Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
1.
Biotechnol J ; 19(3): e2300637, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472092

RESUMO

The aldo-keto reductase (AKR) KdAKR from Kluyvermyces dobzhanskii can reduce t-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) to t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate ((3R,5S)-CDHH), which is the key chiral intermediate of rosuvastatin. Herein, a computer-aided design that combined the use of PROSS platform and consensus design was employed to improve the stability of a previously constructed mutant KdAKRM6 . Experimental verification revealed that S196C, T232A, V264I and V45L produced improved thermostability and activity. The "best" mutant KdAKRM10 (KdAKRM6 -S196C/T232A/V264I/V45L) was constructed by combining the four beneficial mutations, which displayed enhanced thermostability. Its T50 15 and Tm values were increased by 10.2 and 10.0°C, respectively, and half-life (t1/2 ) at 40°C was increased by 17.6 h. Additionally, KdAKRM10 demonstrated improved resistance to organic solvents compared to that of KdAKRM6 . Structural analysis revealed that the increased number of hydrogen bonds and stabilized hydrophobic core contributed to the rigidity of KdAKRM10 , thus improving its stability. The results validated the feasibility of the computer-aided design strategy in improving the stability of AKRs.


Assuntos
Aldeído Redutase , Caproatos , Aldo-Ceto Redutases/química , Aldo-Ceto Redutases/genética , Caproatos/química
2.
Phys Chem Chem Phys ; 26(12): 9295-9308, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469695

RESUMO

Understanding selectivity mechanisms of inhibitors towards highly homologous proteins is of paramount importance in the design of selective candidates. Human aldo-keto reductases (AKRs) pertain to a superfamily of monomeric oxidoreductases, which serve as NADPH-dependent cytosolic enzymes to catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from NADPH. Among AKRs, AKR1B1 is emerging as a promising target for cancer treatment and diabetes, despite its high structural similarity with AKR1B10, which leads to severe adverse events. Therefore, it is crucial to understand the selectivity mechanisms of AKR1B1 and AKR1B10 to discover safe anticancer candidates with optimal therapeutic efficacy. In this study, multiple computational strategies, including sequence alignment, structural comparison, Protein Contacts Atlas analysis, molecular docking, molecular dynamics simulation, MM-GBSA calculation, alanine scanning mutagenesis and pharmacophore modeling analysis were employed to comprehensively understand the selectivity mechanisms of AKR1B1/10 inhibition based on selective inhibitor lidorestat and HAHE. This study would provide substantial evidence in the design of potent and highly selective AKR1B1/10 inhibitors in future.


Assuntos
Inibidores Enzimáticos , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , NADP/metabolismo , Aldo-Ceto Redutases/metabolismo , Inibidores Enzimáticos/farmacologia , Aldeído Redutase/metabolismo
3.
Nat Commun ; 15(1): 2128, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459030

RESUMO

Modulation of protein function through allosteric regulation is central in biology, but biomacromolecular systems involving multiple subunits and ligands may exhibit complex regulatory mechanisms at different levels, which remain poorly understood. Here, we discover an aldo-keto reductase termed AKRtyl and present its three-level regulatory mechanism. Specifically, by combining steady-state and transient kinetics, X-ray crystallography and molecular dynamics simulation, we demonstrate that AKRtyl exhibits a positive synergy mediated by an unusual Monod-Wyman-Changeux (MWC) paradigm of allosteric regulation at low concentrations of the cofactor NADPH, but an inhibitory effect at high concentrations is observed. While the substrate tylosin binds at a remote allosteric site with positive cooperativity. We further reveal that these regulatory mechanisms are conserved in AKR12D subfamily, and that substrate cooperativity is common in AKRs across three kingdoms of life. This work provides an intriguing example for understanding complex allosteric regulatory networks.


Assuntos
Proteínas , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Sítio Alostérico , Regulação Alostérica , NADP/metabolismo , Cinética
4.
Appl Environ Microbiol ; 90(4): e0015024, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38551341

