discovery screening efforts for cAMP signaling targeted therapies.


Assuntos
AMP Cíclico , Transdução de Sinais , AMP Cíclico/metabolismo , Adenilil Ciclases/metabolismo , Diferenciação Celular , Descoberta de Drogas
9.
Commun Biol ; 7(1): 147, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307988

RESUMO

Structural insights into the photoactivated adenylate cyclases can be used to develop new ways of controlling cellular cyclic adenosine monophosphate (cAMP) levels for optogenetic and other applications. In this work, we use an integrative approach that combines biophysical and structural biology methods to provide insight on the interaction of adenosine triphosphate (ATP) with the dark-adapted state of the photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata (OaPAC). A moderate affinity of the nucleotide for the enzyme was calculated and the thermodynamic parameters of the interaction have been obtained. Stopped-flow fluorescence spectroscopy and small-angle solution scattering have revealed significant conformational changes in the enzyme, presumably in the adenylate cyclase (AC) domain during the allosteric mechanism of ATP binding to OaPAC with small and large-scale movements observed to the best of our knowledge for the first time in the enzyme in solution upon ATP binding. These results are in line with previously reported drastic conformational changes taking place in several class III AC domains upon nucleotide binding.


Assuntos
Trifosfato de Adenosina , Adenilil Ciclases , Adenilil Ciclases/genética , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Trifosfato de Adenosina/metabolismo , Espectrometria de Fluorescência , Raios X , Conformação Molecular
10.
ACS Synth Biol ; 13(3): 825-836, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377949

RESUMO

Enhancement of glucose-stimulated insulin secretion (GSIS) in exogenously delivered pancreatic ß-cells is desirable, for example, to overcome the insulin resistance manifested in type 2 diabetes or to reduce the number of ß-cells for supporting homeostasis of blood sugar in type 1 diabetes. Optogenetically engineered cells can potentiate their function with exposure to light. Given that cyclic adenosine monophosphate (cAMP) mediates GSIS, we surmised that optoamplification of GSIS is feasible in human ß-cells carrying a photoactivatable adenylyl cyclase (PAC). To this end, human EndoC-ßH3 cells were engineered to express a blue-light-activated PAC, and a workflow was established combining the scalable manufacturing of pseudoislets (PIs) with efficient adenoviral transduction, resulting in over 80% of cells carrying PAC. Changes in intracellular cAMP and GSIS were determined with the photoactivation of PAC in vitro as well as after encapsulation and implantation in mice with streptozotocin-induced diabetes. cAMP rapidly rose in ß-cells expressing PAC with illumination and quickly declined upon its termination. Light-induced amplification in cAMP was concomitant with a greater than 2-fold GSIS vs ß-cells without PAC in elevated glucose. The enhanced GSIS retained its biphasic pattern, and the rate of oxygen consumption remained unchanged. Diabetic mice receiving the engineered ß-cell PIs exhibited improved glucose tolerance upon illumination compared to those kept in the dark or not receiving cells. The findings support the use of optogenetics for molecular customization of the ß-cells toward better treatments for diabetes without the adverse effects of pharmacological approaches.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Insulina , Linhagem Celular , Glucose/farmacologia , AMP Cíclico , Adenilil Ciclases/genética
11.
EMBO Rep ; 25(3): 1513-1540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351373

RESUMO

Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca2+ signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.5 Å resolution cryo-EM structure of the bovine AC8 bound to the stimulatory Gαs protein in the presence of Ca2+/CaM. The structure reveals the architecture of the ordered AC8 domains bound to Gαs and the small molecule activator forskolin. The extracellular surface of AC8 features a negatively charged pocket, a potential site for unknown interactors. Despite the well-resolved forskolin density, the captured state of AC8 does not favour tight nucleotide binding. The structural proteomics approaches, limited proteolysis and crosslinking mass spectrometry (LiP-MS and XL-MS), allowed us to identify the contact sites between AC8 and its regulators, CaM, Gαs, and Gßγ, as well as to infer the conformational changes induced by these interactions. Our results provide a framework for understanding the role of flexible regions in the mechanism of AC regulation.


Assuntos
Adenilil Ciclases , Calmodulina , Animais , Bovinos , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Colforsina/farmacologia , Microscopia Crioeletrônica , Proteômica , Proteínas de Ligação ao GTP/metabolismo
12.
Bull Exp Biol Med ; 176(3): 359-362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38342810

RESUMO

Ion channels activity is regulated through soluble guanylate cyclase (sGC) and adenylate cyclase (AC) pathways, while phosphodiesterases (PDE) control the intracellular levels of cAMP and cGMP. Here we applied RNA transcriptome sequencing to study changes in the gene expression of the sGC, AC, and PDE isoforms in isolated rat ventricular cardiomyocytes under conditions of microgravity and hypergravity. Our results demonstrate that microgravity reduces the expression of sGC isoform genes, while hypergravity increases their expression. For a subset of AC isoforms, gene expression either increased or decreased under both microgravity and hypergravity conditions. The expression of genes encoding 10 PDE isoforms decreased under microgravity, but increased under hypergravity. However, under both microgravity and hypergravity, the gene expression increased for 7 PDE isoforms and decreased for 3 PDE isoforms. Overall, our findings indicate specific gravity-dependent changes in the expression of genes of isoforms associated with the studied enzymes.


