Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.515
Filtrar
1.
PLoS One ; 19(3): e0300541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483875

RESUMO

Glycerol dehydrogenase (GDH) catalyzes glycerol oxidation to dihydroxyacetone in a NAD+-dependent manner. As an initiator of the oxidative pathway of glycerol metabolism, a variety of functional and structural studies of GDH have been conducted previously. Structural studies revealed intriguing features of GDH, like the flexible ß-hairpin and its significance. Another commonly reported structural feature is the enzyme's octameric oligomerization, though its structural details and functional significance remained unclear. Here, with a newly reported GDH structure, complexed with both NAD+ and glycerol, we analyzed the octamerization of GDH. Structural analyses revealed that octamerization reduces the structural dynamics of the N-domain, which contributes to more consistently maintaining a distance required for catalysis between the cofactor and substrate. This suggests that octamerization may play a key role in increasing the likelihood of the enzyme reaction by maintaining the ligands in an appropriate configuration for catalysis. These findings expand our understanding of the structure of GDH and its relation to the enzyme's activity.


Assuntos
NAD , Desidrogenase do Álcool de Açúcar , NAD/metabolismo , Glicerol/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Oxirredução , Glutamato Desidrogenase/metabolismo
2.
J Med Toxicol ; 19(4): 362-367, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695470

RESUMO

INTRODUCTION: Ethylene glycol (EG) is a frequently considered toxicant in poisoned patients. Definitive diagnosis relies on gas chromatography (GC), but this is unavailable at most hospitals. A glycerol dehydrogenase (GDH)-based assay rapidly detects EG. A rapid turnaround time and wide availability of necessary instrumentation suggest this method could facilitate the rapid detection of EG. METHODS: This is a prospective, observational analysis of banked, remnant serum samples submitted to the laboratory of a large, multi-hospital healthcare system. Samples were submitted over a 12-month period for the explicit purpose of testing for suspected EG ingestion. All samples underwent GC and the GDH-based assay. RESULTS: Of the 118 analyzed samples, 88 had no EG detected by GC, and 30 were "positive." At the manufacturer's threshold of 6 mg/dL EG, there was 100% (95%CI; 88.7-100) positive percent agreement (PPA) and 98% (92.1-99.6) negative percent agreement (NPA). Adjusted to a threshold of 9 mg/dL, both the PPA and NPA were 100%. Deming regression of the observed concentrations revealed a slope of 1.16 (1.01 to 1.32) and intercept of -5.3 (-8.9 to -1.7). CONCLUSIONS: The GDH assay provides a sensitive and specific method for the detection and quantification of EG that is comparable to a GC-based method. More widespread use of this rapid, inexpensive assay could improve the care of patients with suspected toxic alcohol exposure. Further study is needed to evaluate the test performance in real-time patient treatment decisions.


Assuntos
Substâncias Perigosas , Desidrogenase do Álcool de Açúcar , Humanos , Nonoxinol
3.
FEBS J ; 290(17): 4342-4355, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37165682

RESUMO

During glycerol metabolism, the initial step of glycerol oxidation is catalysed by glycerol dehydrogenase (GDH), which converts glycerol to dihydroxyacetone in a NAD+ -dependent manner via an ordered Bi-Bi kinetic mechanism. Structural studies conducted with GDH from various species have mainly elucidated structural details of the active site and ligand binding. However, the structure of the full GDH complex with both cofactor and substrate bound is not determined, and thus, the structural basis of the kinetic mechanism of GDH remains unclear. Here, we report the crystal structures of Escherichia coli GDH with a substrate analogue bound in the absence or presence of NAD+ . Structural analyses including molecular dynamics simulations revealed that GDH possesses a flexible ß-hairpin, and that during the ordered progression of the kinetic mechanism, the flexibility of the ß-hairpin is reduced after NAD+ binding. It was also observed that this alterable flexibility of the ß-hairpin contributes to the cofactor binding and possibly to the catalytic efficiency of GDH. These findings suggest the importance of the flexible ß-hairpin to GDH enzymatic activity and shed new light on the kinetic mechanism of GDH.


