Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.542
Filtrar
2.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38508664

RESUMO

The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway plays a key role in the pathogenesis of pulmonary hypertension (PH). Targeted treatments include phosphodiesterase type 5 inhibitors (PDE5i) and sGC stimulators. The sGC stimulator riociguat is approved for the treatment of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). sGC stimulators have a dual mechanism of action, enhancing the sGC response to endogenous NO and directly stimulating sGC, independent of NO. This increase in cGMP production via a dual mechanism differs from PDE5i, which protects cGMP from degradation by PDE5, rather than increasing its production. sGC stimulators may therefore have the potential to increase cGMP levels under conditions of NO depletion that could limit the effectiveness of PDE5i. Such differences in mode of action between sGC stimulators and PDE5i could lead to differences in treatment efficacy between the classes. In addition to vascular effects, sGC stimulators have the potential to reduce inflammation, angiogenesis, fibrosis and right ventricular hypertrophy and remodelling. In this review we describe the evolution of treatments targeting the NO-sGC-cGMP pathway, with a focus on PH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Guanilil Ciclase Solúvel/metabolismo , Hipertensão Pulmonar/etiologia , Óxido Nítrico/metabolismo , Transdução de Sinais , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo
3.
PLoS One ; 19(3): e0300282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483883

RESUMO

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Assuntos
Dinorfinas , 60598 , Corno Dorsal da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Camundongos Transgênicos , Interneurônios/metabolismo , Células do Corno Posterior/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo
4.
EMBO J ; 43(8): 1519-1544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528180

RESUMO

Pericytes and endothelial cells (ECs) constitute the fundamental components of blood vessels. While the role of ECs in tumor angiogenesis and the tumor microenvironment is well appreciated, pericyte function in tumors remains underexplored. In this study, we used pericyte-specific deletion of the nitric oxide (NO) receptor, soluble guanylate cyclase (sGC), to investigate via single-cell RNA sequencing how pericytes influence the vascular niche and the tumor microenvironment. Our findings demonstrate that pericyte sGC deletion disrupts EC-pericyte interactions, impairing Notch-mediated intercellular communication and triggering extensive transcriptomic reprogramming in both pericytes and ECs. These changes further extended their influence to neighboring cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) through paracrine signaling, collectively suppressing tumor growth. Inhibition of pericyte sGC has minimal impact on quiescent vessels but significantly increases the vulnerability of angiogenic tumor vessels to conventional anti-angiogenic therapy. In conclusion, our findings elucidate the role of pericytes in shaping the tumor vascular niche and tumor microenvironment and support pericyte sGC targeting as a promising strategy for improving anti-angiogenic therapy for cancer treatment.


Assuntos
Neoplasias , Pericitos , Humanos , Pericitos/patologia , Pericitos/fisiologia , Guanilil Ciclase Solúvel , Células Endoteliais/fisiologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neoplasias/genética , Neoplasias/patologia , Guanilato Ciclase , Microambiente Tumoral
5.
Clin Exp Pharmacol Physiol ; 51(4): e13851, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452757

RESUMO

Benign prostatic hyperplasia (BPH) is characterised by increases in prostate volume and contraction. Downregulation of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway contributes to prostate dysfunctions. Previous studies in cancer cells or vessels have shown that the epigenetic mechanisms control the gene and protein expression of the enzymes involved in the production of NO and cGMP. This study is aimed to evaluate the effect of a 2-week treatment of 5-azacytidine (5-AZA), a DNA-methyltransferase inhibitor, in the prostate function of mice fed with a high-fat diet. Functional, histological, biochemical and molecular assays were carried out. Obese mice presented greater prostate weight, α-actin expression and contractile response induced by the α-1adrenoceptors agonist. The relaxation induced by the NO-donor and the protein expression of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) were significantly decreased in the prostate of obese mice. The treatment with 5-AZA reverted the higher expression of α-actin, reduced the hypercontractility state of the prostate and increased the expression of eNOS and sGC and intraprostatic levels of cGMP. When prostates from obese mice treated with 5-AZA were incubated in vitro with inhibitors of the NOS or sGC, the inhibitory effect of 5-AZA was reverted, therefore, showing the involvement of NO and cGMP. In conclusion, our study paves the way to develop or repurpose therapies that recover the expression of eNOS and sGC and, hence, to improve prostate function in BPH.