Assuntos
Hipergravidade , Ausência de Peso , Ratos , Animais , Diester Fosfórico Hidrolases/metabolismo , Guanilil Ciclase Solúvel , Adenilil Ciclases/genética , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , GMP Cíclico/metabolismo
13.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345221

RESUMO

Our goal was to accurately track the cellular distribution of an optogenetic protein and evaluate its functionality within a specific cytoplasmic location. To achieve this, we co-transfected cells with nuclear-targeted cAMP sensors and our laboratory-developed optogenetic protein, bacterial photoactivatable adenylyl cyclase-nanoluciferase (bPAC-nLuc). bPAC-nLuc, when stimulated with 445 nm light or luciferase substrates, generates adenosine 3',5'-cyclic monophosphate (cAMP). We employed a solid-state laser illuminator connected to a point scanning system that allowed us to create a grid/matrix pattern of small illuminated spots (~1 µm2) throughout the cytoplasm of HC-1 cells. By doing so, we were able to effectively track the distribution of nuclear-targeted bPAC-nLuc and generate a comprehensive cAMP response map. This map accurately represented the cellular distribution of bPAC-nLuc, and its response to light stimulation varied according to the amount of protein in the illuminated spot. This innovative approach contributes to the expanding toolkit of techniques available for investigating cellular optogenetic proteins. The ability to map its distribution and response with high precision has far-reaching potential and could advance various fields of research.


Assuntos
AMP Cíclico , Luz , AMP Cíclico/metabolismo , Optogenética/métodos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo
14.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251682

RESUMO

Our prior study (Tarasov et al., 2022) discovered that numerous adaptive mechanisms emerge in response to cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) which included overexpression of a large number of proteins. Here, we conducted an unbiased phosphoproteomics analysis in order to determine the role of altered protein phosphorylation in the adaptive heart performance and protection profile of adult TGAC8 left ventricle (LV) at 3-4 months of age, and integrated the phosphoproteome with transcriptome and proteome. Based on differentially regulated phosphoproteins by genotype, numerous stress-response pathways within reprogrammed TGAC8 LV, including PKA, PI3K, and AMPK signaling pathways, predicted upstream regulators (e.g. PDPK1, PAK1, and PTK2B), and downstream functions (e.g. cell viability, protein quality control), and metabolism were enriched. In addition to PKA, numerous other kinases and phosphatases were hyper-phosphorylated in TGAC8 vs. WT. Hyper-phosphorylated transcriptional factors in TGAC8 were associated with increased mRNA transcription, immune responses, and metabolic pathways. Combination of the phosphoproteome with its proteome and with the previously published TGAC8 transcriptome enabled the elucidation of cardiac performance and adaptive protection profiles coordinately regulated at post-translational modification (PTM) (phosphorylation), translational, and transcriptional levels. Many stress-response signaling pathways, i.e., PI3K/AKT, ERK/MAPK, and ubiquitin labeling, were consistently enriched and activated in the TGAC8 LV at transcriptional, translational, and PTM levels. Thus, reprogramming of the cardiac phosphoproteome, proteome, and transcriptome confers resilience to chronic adenylyl cyclase-driven stress. We identified numerous pathways/function predictions via gene sets, phosphopeptides, and phosphoproteins, which may point to potential novel therapeutic targets to enhance heart adaptivity, maintaining heart performance while avoiding cardiac dysfunction.


Assuntos
Proteoma , Resiliência Psicológica , Adulto , Humanos , Adenilil Ciclases/genética , Transcriptoma , Fosfatidilinositol 3-Quinases , Fosfoproteínas/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo
15.
Mol Ther ; 32(3): 646-662, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291755

RESUMO

The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.


Assuntos
Adenilil Ciclases , Infarto do Miocárdio , Humanos , Ratos , Animais , Regulação para Cima , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Sinalização do Cálcio , Infarto do Miocárdio/genética , Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
16.
Neurobiol Dis ; 191: 106403, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182074

RESUMO

Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gß5 and ß-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.


Assuntos
Distonia , Distúrbios Distônicos , Ratos , Animais , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Dopamina/metabolismo , AMP Cíclico/metabolismo , Distonia/genética , Transdução de Sinais/fisiologia , Corpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Isoformas de Proteínas/metabolismo
17.
J Mol Biol ; 436(5): 168439, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185322

RESUMO

The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.