Assuntos
NAD , Desidrogenase do Álcool de Açúcar , NAD/metabolismo , Glicerol/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo , Oxirredução , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Glutamato Desidrogenase/metabolismo
4.
J Biotechnol ; 366: 19-24, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870480

RESUMO

Glycerol dehydrogenase (GldA) from Escherichia coli BW25113, naturally catalyzes the oxidation of glycerol to dihydroxyacetone. It is known that GldA exhibits promiscuity towards short-chain C2-C4 alcohols. However, there are no reports regarding the substrate scope of GldA towards larger substrates. Herein we demonstrate that GldA can accept bulkier C6-C8 alcohols than previously anticipated. Overexpression of the gldA gene in the knockout background, E. coli BW25113 ΔgldA, was strikingly effective converting 2 mM of the compounds: cis-dihydrocatetechol, cis-(1 S,2 R)- 3-methylcyclohexa-3,5-diene-1,2-diol and cis-(1 S,2 R)- 3-ethylcyclohexa-3,5-diene-1,2-diol, into 2.04 ± 0.21 mM of catechol, 0.62 ± 0.11 mM 3-methylcatechol, and 0.16 ± 0.02 mM 3-ethylcatechol, respectively. In-silico studies on the active site of GldA enlightened the decrease in product formation as the steric substrate demand increased. These results are of high interests for E. coli-based cell factories expressing Rieske non-heme iron dioxygenases, producing cis-dihydrocatechols, since such sough-after valuable products can be immediately degraded by GldA, substantially hampering the expected performance of the recombinant platform.


Assuntos
Dioxigenases , Desidrogenase do Álcool de Açúcar , Escherichia coli/genética , Escherichia coli/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Dioxigenases/metabolismo , Oxirredução , Glicerol/metabolismo
5.
Mol Med Rep ; 27(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36562355

RESUMO

The function of human dicarbonyl/L­xylulose reductase (DCXR) in the pathophysiology of breast cancer is yet to be elucidated. The present study aimed to investigate the function of DCXR in glycolysis and the cell cycle of breast cancer cells with respect to cell proliferation. Differential expressed DCXR was identified in The Cancer Genome Atlas (TCGA) database and verified in clinical breast cancer tissue. DCXR silencing and overexpression were induced by RNA interference and lentiviral vectors, respectively. Cell cycle progression, proliferation and glycolytic activity of breast cancer cells were detected by flow cytometry, Cell Counting Kit­8 assay and chemical methods, respectively. Tumorigenicity was detected using nude mice xenograft models. The expression of DCXR was increased in TCGA breast cancer database and the function of DCXR was enriched in 'glycolysis' and 'cell cycle'. Further analysis using clinical breast cancer samples confirmed upregulation of DCXR. The silencing of DCXR suppressed proliferation and cell cycle progression of breast cancer cells and significantly decreased the capacity for glycolysis, thereby demonstrating the effect of DCXR on the function of breast cancer cells. Similar conclusions were obtained in DCXR overexpressing cells; notably, DCXR overexpression promoted proliferation, cell cycle progression at S phase and glycolysis. 2­Deoxy­D­glucose inhibited the effect of DCXR on the proliferation and cell cycle progression of breast cancer cells. The present study revealed that DCXR regulated breast cancer cell cycle progression and proliferation by increasing glycolysis activity and thus may serve as an oncogene for breast cancer.


Assuntos
Neoplasias da Mama , Desidrogenase do Álcool de Açúcar , Efeito Warburg em Oncologia , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Camundongos Nus , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
6.
Naunyn Schmiedebergs Arch Pharmacol ; 395(11): 1373-1385, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904584

RESUMO

Numerous studies reveal that metabolism dysfunction contributes to the development of pathological cardiac hypertrophy. While the abnormal lipid and glucose utilization in cardiomyocytes responding to hypertrophic stimuli have been extensively studied, the alteration and implication of glutaminolysis are rarely discussed. In the present work, we provide the first evidence that glutamate dehydrogenase (GDH), an enzyme that catalyzes conversion of glutamate into ɑ-ketoglutarate (AKG), participates in isoprenaline (ISO)-induced cardiac hypertrophy through activating mammalian target of rapamycin (mTOR) signaling. The expression and activity of GDH were enhanced in cultured cardiomyocytes and rat hearts following ISO treatment. Overexpression of GDH, but not its enzymatically inactive mutant, provoked cardiac hypertrophy. In contrast, GDH knockdown could relieve ISO-triggered hypertrophic responses. The intracellular AKG level was elevated by ISO or GDH overexpression, which led to increased phosphorylation of mTOR and downstream effector ribosomal protein S6 kinase (S6K). Exogenous supplement of AKG also resulted in mTOR activation and cardiomyocyte hypertrophy. However, incubation with rapamycin, an mTOR inhibitor, attenuated hypertrophic responses in cardiomyocytes. Furthermore, GDH silencing protected rats from ISO-induced cardiac hypertrophy. These findings give a further insight into the role of GDH in cardiac hypertrophy and suggest it as a potential target for hypertrophy-related cardiomyopathy.