Assuntos
Óxido Nítrico , Hiperplasia Prostática , Masculino , Humanos , Camundongos , Animais , Óxido Nítrico/metabolismo , Guanilato Ciclase/metabolismo , Próstata/metabolismo , Camundongos Obesos , Guanosina Monofosfato/metabolismo , Azacitidina/metabolismo , Hiperplasia Prostática/metabolismo , Actinas/metabolismo , GMP Cíclico/metabolismo
6.
Nature ; 626(7999): 626-634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326614

RESUMO

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Assuntos
Evolução Molecular , Imunoterapia Adotiva , Linfoma Cutâneo de Células T , Mutação , Linfócitos T , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Citocinas/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Imunoterapia Adotiva/métodos , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/terapia , Fosfatidilinositol 3-Quinases , Transdução de Sinais/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
7.
Bull Exp Biol Med ; 176(3): 359-362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38342810

RESUMO

Ion channels activity is regulated through soluble guanylate cyclase (sGC) and adenylate cyclase (AC) pathways, while phosphodiesterases (PDE) control the intracellular levels of cAMP and cGMP. Here we applied RNA transcriptome sequencing to study changes in the gene expression of the sGC, AC, and PDE isoforms in isolated rat ventricular cardiomyocytes under conditions of microgravity and hypergravity. Our results demonstrate that microgravity reduces the expression of sGC isoform genes, while hypergravity increases their expression. For a subset of AC isoforms, gene expression either increased or decreased under both microgravity and hypergravity conditions. The expression of genes encoding 10 PDE isoforms decreased under microgravity, but increased under hypergravity. However, under both microgravity and hypergravity, the gene expression increased for 7 PDE isoforms and decreased for 3 PDE isoforms. Overall, our findings indicate specific gravity-dependent changes in the expression of genes of isoforms associated with the studied enzymes.


Assuntos
Hipergravidade , Ausência de Peso , Ratos , Animais , Diester Fosfórico Hidrolases/metabolismo , Guanilil Ciclase Solúvel , Adenilil Ciclases/genética , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , GMP Cíclico/metabolismo
8.
Bioorg Chem ; 144: 107170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335755

RESUMO

Herein, we describe the rational design, synthesis and in vitro functional characterization of new heme-dependent, direct soluble guanylyl cyclase (sGC) agonists. These new compounds bear a 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton, modified to enable efficient sGC binding and stimulation. To gain insights into structure-activity relationships, the N6-alkylation of the skeleton was explored, while a pyrimidine ring, substituted with various C5'-polar groups, was installed at position C3. Among the newly synthesized 1H-pyrazolo[3,4-c]pyridin-7(6H)-ones, derivatives 14b, 15b and 16a display characteristic features of sGC "stimulators" in A7r5 vascular smooth muscle cells in vitro. They strongly synergize with the NO donor, sodium nitroprusside (SNP) in inducing cGMP generation in a manner that requires the presence of a reduced heme moiety associated with sGC, and elevate the cGMP-responsive phosphorylation of the protein VASP at Ser239. In line with their sGC stimulating capacity, docking calculations of derivatives 16a, 15(a-c) on a cryo-EM structure of human sGC (hsGC) in an ΝΟ-activated state indicated the implication of 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton in efficient bonding interactions with the recently identified region that binds known sGC stimulators, while the presence of either a N6-H or N6-methyl group pointed to enhanced binding affinity. Moreover, the in vitro functional effects of our newly identified sGC stimulators were compatible with a beneficial role in vascular homeostasis. Specifically, derivative 14b reduced A7r5 cell proliferation, while 16a dampened the expression of adhesion molecules ICAM-1 and P/E-Selectin in Human Umbilical Vein Endothelial Cells (HUVECs), as well as the subsequent adhesion of U937 leukocytes to the HUVECs, triggered by tumor necrosis factor alpha (TNF-α) or interleukin-1 beta (IL-1ß). The fact that these compounds elevate cGMP only in the presence of NO may indicate a novel way of interaction with the enzyme and may make them less prone than other direct sGC agonists to induce characteristic hypotension in vivo.