Assuntos
Adenilil Ciclases , Proteínas de Bactérias , Oscillatoria , Fotorreceptores Microbianos , Trifosfato de Adenosina/química , Adenilil Ciclases/química , Adenilil Ciclases/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Flavina-Adenina Dinucleotídeo/química , Transdução de Sinais , Espectroscopia de Infravermelho com Transformada de Fourier , Oscillatoria/enzimologia , Domínio Catalítico , Triptofano/química , Metionina/química , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efeitos da radiação , Ativação Enzimática
18.
Neurochem Int ; 174: 105677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290616

RESUMO

It is widely acknowledged that epilepsy is a neurological disorder characterized by recurrent and atypical neuronal discharges, resulting in transient dysfunction within the brain. The protective role of hydrogen sulfide (H2S) in epilepsy has been elucidated by recent studies, but the underlying mechanisms remain poorly understood. To investigate this, the concentration of H2S was measured by spectrophotometry and a fluorescent probe in LiCl/Pilocarpine (LiCl/Pilo)-induced seizures in rats. The localization of proteins was examined using immunofluorescence. Electroencephalogram and behavioral tests were employed to evaluate the occurrence of seizures. Neuropathological changes in the hippocampus were examined by hematoxylin-eosin staining, Nissl staining, and transmission electron microscopy. Through proteomics and bioinformatics analysis, we identified the differential proteins in the hippocampus of rats following H2S intervention. Protein changes were detected through western blotting. The results showed that H2S treatment significantly alleviated seizures and minimized post-seizures neurological damage in rats. Proteomics analysis revealed adenylate cyclase 3 (AC3) as a protein potentially targeted by H2S. Moreover, the AC3 activator forskolin reversed the downregulation effect of H2S on the AC3/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/transient receptor potential vanilloid 2 (TRPV2) signaling pathway. In conclusion, H2S targets and downregulates the expression of AC3, thereby modulating the AC3/cAMP/PKA signaling pathway to regulate the expression of TRPV2 in LiCl/Pilo-induced seizures, ultimately leading to seizure inhibition and neuroprotection.


Assuntos
Adenilil Ciclases , Epilepsia , Pilocarpina , Ratos , Animais , Pilocarpina/toxicidade , Neuroproteção , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Convulsões/metabolismo , AMP Cíclico/metabolismo , Epilepsia/induzido quimicamente
19.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38258300

RESUMO

Absorptive hypercalciuria (AH) is a prevalent cause of kidney stones, and the adenylate cyclase 10 (ADCY10) gene is a rare causative gene of AH. This study aims to investigate the genotypic and phenotypic characteristics of patients with AH caused by ADCY10 gene mutations. Whole-exome sequencing and Sanger sequencing were performed on the probands and their family members, respectively. Clinical and genetic data of patients with AH caused by ADCY10 gene mutations were collected and analysed retrospectively from the present study and published literature. Two female patients (6 years old and 1 year old) with multiple bilateral kidney stones were found to have a heterozygous c.3304T>C mutation and a heterozygous c.1726C>T mutation in the ADCY10 gene. Urinary metabolite analysis revealed that urine calcium / creatinine ratios were 0.95 mmol/mmol and 1.61 mmol/mmol, respectively. Both patients underwent thiazide intake postoperatively, and upon reexamination, urine calcium decreased to within the normal range. A total of 61 patients with AH were reported from previous and present studies. The sex ratio was 7:5 for males to females, and the mean age of onset was 23.61±20.08 years. A total of 16 ADCY10 gene mutations were identified, including seven missense (43.75%), five splicing (31.25%), two frameshift (12.50%) and two nonsense mutations (12.50%). Only two cases were identified as homozygous mutations (c.1205_1206del), and the others were heterozygous mutations. In summary, we identified two novel ADCY10 gene candidate pathogenic variants in Chinese pediatric patients, which expands the mutational spectrum of the ADCY10 gene and provides a potential diagnostic and therapeutic target.


Assuntos
Adenilil Ciclases , Hipercalciúria , Cálculos Renais , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Adenilil Ciclases/genética , Cálcio , China , Hipercalciúria/genética , Cálculos Renais/genética , Estudos Retrospectivos
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166936, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37951509

RESUMO

Soluble adenylyl cyclase (sAC) is the evolutionarily most ancient of a set of 10 adenylyl cyclases (Adcys). While Adcy1 to Adcy9 are cAMP-producing enzymes that are activated by G-protein coupled receptors (GPCRs), Adcy10 (sAC) is an intracellular adenylyl cyclase. sAC plays a pivotal role in numerous cellular processes, ranging from basic physiological functions to complex signaling cascades. As a distinct member of the adenylyl cyclase family, sAC is not activated by GPCRs and stands apart due to its unique characteristics, regulation, and localization within cells. This minireview aims to honour Ulli Brandt, the outgoing Executive Editor of our journal, Biochimica Biophysica Acta (BBA), and longstanding Executive Editor of the BBA section Bioenergetics. We will therefore focus this review on bioenergetic aspects of sAC and, in addition, review some important recent general developments in the field of research on sAC.


Assuntos
Adenilil Ciclases , Transdução de Sinais , Adenilil Ciclases/metabolismo , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...