Assuntos
Glutamato Desidrogenase , Ácidos Cetoglutáricos , Animais , Cardiomegalia/metabolismo , Glucose/metabolismo , Glutamato Desidrogenase/metabolismo , Glutamatos/metabolismo , Isoproterenol/farmacologia , Ácidos Cetoglutáricos/metabolismo , Lipídeos , Miócitos Cardíacos/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia , Desidrogenase do Álcool de Açúcar , Serina-Treonina Quinases TOR/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(14): e2107994119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363566

RESUMO

Persistence of Acinetobacter baumannii in environments with low water activity is largely attributed to the biosynthesis of compatible solutes. Mannitol is one of the key compatible solutes in A. baumannii, and it is synthesized by a bifunctional mannitol-1-phosphate dehydrogenase/phosphatase (AbMtlD). AbMtlD catalyzes the conversion of fructose-6-phosphate to mannitol in two consecutive steps. Here, we report the crystal structure of dimeric AbMtlD, constituting two protomers each with a dehydrogenase and phosphatase domain. A proper assembly of AbMtlD dimer is facilitated by an intersection comprising a unique helix­loop­helix (HLH) domain. Reduction and dephosphorylation catalysis of fructose-6-phosphate to mannitol is dependent on the transient dimerization of AbMtlD. AbMtlD presents as a monomer under lower ionic strength conditions and was found to be mainly dimeric under high-salt conditions. The AbMtlD catalytic efficiency was markedly increased by cross-linking the protomers at the intersected HLH domain via engineered disulfide bonds. Inactivation of the AbMtlD phosphatase domain results in an intracellular accumulation of mannitol-1-phosphate in A. baumannii, leading to bacterial growth impairment upon salt stress. Taken together, our findings demonstrate that salt-induced dimerization of the bifunctional AbMtlD increases catalytic dehydrogenase and phosphatase efficiency, resulting in unidirectional catalysis of mannitol production.


Assuntos
Acinetobacter baumannii , Sequências Hélice-Alça-Hélice , Manitol , Desidrogenase do Álcool de Açúcar , Acinetobacter baumannii/enzimologia , Manitol/metabolismo , Pressão Osmótica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Estresse Salino , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
8.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209002

RESUMO

Wheat allergens are responsible for symptoms in 60-70% of bakers with work-related allergy, and knowledge, at the molecular level, of this disorder is progressively accumulating. The aim of the present study is to investigate the panel of wheat IgE positivity in allergic Italian bakers, evaluating a possible contribution of novel wheat allergens included in the water/salt soluble fraction. The water/salt-soluble wheat flour proteins from the Italian wheat cultivar Bolero were separated by using 1-DE and 2-DE gel electrophoresis. IgE-binding proteins were detected using the pooled sera of 26 wheat allergic bakers by immunoblotting and directly recognized in Coomassie stained gel. After a preparative electrophoretic step, two enriched fractions were furtherly separated in 2-DE allowing for detection, by Coomassie, of three different proteins in the range of 21-27 kDa that were recognized by the pooled baker's IgE. Recovered spots were analyzed by nanoHPLC Chip tandem mass spectrometry (MS/MS). The immunodetected spots in 2D were subjected to mass spectrometry (MS) analysis identifying two new allergenic proteins: a glucose/ribitol dehydrogenase and a 16.9 kDa class I heat shock protein 1. Mass spectrometer testing of flour proteins of the wheat cultivars utilized by allergic bakers improves the identification of until now unknown occupational wheat allergens.