Assuntos
Células Endoteliais , Guanilato Ciclase , Humanos , Células Endoteliais/metabolismo , Ativação Enzimática , Guanilato Ciclase/metabolismo , Heme , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores , Alquilação
9.
Platelets ; 35(1): 2313359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353233

RESUMO

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Assuntos
Plaquetas , Transdução de Sinais , Humanos , Camundongos , Animais , Fenômenos Biomecânicos , Plaquetas/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Ativação Plaquetária , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Óxido Nítrico/metabolismo , Agregação Plaquetária
10.
J Cutan Med Surg ; 28(2): 158-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38174859

RESUMO

Pityriasis rubra pilaris (PRP) is a rare, inflammatory papulosquamous skin disease with unknown exact etiology. Historically, PRP has been challenging to diagnose, especially during the acute phase, and to treat, due to its unclear pathogenesis. To better inform clinical practice, a literature review was conducted employing a broad search strategy to capture PRP-related published studies between January 1, 2012 to October 31, 2022. Two hundred twenty-one studies were identified, which were categorized into 9 themes: (1) potential causes and triggering factors, (2) comorbidities, (3) diagnostic difficulties, (4) genetics, (5) clinical manifestations and laboratory values, (6) treatment, (7) treatment-related adverse events, (8) quality of life, and (9) other. COVID-19 infection, COVID-19 vaccination, and malignancy were the most commonly reported potential triggering factors. Misdiagnosis is very common during the early acute stages. Pathogenesis and genetic studies have further implicated caspase recruitment domain family member 14 (CARD14) mutations in the development of familial PRP (Type V) and have underlined the overlap between psoriasis and PRP. To date, there are currently no specific and validated scoring systems or tools to assess the severity of PRP. While large, randomized trials are still lacking, biologic agents remain the most effective therapy.


Assuntos
COVID-19 , Pitiríase Rubra Pilar , Psoríase , Humanos , Pitiríase Rubra Pilar/diagnóstico , Pitiríase Rubra Pilar/tratamento farmacológico , Vacinas contra COVID-19 , Qualidade de Vida , Psoríase/genética , Guanilato Ciclase/uso terapêutico , Proteínas de Membrana/uso terapêutico , Proteínas Adaptadoras de Sinalização CARD/genética
11.
BMJ Case Rep ; 17(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38233005

RESUMO

A wide range of inherited and acquired conditions can manifest as infantile erythroderma, among which CARD14-associated papulosquamous eruption (CAPE) is a rare cause. An infant boy presented with a psoriasiform rash that progressed to erythroderma and was unresponsive to topical steroids and cyclosporine. The early onset of the disease, its severity and resistance to conventional treatment were suggestive of a genetic cause. Genetic evaluation revealed a homozygous CARD14 variant of uncertain significance establishing the diagnosis of CAPE, and his parents were heterozygous carriers. There was only minimal improvement in the condition with supportive management and treatment with acitretin. Unfortunately, the child succumbed to sepsis and metabolic complications following a sudden worsening of skin disease. This case highlights the significance of genetic studies in diagnosing treatment-refractory cases of infantile erythroderma and emphasises the importance of early recognition of this rare condition.