RESUMO

Avilamycins, which possess potent inhibitory activity against Gram-positive bacteria, are a group of oligosaccharide antibiotics produced by Streptomyces viridochromogenes. Among these structurally related oligosaccharide antibiotics, avilamycin A serves as the main bioactive component in veterinary drugs and animal feed additives, which differs from avilamycin C only in the redox state of the two-carbon branched-chain of the terminal octose moiety. However, the mechanisms underlying assembly and modification of the oligosaccharide chain to diversify individual avilamycins remain poorly understood. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins A and C. Remarkably, the ratio of these two components produced by AviZ1 depends on the utilization of specific redox cofactors, namely NADH/NAD+ or NADPH/NADP+. These findings are inspired by gene disruption and complementation experiments and are further supported by in vitro enzymatic activity assays, kinetic analyses, and cofactor affinity studies on AviZ1-catalyzed redox reactions. Additionally, the results from sequence analysis, structure prediction, and site-directed mutagenesis of AviZ1 validate it as an NADH/NAD+-favored aldo-keto reductase that primarily oxidizes avilamycin C to form avilamycin A by utilizing abundant NAD+ in vivo. Building upon the biological function and catalytic activity of AviZ1, overexpressing AviZ1 in S. viridochromogenes is thus effective to improve the yield and proportion of avilamycin A in the fermentation profile of avilamycins. This study represents, to our knowledge, the first characterization of biochemical reactions involved in avilamycin biosynthesis and contributes to the construction of high-performance strains with industrial value.IMPORTANCEAvilamycins are a group of oligosaccharide antibiotics produced by Streptomyces viridochromogenes, which can be used as veterinary drugs and animal feed additives. Avilamycin A is the most bioactive component, differing from avilamycin C only in the redox state of the two-carbon branched-chain of the terminal octose moiety. Currently, the biosynthetic pathway of avilamycins is not clear. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins A and C. More importantly, AviZ1 exhibits a unique NADH/NAD+ preference, allowing it to efficiently catalyze the oxidation of avilamycin C to form avilamycin A using abundant NAD+ in cells. Thus, overexpressing AviZ1 in S. viridochromogenes is effective to improve the yield and proportion of avilamycin A in the fermentation profile of avilamycins. This study serves as an enzymological guide for rational strain design, and the resulting high-performance strains have significant industrial value.


Assuntos
NAD , Streptomyces , Drogas Veterinárias , NAD/metabolismo , Aldo-Ceto Redutases/metabolismo , Oligossacarídeos , Oxirredução , Antibacterianos , Carbono/metabolismo , NADP/metabolismo , Aldeído Redutase/metabolismo
5.
Int J Biol Macromol ; 264(Pt 1): 130612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447845

RESUMO

Effective photolytic regeneration of the NAD(P)H cofactor in enzymatic reductions is an important and elusive goal in biocatalysis. It can, in principle, be achieved using a near-infrared light (NIR) driven artificial photosynthesis system employing H2O as the sacrificial reductant. To this end we utilized TiO2/reduced graphene quantum dots (r-GQDs), combined with a novel rhodium electron mediator, to continuously supply NADPH in situ for aldo-keto reductase (AKR) mediated asymmetric reductions under NIR irradiation. This upconversion system, in which the Ti-O-C bonds formed between r-GQDs and TiO2 enabled efficient interfacial charge transfer, was able to regenerate NADPH efficiently in 64 % yield in 105 min. Based on this, the pharmaceutical intermediate (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol was obtained, in 84 % yield and 99.98 % ee, by reduction of the corresponding ketone. The photo-enzymatic system is recyclable with a polymeric electron mediator, which maintained 66 % of its original catalytic efficiency and excellent enantioselectivity (99.9 % ee) after 6 cycles.


Assuntos
Raios Infravermelhos , NAD , NADP , Aldo-Ceto Redutases , NAD/metabolismo , Fotossíntese
6.
Int J Biol Macromol ; 264(Pt 2): 130691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458293

RESUMO

Given their outstanding efficiency and selectivity, enzymes are integral in various domains such as drug synthesis, the food industry, and environmental management. However, the inherent instability of natural enzymes limits their widespread industrial application. In this study, we underscore the efficacy of enhancing protein thermal stability through comprehensive protein design strategies, encompassing elements such as the free energy of protein folding, internal forces within proteins, and the overall structural design. We also demonstrate the efficiency and precision of combinatorial screening in the thermal stability design of aldo-keto reductase (AKR7-2-1). In our research, three single-point mutations and five combinatorial mutations were strategically introduced into AKR7-2-1, using multiple computational techniques. Notably, the E12I/S235I mutant showed a significant increase of 25.4 °C in its melting temperature (Tm). Furthermore, the optimal mutant, E12V/S235I, maintained 80 % of its activity while realizing a 16.8 °C elevation in Tm. Remarkably, its half-life at 50 °C was increased to twenty times that of the wild type. Structural analysis indicates that this enhanced thermal stability primarily arises from reduced oscillation in the loop region and increased internal hydrogen bonding. The promising results achieved with AKR7-2-1 demonstrate that our strategy could serve as a valuable reference for enhancing the thermal stability of other industrial enzymes.