Assuntos
Alérgenos/imunologia , Glucose 1-Desidrogenase/imunologia , Proteínas de Choque Térmico Pequenas/imunologia , Proteínas de Plantas/imunologia , Desidrogenase do Álcool de Açúcar/imunologia , Hipersensibilidade a Trigo/imunologia , Adulto , Idoso , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Testes de Função Respiratória , Testes Cutâneos , Espectrometria de Massas em Tandem , Hipersensibilidade a Trigo/diagnóstico
9.
Bioprocess Biosyst Eng ; 45(2): 353-364, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797400

RESUMO

The combined cross-linked enzyme aggregates (combi-CLEAs) containing galactitol dehydrogenase (Gdh) and NADH oxidase (Nox) were prepared for L-tagatose synthesis. To prevent the excess consumption of cofactor, Nox in the combi-CLEAs was used to in situ regenerate NAD+. In the immobilization process, ammonia sulfate and glutaraldehyde were used as the precipitant and cross-linking reagent, respectively. The preparation conditions were optimized as follows: 60% ammonium sulfate, 1:1 (molar ratio) of Gdh to Nox, 20:1 (molar ratio) of protein to glutaraldehyde, and 6 h of cross-linking time at 35 °C. Under these conditions, the activity of the combi-CLEAs was 210 U g-1. The combi-CLEAs exhibited higher thermostability and preserved 51.5% of the original activity after eight cycles of reuses at 45 °C. The combi-CLEAs were utilized for the preparation of L-tagatose without by-products. Therefore, the combi-CLEAs have the industrial potential for the bioconversion of galactitol to L-tagatose.


Assuntos
Enzimas Imobilizadas , Hexoses , Regeneração , Reagentes de Ligações Cruzadas , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Hexoses/biossíntese , Hexoses/química , Complexos Multienzimáticos , NADH NADPH Oxirredutases , Desidrogenase do Álcool de Açúcar
10.
Biotechnol Appl Biochem ; 69(3): 1190-1198, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34009642

RESUMO

Glycerol is an abundant byproduct of biodiesel production that has significant industrial value and can be converted into dihydroxyacetone (DHA). DHA is widely used for the production of various chemicals, pharmaceuticals, and food additives. Gluconobacter can convert glycerol to DHA through two different pathways, including membrane-bound dehydrogenases with pyrroloquinoline quinone (PQQ) and NAD(P)+ -dependent enzymes. Previous work has indicated that membrane-bound dehydrogenases are present in Gluconobacter oxydans and Gluconobacter frateurii, but the metabolic mechanism of Gluconobacter thailandicus's glycerol conversion is still not clear. Through in-depth analysis of the G. thailandicus genome and annotation of its metabolic pathways, we revealed the existence of both PQQ and NAD(P)+ -dependent enzymes in G. thailandicus. In addition, this study provides important information related to the tricarboxylic acid cycle, glycerol dehydrogenase level, and phylogenetic relationships of this important species.


Assuntos
Genoma Bacteriano , Gluconobacter , Glicerol , Microrganismos Geneticamente Modificados , Ciclo do Ácido Cítrico/genética , Di-Hidroxiacetona/metabolismo , Engenharia Genética , Genoma Bacteriano/genética , Gluconobacter/genética , Gluconobacter/metabolismo , Glicerol/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , NAD/metabolismo , NADP/metabolismo , Cofator PQQ/metabolismo , Filogenia , Desidrogenase do Álcool de Açúcar/análise
11.
PLoS One ; 16(8): e0256199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34398925

RESUMO

This study investigated the occurrence of Giardia duodenalis and Cryptosporidium spp. in rodents and marsupials from the Atlantic Forest in southern Bahia, northeastern Brazil. Two hundred and four fecal samples were collected from different forest areas in the municipalities of Ilhéus, Una, Belmonte, and Mascote. Identifications were performed using PCR and nested PCR followed by sequencing of the gdh and tpi genes for G. duodenalis, and the gp60 and Hsp-70 genes for Cryptosporidium. The total frequency of positive PCR samples for both G. duodenalis and Cryptosporidium spp. was 5.4% (11/204). Giardia duodenalis occurred in 2.94% (4/136) of rodents and 2.94% (2/68) of marsupials. The prevalence of Cryptosporidium in rodents and marsupials was 1.47% (2/136) and 4.41% (3/68), respectively. In the areas sampled, the frequency of parasitism was 50% (7/14), while the Mascote region alone had no parasitized animals. The G. duodenalis subgenotype AI was identified in the rodent species Hylaeamys laticeps, Oecomys catherinae, Oligoryzomys nigripes and Akodon cursor, and in the marsupials Gracilinanus agilis and Monodelphis americana. In the rodents Rhipidomys mastacalis, H. laticeps and in the marsupial Marmosa murina the protozoa Cryptosporidium fayeri, Cryptosporidium parvum and Cryptosporidium ubiquitum with subtypes IIa and IVg by the gp60 gene were found. In conclusion, this study provides the genetic characterization of Giardia and Cryptosporidium species and genotypes in rodents and marsupials. And, these findings reinforce that the rodent and marsupial species mentioned above play a role as new hosts for Giardia and Cryptosporidium.