Assuntos
Dermatite Esfoliativa , Lactente , Masculino , Criança , Humanos , Dermatite Esfoliativa/diagnóstico , Dermatite Esfoliativa/genética , Acitretina , Ciclosporina , Guanilato Ciclase , Proteínas de Membrana , Proteínas Adaptadoras de Sinalização CARD
12.
Pediatr Dermatol ; 41(1): 158-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37888582

RESUMO

A 12-year-old boy affected by severe combined immunodeficiency due to a heterozygous variant in the CARD domain of CARD11, c.169G>A; p.Glu57Lys, developed severe atopic dermatitis and alopecia areata. After failure of conventional systemic therapy, dupilumab was administered at a dose of 400 mg subcutaneously, followed by 200 mg every 14 days. The patient had an excellent clinical response after 1 month and complete remission after a year, with the absence of side effects, demonstrating good efficacy and safety profile.


Assuntos
Dermatite Atópica , Prurigo , Imunodeficiência Combinada Severa , Masculino , Criança , Humanos , Dermatite Atópica/complicações , Dermatite Atópica/tratamento farmacológico , Prurigo/tratamento farmacológico , Imunodeficiência Combinada Severa/complicações , Anticorpos Monoclonais Humanizados/uso terapêutico , Resultado do Tratamento , Índice de Gravidade de Doença , Guanilato Ciclase , Proteínas Adaptadoras de Sinalização CARD/genética
13.
J Biol Chem ; 300(1): 105505, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029963

RESUMO

Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events. Here, we reveal important differences in ligand-binding affinity and GC activity between mouse GC-C and human GC-C. We generated a series of chimeric constructs of various domains of human and mouse GC-C to show that the extracellular domain of mouse GC-C contributed to log-orders lower affinity of mouse GC-C for ligands than human GC-C. Further, the Vmax of the murine GC domain was lower than that of human GC-C, and allosteric regulation of the receptor by ATP binding to the intracellular kinase-homology domain also differed. These altered properties are reflected in the high concentrations of ligands required to elicit signaling responses in the mouse gut in preclinical models and the specificity of a GC inhibitor towards human GC-C. Therefore, our studies identify considerations in using the murine model to test molecules for therapeutic purposes that work as either agonists or antagonists of GC-C, and vaccines for the bacterial heat-stable enterotoxin that causes watery diarrhea in humans.


Assuntos
Receptores Acoplados a Guanilato Ciclase , Animais , Criança , Humanos , Camundongos , Diarreia , Enterotoxinas , Guanilato Ciclase/metabolismo , Ligantes , Receptores de Enterotoxina/genética , Receptores Acoplados a Guanilato Ciclase/antagonistas & inibidores , Receptores Acoplados a Guanilato Ciclase/genética , Receptores Acoplados a Guanilato Ciclase/metabolismo , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia
14.
Biol Reprod ; 110(1): 102-115, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37774352

RESUMO

In response to luteinizing hormone (LH), multiple proteins in rat and mouse granulosa cells are rapidly dephosphorylated, but the responsible phosphatases remain to be identified. Because the phosphorylation state of phosphatases can regulate their interaction with substrates, we searched for phosphatases that might function in LH signaling by using quantitative mass spectrometry. We identified all proteins in rat ovarian follicles whose phosphorylation state changed detectably in response to a 30-min exposure to LH, and within this list, identified protein phosphatases or phosphatase regulatory subunits that showed changes in phosphorylation. Phosphatases in the phosphoprotein phosphatase (PPP) family were of particular interest because of their requirement for dephosphorylating the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase in the granulosa cells, which triggers oocyte meiotic resumption. Among the PPP family regulatory subunits, PPP1R12A and PPP2R5D showed the largest increases in phosphorylation, with 4-10 fold increases in signal intensity on several sites. Although follicles from mice in which these phosphorylations were prevented by serine-to-alanine mutations in either Ppp1r12a or Ppp2r5d showed normal LH-induced NPR2 dephosphorylation, these regulatory subunits and others could act redundantly to dephosphorylate NPR2. Our identification of phosphatases and other proteins whose phosphorylation state is rapidly modified by LH provides clues about multiple signaling pathways in ovarian follicles.