Assuntos
Mutação Puntual , Aldo-Ceto Redutases/genética , Temperatura , Estabilidade Proteica , Mutação , Estabilidade Enzimática
7.
Chem Biol Interact ; 393: 110956, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484826

RESUMO

Atorvastatin (ATO), as a cholesterol-lowering drug, was the world's best-selling drug in the early 2000s. However, ATO overdose-induced liver or muscle injury is a threat to many patients, which restricts its application. Previous studies suggest that ATO overdose is accompanied with ROS accumulation and increased lipid peroxidation, which are the leading causes of ATO-induced liver damage. This study is, therefore, carried out to investigate the roles of anti-oxidant pathways and enzymes in protection against ATO-induced hepatotoxicity. Here we show that in ATO-challenged HepG2 cells, the expression levels of transcription factor NFE2L2/Nrf2 (nuclear factor erythroid 2 p45-related factor 2) are significantly upregulated. When Nrf2 is pharmacologically inhibited or genetically inactivated, ATO-induced cytotoxicity is significantly aggravated. Aldo-keto reductase-7A (AKR7A) enzymes, transcriptionally regulated by Nrf2, are important for bioactivation and biodetoxification. Here, we reveal that in response to ATO exposure, mRNA levels of human AKR7A2 are significantly upregulated in HepG2 cells. Furthermore, knockdown of AKR7A2 exacerbates ATO-induced hepatotoxicity, suggesting that AKR7A2 is essential for cellular adaptive response to ATO-induced cell damage. In addition, overexpression of AKR7A2 in HepG2 cells can significantly mitigate ATO-induced cytotoxicity and this process is Nrf2-dependent. Taken together, these findings indicate that Nrf2-mediated AKR7A2 is responsive to high concentrations of ATO and contributes to protection against ATO-induced hepatotoxicity, making it a good candidate for mitigating ATO-induced side effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Humanos , Aldo-Ceto Redutases/genética , Atorvastatina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
8.
Chem Biol Interact ; 391: 110896, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301882

RESUMO

Aldo-keto reductase-7A (AKR7A) subfamily belongs to the AKR superfamily and is associated with detoxification of aldehydes and ketones by reducing them to the corresponding alcohols. So far five members of ARK7A subfamily are identified: two human members-AKR7A2 and AKR7A3, two rat members-AKR7A1 and AKR7A4, and one mouse member-AKR7A5, which are implicated in several diseases including neurodegenerative diseases and cancer. AKR7A members share similar crystal structures and protein functional domains, but have different substrate specificity, inducibility and biological functions. This review will summarize the research progress of AKR7A members in substrate specificity, tissue distribution, inducibility, crystal structure and biological function. The significance of AKR7A members in the occurrence and development of diseases will also be discussed.


Assuntos
Aldeído Redutase , Fígado , Ratos , Camundongos , Animais , Humanos , Aldo-Ceto Redutases/metabolismo , Fígado/metabolismo , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/metabolismo , Especificidade por Substrato
9.
Int J Biol Macromol ; 261(Pt 1): 129512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246466

RESUMO

Due to the severe health risks for human and animal caused by the intake of toxic deoxynivalenol (DON) derived from Fusarium species, elimination DON in food and feed has been initiated as a critical issue. Enzymatic cascade catalysis by dehydrogenase and aldo-keto reductase represents a fascinating strategy for DON detoxification. Here, one quinone-dpendent alcohol dehydrogenase DADH oxidized DON into less-toxic 3-keto-DON and NADPH-dependent aldo-keto reductase AKR13B3 reduced 3-keto-DON into relatively non-toxic 3-epi-DON were identified from Devosia strain A6-243, indicating that degradation of DON on C3 are two-step sequential cascade processes. To establish the bifunctions, fusion enzyme linking DADH and AKR13B3 was successfully assembled to promote one-step DON degradations with accelerated specific activity and efficiency, resulting 93.29 % of DON removal rate in wheat sample. Three-dimensional simulation analysis revealed that the bifunctional enzyme forms an artificial intramolecular channel to minimize the distance of intermediate from DADH to AKR13B3 for two-step enzymatic reactions, and thereby accelerates this enzymatic process. As the first report of directing single step DON detoxification by an interesting bifunctional artificial enzyme, this work revealed a facile and eco-friendly approach to detoxify DON with application potential and gave valuable insights into execute other mycotoxin detoxification for ensuring food safety.