Assuntos
Criptosporidiose/epidemiologia , Cryptosporidium/genética , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/veterinária , Zoonoses/epidemiologia , Animais , Brasil/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/isolamento & purificação , DNA Topoisomerases/genética , DNA de Protozoário/genética , Fezes/parasitologia , Giardia lamblia/isolamento & purificação , Giardíase/parasitologia , Glicoproteínas/genética , Proteínas de Choque Térmico HSP70/genética , Marsupiais/parasitologia , Reação em Cadeia da Polimerase , Prevalência , Proteínas de Protozoários/genética , Roedores/parasitologia , Análise de Sequência de DNA , Desidrogenase do Álcool de Açúcar/genética , Zoonoses/parasitologia
12.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165242

RESUMO

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Assuntos
Albinismo/terapia , Alcaptonúria/terapia , Cistinúria/terapia , Erros Inatos do Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Cistinúria/genética , Cistinúria/metabolismo , Cistinúria/patologia , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Fenilcetonúrias/terapia , Desidrogenase do Álcool de Açúcar/deficiência , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Xilulose/genética , Xilulose/metabolismo
13.
Biopreserv Biobank ; 19(6): 470-482, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33956503

RESUMO

According to various reports, current methods of sperm freezing destroy the integrity of the sperm plasma membrane and acrosome. This study aimed to determine the changes in the existence and location of three proteins, namely fertilin ß, IZUMO1, and P34H, in ram spermatozoa. By using frozen-thawed spermatozoa, ejaculated fresh spermatozoa, and testicular and epididymal spermatozoa (obtained from caput, corpus, and caudal regions), the localizations of the mentioned proteins were performed using signal labeling with indirect immunofluorescence, and the quantification of these proteins was compared using Western blot analyses. Moreover, protein localization and signal labeling in fresh and frozen-thawed spermatozoa subjected to in vitro capacitation and acrosome reaction were compared. Using chlortetracycline (CTC) staining, as expected, it was detected that after incubating for 4 hours under capacitating conditions related to the control sample (0 hour), capacitated and acrosome-reacted sperm were increased (p < 0.001). Frozen-thawed samples had a lower density and expression than the ejaculate samples. Expression was not obtained, except for IZUMO1, from samples that underwent in vitro capacitation/acrosome reactions. Expression of IZUMO1 was seen as an increasing band formation from the equatorial region through the acrosome, after in vitro capacitation. However, after the acrosome reaction, the band formation was only on the equatorial region. Region-specific differences of proteins at the kDa level were obtained using Western blot analysis and possible isoforms specific to ram spermatozoa or proteins with similar epitopes were expressed. Considering the changes in surface proteins in frozen-thawed sperm, it is suggested that fertilin ß and P34H can be used as fertility or freezability markers.


Assuntos
Fertilinas , Proteínas de Membrana , Capacitação Espermática , Espermatozoides , Desidrogenase do Álcool de Açúcar , Acrossomo , Reação Acrossômica , Animais , Imunoglobulinas , Masculino , Ovinos
14.
Curr Genet ; 67(4): 613-630, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33683401

RESUMO

Aspergillus nidulans produces cleistothecia as sexual reproductive organs in a process affected by genetic and external factors. To gain a deeper insight into A. nidulans sexual development, we performed comparative proteome analyses based on the wild type developmental periods. We identified sexual development-specific proteins with a more than twofold increase in production during hypoxia or the sexual period compared to the asexual period. Among the sexual development-specific proteins analyzed by gene-deletion experiments and functional assays, MpdA, a putative mannitol-1-phosphate 5-dehydrogenase, plays multiple roles in growth and differentiation of A. nidulans. The most distinct mpdA-deletion phenotype was ascosporogenesis failure. Genetic mpdA deletion resulted in small cleistothecia with no functional ascospores. Transcriptional analyses indicated that MpdA modulates the expression of key development- and meiosis-regulatory genes during sexual development. The mpdA deletion increased hyphal branching and decreased conidial heat resistance. Mannitol production in conidia showed no difference, whereas it was decreased in mycelia and sexual cultures. Addition of mannitol during vegetative growth recovered the defects in conidial heat resistance and ascospore genesis. Taken together, these results indicate that MpdA plays an important role in sexual development, hyphal branching, and conidial heat resistance in Aspergillus nidulans.