Assuntos
Guanilato Ciclase , Monoéster Fosfórico Hidrolases , Animais , Feminino , Camundongos , Ratos , Guanilato Ciclase/metabolismo , Hormônio Luteinizante/metabolismo , Meiose , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
15.
Antioxid Redox Signal ; 40(1-3): 186-205, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742108

RESUMO

Significance: Nitric oxide (NO) plays several distinct roles in endothelial homeostasis. Except for activating the guanylyl cyclase enzyme-dependent cyclic guanosine monophosphate signaling pathway, NO can bind reactive cysteine residues in target proteins, a process known as S-nitrosylation (SNO). SNO is proposed to explain the multiple biological functions of NO in the endothelium. Investigating the targets and mechanism of protein SNO in endothelial cells (ECs) can provide new strategies for treating endothelial dysfunction-related diseases. Recent Advances: In response to different environments, proteomics has identified multiple SNO targets in ECs. Functional studies confirm that SNO regulates NO bioavailability, inflammation, permeability, oxidative stress, mitochondrial function, and insulin sensitivity in ECs. It also influences EC proliferation, migration, apoptosis, and transdifferentiation. Critical Issues: Single-cell transcriptomic analysis of ECs isolated from different mouse tissues showed heterogeneous gene signatures. However, litter research focuses on the heterogeneous properties of SNO proteins in ECs derived from different tissues. Although metabolism reprogramming plays a vital role in endothelial functions, little is known about how protein SNO regulates metabolism reprogramming in ECs. Future Directions: Precisely deciphering the effects of protein SNO in ECs isolated from different tissues under different conditions is necessary to further characterize the relationship between protein SNO and endothelial dysfunction-related diseases. In addition, identifying SNO targets that can influence endothelial metabolic reprogramming and the underlying mechanism can offer new views on the crosstalk between metabolism and post-translational protein modification. Antioxid. Redox Signal. 40, 186-205.


Assuntos
Células Endoteliais , Óxido Nítrico , Camundongos , Animais , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Cisteína/metabolismo , Guanilato Ciclase/metabolismo , Processamento de Proteína Pós-Traducional , Homeostase , Endotélio/metabolismo
16.
FEBS J ; 291(6): 1220-1245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098267

RESUMO

Caspase recruitment domain-containing protein (CARD)9, CARD10, CARD11, and CARD14 all belong to the CARD-coiled coil (CC) protein family and originated from a single common ancestral protein early in vertebrate evolution. All four proteins form CARD-CC/BCL10/MALT1 (CBM) complexes leading to nuclear factor-kappa-B (NF-κB) activation after upstream phosphorylation by various protein kinase C (PKC) isoforms. CBM complex signaling is critical for innate and adaptive immunity, but aberrant activation can cause autoimmune or autoinflammatory diseases, or be oncogenic. CARD9 shows a superior auto-inhibition compared with other CARD-CC family proteins, with very low spontaneous activity when overexpressed in HEK293T cells. In contrast, the poor auto-inhibition of other CARD-CC family proteins, especially CARD10 (CARMA3) and CARD14 (CARMA2), is hampering characterization of upstream activators or activating mutations in overexpression studies. We grafted different domains from CARD10, 11, and 14 on CARD9 to generate chimeric CARD9 backbones for functional characterization of activating mutants using NF-κB reporter gene activation in HEK293T cells as readout. CARD11 (CARMA1) activity was not further reduced by grafting on CARD9 backbones. The chimeric CARD9 approach was subsequently validated by using several known disease-associated mutations in CARD10 and CARD14, and additional screening allowed us to identify several previously unknown activating natural variants in human CARD9 and CARD10. Using Genebass as a resource of exome-based disease association statistics, we found that activated alleles of CARD9 correlate with irritable bowel syndrome (IBS), constipation, osteoarthritis, fibromyalgia, insomnia, anxiety, and depression, which can occur as comorbidities.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , NF-kappa B , Humanos , NF-kappa B/metabolismo , Células HEK293 , Proteínas Adaptadoras de Sinalização CARD/genética , Transdução de Sinais , Guanilato Ciclase/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Membrana/metabolismo
17.
Australas J Dermatol ; 65(2): 185-214, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126177

RESUMO

BACKGROUND/OBJECTIVES: Recent literature highlights the potential of biologics in the management of inherited disorders of keratinisation. In this study, we conducted a systematic review of existing literature on treatment outcomes of inherited keratinisation disorders treated with biologics. METHODS: Eligible records were retrieved through searches of the electronic databases MEDLINE, Embase, PubMed and Scopus. Databases were searched from inception to July 2023 for eligible records. A snowballing method was employed to search the references of the retrieved records for the identification of potentially relevant articles. RESULTS: One hundred and four eligible studies consisting of a total of 166 patients with an inherited disorder of keratinisation were included. Patients had a median age of 19 years (range: 0.5 to 70 years). The most common disorders were Netherton syndrome (n = 63; 38%), autosomal recessive congenital ichthyoses (n = 27; 16%), CARD14-associated papulosquamous eruptions (n = 17; 10%) and familial pityriasis rubra pilaris (PRP) (n = 15; 9%).Of the 207 times biologics were employed, the three most frequently employed biologics were secukinumab (n = 47; 23%), dupilumab (n = 44; 21%) and ustekinumab (n = 37; 18%). Complete remission was observed in 10 (5%) instances, partial remission in 129 (62%), no or limited response to biologic therapy in 68 (32%) cases, and results are still pending in one case. A total of 33 adverse events were reported. CONCLUSIONS: Whilst biologics may be considered in cases of inherited keratinisation disorders recalcitrant to standard therapy, definitive conclusions are prohibited by the low-level of evidence and substantial heterogeneity in methodology across the included studies. Establishment of consensus definitions, and randomised clinical trials may help ascertain the efficacy and safety of biologic therapy in this context and establish the best agent and dosing protocol for each disorder.


Assuntos
Produtos Biológicos , Pitiríase Rubra Pilar , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Produtos Biológicos/uso terapêutico , Ustekinumab/uso terapêutico , Fator de Necrose Tumoral alfa , Pitiríase Rubra Pilar/tratamento farmacológico , Guanilato Ciclase , Proteínas de Membrana , Proteínas Adaptadoras de Sinalização CARD
18.
Am J Clin Dermatol ; 25(2): 243-259, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159213

RESUMO

Pityriasis rubra pilaris (PRP) is a rare papulosquamous reaction pattern with a significant impact on quality of life. Type I PRP is the most common PRP variant, presenting as erythematous papules emerging in a follicular distribution and later coalescing into plaques with characteristic islands of sparing; histologically, an alternating pattern of orthokeratosis and parakeratosis is considered the hallmark of PRP (checkerboard hyperkeratosis). Other PRP variants (types II-V) differ in their age of onset and clinical presentation. Type VI PRP is a rare PRP subtype associated with human immunodeficiency virus infection and is occasionally associated with diseases of the follicular occlusion tetrad. Caspase recruitment domain family, member 14 (CARD14)-associated papulosquamous eruption and facial discoid dermatitis are newly described disease states that have an important clinical overlap with PRP, creating shared conundrums with respect to diagnosis and treatment. The etiology inciting PRP often remains uncertain; PRP has been suggested to be associated with infection, malignancy, or drug/vaccine administration in some cases, although these are based on case reports and causality has not been established. Type V PRP is often due to inborn CARD14 mutations. Furthermore, recent literature has identified interleukin-23/T-helper-17 cell axis dysregulation to be a major mediator of PRP pathogenesis, paving the way for mechanism-directed therapy. At present, high-dose isotretinoin, ixekizumab, and secukinumab are systemic agents supported by single-arm prospective studies; numerous other agents have also been trialed for PRP, with variable success rates. Here, we discuss updates on clinical manifestations, present new insights into etiopathogenesis, and offer a survey of recently described therapeutic options.