Assuntos
Aspergillus nidulans/genética , Hifas/genética , Esporos Fúngicos/genética , Desidrogenase do Álcool de Açúcar/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/patogenicidade , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Manitol/metabolismo , Meiose/genética , Desenvolvimento Sexual/genética , Esporos Fúngicos/metabolismo
15.
N Biotechnol ; 62: 18-25, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33460816

RESUMO

L-Tagatose, a promising building block in the production of many value-added chemicals, is generally produced by chemical routes with a low yield, which may not meet the increasing demands. Synthesis of l-tagatose by enzymatic oxidation of d-galactitol has not been applied on an industrial scale because of the high cofactor costs and the lack of efficient cofactor regeneration methods. In this work, an efficient and environmentally friendly enzymatic method containing a galactitol dehydrogenase for d-galactitol oxidation and a water-forming NADH oxidase for regeneration of NAD+ was first designed and used for l-tagatose production. Supplied with only 3 mM NAD+, subsequent reaction optimization facilitated the efficient transformation of 100 mM of d-galactitol into l-tagatose with a yield of 90.2 % after 12 h (obtained productivity: 7.61 mM.h-1). Compared with the current chemical and biocatalytic methods, the strategy developed avoids by-product formation and achieves the highest yield of l-tagatose with low costs. It is expected to become a cleaner and more promising route for industrial biosynthesis of l-tagatose.


Assuntos
Hexoses/biossíntese , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Hexoses/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Temperatura
16.
J Biotechnol ; 325: 380-388, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32946884

RESUMO

The compound cis-1,2-dihydrocatechol (DHC) is highly valuable since it finds wide application in the production of fine chemicals and bioactive compounds with medical relevance. The biotechnological process to generate DHC involves a dearomatizing dihydroxylation reaction catalyzed by toluene dioxygenase (TDO) from P. putida F1, employing benzene as substrate. We aimed to enhance the biotechnological E. coli BW25113 platform for DHC production by identifying the key operational parameters positively influencing the final isolated yield. Thereby, we observed an unreported downstream reaction, generating catechol from DHC, affecting, in a negative manner, the final titer for the product. Expression temperature for the TDO-system showed to have the highest influence in terms of final isolated yield. A KEIO-collection-based screening approach highlighted glycerol dehydrogenase (GldA) as the main responsible enzyme for the undesired reaction. We transferred the TDO-system to E. coli BW25113 ΔgldA and applied the enhanced operational set-up on it. This enhanced platform enabled the production of 1.41 g L-1 DHC in isolated yield, which represents a two-fold increase compared with the starting working conditions. To our knowledge, this is the highest DHC production accomplished in recombinant E. coli at semi-preparative scale, providing a robust and accessible biotechnological platform for DHC synthesis.


Assuntos
Pseudomonas putida , Catecóis , Escherichia coli/genética , Oxigenases , Desidrogenase do Álcool de Açúcar
17.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348713

RESUMO

Phosphofructokinase (PFK) plays a pivotal role in glycolysis. By deletion of the genes pfkA, pfkB (encoding the two PFK isoenzymes), and zwf (glucose 6-phosphate dehydrogenase) in Escherichia coli K-12, a mutant strain (GL3) with a complete block in glucose catabolism was created. Introduction of plasmid-borne copies of the fsaA wild type gene (encoding E. coli fructose 6-phosphate aldolase, FSAA) did not allow a bypass by splitting fructose 6-phosphate (F6P) into dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate (G3P). Although FSAA enzyme activity was detected, growth on glucose was not reestablished. A mutant allele encoding for FSAA with an amino acid exchange (Ala129Ser) which showed increased catalytic efficiency for F6P, allowed growth on glucose with a µ of about 0.12 h-1. A GL3 derivative with a chromosomally integrated copy of fsaAA129S (GL4) grew with 0.05 h-1 on glucose. A mutant strain from GL4 where dhaKLM genes were deleted (GL5) excreted DHA. By deletion of the gene glpK (glycerol kinase) and overexpression of gldA (of glycerol dehydrogenase), a strain (GL7) was created which showed glycerol formation (21.8 mM; yield approximately 70% of the theoretically maximal value) as main end product when grown on glucose. A new-to-nature pathway from glucose to glycerol was created.