Assuntos
Pitiríase Rubra Pilar , Humanos , Pitiríase Rubra Pilar/diagnóstico , Pitiríase Rubra Pilar/etiologia , Pitiríase Rubra Pilar/terapia , Estudos Prospectivos , Qualidade de Vida , Isotretinoína/uso terapêutico , Mutação , Guanilato Ciclase/genética , Proteínas de Membrana/genética , Proteínas Adaptadoras de Sinalização CARD/genética
19.
Clin Rev Allergy Immunol ; 65(3): 377-402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38103162

RESUMO

Recent advances in medical genetics elucidated the background of diseases characterized by superficial dermal and epidermal inflammation with resultant aberrant keratosis. This led to introducing the term autoinflammatory keratinization diseases encompassing entities in which monogenic mutations cause spontaneous activation of the innate immunity and subsequent disruption of the keratinization process. Originally, autoinflammatory keratinization diseases were attributed to pathogenic variants of CARD14 (generalized pustular psoriasis with concomitant psoriasis vulgaris, palmoplantar pustulosis, type V pityriasis rubra pilaris), IL36RN (generalized pustular psoriasis without concomitant psoriasis vulgaris, impetigo herpetiformis, acrodermatitis continua of Hallopeau), NLRP1 (familial forms of keratosis lichenoides chronica), and genes of the mevalonate pathway, i.e., MVK, PMVK, MVD, and FDPS (porokeratosis). Since then, endotypes underlying novel entities matching the concept of autoinflammatory keratinization diseases have been discovered (mutations of JAK1, POMP, and EGFR). This review describes the concept and pathophysiology of autoinflammatory keratinization diseases and outlines the characteristic clinical features of the associated entities. Furthermore, a novel term for NLRP1-associated autoinflammatory disease with epithelial dyskeratosis (NADED) describing the spectrum of autoinflammatory keratinization diseases secondary to NLRP1 mutations is proposed.


Assuntos
Ceratose , Psoríase , Humanos , Psoríase/genética , Psoríase/patologia , Inflamação/genética , Mutação , Imunidade Inata , Guanilato Ciclase/genética , Proteínas de Membrana , Proteínas Adaptadoras de Sinalização CARD/genética , Interleucinas/genética
20.
Med Oncol ; 41(1): 37, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38155268

RESUMO

Non-Hodgkin lymphoma (NHL) is one of the most common cancer types. Deregulated signaling pathways can trigger certain NHL subtypes, including Diffuse Large B-cell lymphoma. NF-ĸB signaling pathway, which is responsible for the proliferation, growth, and survival of cells, has an essential role in lymphoma development. Although different signals control NF-ĸB activation in various lymphoid malignancies, the characteristic one is the CARD11-BCL10-MALT1 (CBM) complex. The CBM complex is responsible for the initiation of adaptive immune response. Our study is focused on the molecular docking of ten polyphenols as potential CARD11-BCL10-MALT1 complex inhibitors, essentially through MALT1 inhibition. Molecular docking was performed by Auto Dock Tools and AutoDock Vina tool, while SwissADME was used for drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of the ligands. Out of 66 ligands that were used in this study, we selected and visualized five. Selection criteria were based on the binding energy score and position of the ligands on the used protein. 2D and 3D visualizations showed interactions of ligands with the protein. Five ligands are considered potential inhibitors of MALT1, thus affecting NF-ĸB signaling pathway. However, additional in vivo and in vitro studies are required to confirm their mechanism of inhibition.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Linfoma Difuso de Grandes Células B , Humanos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/química , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , NF-kappa B/metabolismo , Guanilato Ciclase/metabolismo , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...