Assuntos
Aldeído Liases/genética , Vias Biossintéticas/genética , Di-Hidroxiacetona/biossíntese , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Glicerol/metabolismo , Alelos , Frutosefosfatos/metabolismo , Deleção de Genes , Glucose/metabolismo , Glucosefosfato Desidrogenase/genética , Glicerol Quinase/genética , Isoenzimas/genética , Via de Pentose Fosfato/genética , Fosfofrutoquinases/química , Fosfofrutoquinases/genética , Desidrogenase do Álcool de Açúcar/genética
18.
Sci Rep ; 10(1): 20066, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208778

RESUMO

Levoglucosan (LG) is an anhydrosugar produced through glucan pyrolysis and is widely found in nature. We previously isolated an LG-utilizing thermophile, Bacillus smithii S-2701M, and suggested that this bacterium may have a metabolic pathway from LG to glucose, initiated by LG dehydrogenase (LGDH). Here, we completely elucidated the metabolic pathway of LG involving three novel enzymes in addition to LGDH. In the S-2701M genome, three genes expected to be involved in the LG metabolism were found in the vicinity of the LGDH gene locus. These four genes including LGDH gene (lgdA, lgdB1, lgdB2, and lgdC) were expressed in Escherichia coli and purified to obtain functional recombinant proteins. Thin layer chromatography analyses of the reactions with the combination of the four enzymes elucidated the following metabolic pathway: LgdA (LGDH) catalyzes 3-dehydrogenation of LG to produce 3-keto-LG, which undergoes ß-elimination of 3-keto-LG by LgdB1, followed by hydration to produce 3-keto-D-glucose by LgdB2; next, LgdC reduces 3-keto-D-glucose to glucose. This sequential reaction mechanism resembles that proposed for an enzyme belonging to glycoside hydrolase family 4, and results in the observational hydrolysis of LG into glucose with coordination of the four enzymes.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Glucose/análogos & derivados , Glucose/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Catálise , Glucose/química , Hidrólise , Oxirredução , Desidrogenase do Álcool de Açúcar/genética
19.
World J Microbiol Biotechnol ; 36(9): 136, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32783085

RESUMO

Glycerol dehydrogenase has been identified and characterized functionally in many species. However, little is known about glycerol dehydrogenase genes and their functions in Aspergillus oryzae. Here, a total of 45 glycerol dehydrogenase genes in Aspergillus oryzae were identified and renamed from AoGld1 to AoGld45 according to their chromosome distribution. They were classified into three groups based on phylogenetic analysis. Synteny analysis revealed that thirteen AoGld genes are conserved among Aspergillus species. Promoter analysis displayed that AoGld3 and AoGld13 harbored multiple binding elements of GATA-type transcription factors and zinc-finger protein msnA that were involved in nitrogen and kojic acid metabolism, respectively. Moreover, the AoGld3 deletion strain Δgld3 was generated by the CRISPR/Cas9 system, which had no visible growth defects compared with the control wild-type strain under the control and osmotic stress treatments. However, disruption of AoGld3 led to the inhibition of kojic acid production, and the expression of kojA, kojR was down-regulated in the Δgld3 strain. Furthermore, when kojA or kojR was overexpressed in the Δgld3 strain, the yield of kojic acid was restored, suggesting that AoGld3 is involved in kojic acid production through affecting the expression of kojR and kojA. Taken together, these findings provide new insights into our understanding of glycerol dehydrogenase and establish foundation for further study of their roles in Aspergillus oryzae.


Assuntos
Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Pironas/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Nitrogênio/metabolismo , Filogenia , Regiões Promotoras Genéticas
20.
Chem Commun (Camb) ; 56(68): 9886-9889, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32720651

RESUMO

The conversion of glycerol selectively to lactic acid has been accomplished in high yields (ca. 90%) by using a NNN pincer-Ru catalyst. DFT explains the role of the Ru-P bond and sterics in favoring the catalysis.


Assuntos
Glicerol/química , Ácido Láctico/química , Rutênio/química , Catálise , Complexos de Coordenação/química , Teoria da Densidade Funcional , Glicerol/metabolismo , Ácido Láctico/metabolismo , Conformação Molecular , Desidrogenase do Álcool de Açúcar/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...