Assuntos
Acetamidas , Tricotecenos , Animais , Humanos , Aldo-Ceto Redutases/genética , Tricotecenos/metabolismo
10.
Chem Biodivers ; 21(4): e202302053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270380

RESUMO

Five compounds (1-5), one long-chain fatty acid (1), two thiophenes (2 and 3), one alkaloid (4), and one phenyl ester (5), were isolated from the aerial part of Echinops davuricus. The structures of the products were established by performing detailed nuclear magnetic resonance (NMR) analysis, and the structure of compound 1 was determined via high-resolution electrospray ionization mass spectrometry (HRESIMS) and NMR. Compounds 1, 4, and 5 were isolated from Echinops davuricus for the first time. Based on network pharmacology methods, AKR1B10 was selected as a key anticancer target. Compounds 1 and 5 exhibited significant AKR1B10 inhibitory activities, with IC50 values of 156.0±1.00 and 146.2±1.50 nM, respectively, with epalrestat used as the positive control (81.09±0.61 nM). Additionally, the interactions between the active compounds and AKR1B10 were evaluated via molecular docking. Ultimately, the GO and KEGG enrichment analysis indicated that the key signaling pathways associated with the active compounds may be related to the PI3K-Akt, MAPK, apoptotic, cellular senescence, and TNF signaling pathways and the human diseases corresponding to the targets are cancer. Our study reveals for the first time the anticancer properties of Echinops davuricus and provides a comprehensive understanding of its application in traditional medicine.


Assuntos
Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Humanos , Simulação de Acoplamento Molecular , Tenrecidae , Ésteres , Ácidos Graxos , Aldo-Ceto Redutases
11.
Phytochemistry ; 219: 113974, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211847

RESUMO

Twenty-one angular dihydropyranocoumarins and a linear furanocoumarin, including four previously undescribed compounds (1-4), were isolated from the flowers of Peucedanum japonicum (Umbelliferae). The structures of 1-4, along with their absolute stereochemistry, were determined to be (3'S,4'S)-3'-O-propanoyl-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (1), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methyl-2‴Z-butenoyl)khellactone (2), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methylbutanoyl)khellactone (3), and (3'S,4'S)-3'-O-(2″-methylpropanoyl)-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (4) using one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and electronic circular dichroism spectroscopy. In addition, the absolute configuration of the three angular dihydropyranocoumarins (5-7) was determined for the first time in this study. Among the previously reported compounds isolated in this study, 8 and 9 were isolated for the first time from the genus Peucedanum, whereas 10 and 11 were previously unreported and had not been isolated from P. japonicum to date. Furthermore, all isolated compounds were evaluated for their aldo-keto reductase 1C1 inhibitory activities on A549 human non-small-cell lung cancer cells. Compounds 10 and 12 exhibited substantial AKR1C1 inhibitory activities with IC50 values of 35.8 ± 0.9 and 44.2 ± 1.5 µM, respectively.


Assuntos
Apiaceae , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Flores , Aldo-Ceto Redutases
12.
Arch Toxicol ; 98(3): 807-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175295

RESUMO

The most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in different cell lines and its inhibition by known inhibitors of the aldo-keto reductases AKR1A1, AKR1B1, and AKR1C3 and the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, menadione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.


Assuntos
Cardiotoxicidade , Daunorrubicina/análogos & derivados , Idarubicina , Pirazinas , Compostos de Espiro , Humanos , Idarubicina/toxicidade , Idarubicina/metabolismo , Aldo-Ceto Redutases , Células HEK293 , Aldeído Redutase
13.
Life Sci ; 336: 122336, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092142

RESUMO

AIMS: Akr1A1 is a glycolytic enzyme catalyzing the reduction of aldehyde to alcohol. This study aims to delineate the role of Akr1A1 in regulating the adipo-osteogenic lineage differentiation of mesenchymal stem cells (MSCs). MAIN METHODS: MSCs derived from human bone marrow and Wharton Jelly together with gain- and loss-of-function analysis as well as supplementation with the S-Nitrosoglutathione reductase (GSNOR) inhibitor N6022 were used to study the function of Akr1A1 in controlling MSC lineage differentiation into osteoblasts and adipocytes. KEY FINDINGS: Akr1A1 expression, PKM2 activity, and lactate production were found to be decreased in osteoblast-committed MSCs, but PGC-1α increased to induce mitochondrial oxidative phosphorylation. Increased Akr1A1 inhibited the SIRT1-dependent pathway for decreasing the expressions of PGC-1α and TAZ but increasing PPAR γ in adipocyte-committed MSCs, hence promoting glycolysis in adipogenesis. In contrast, Akr1A1 expression, PKM2 activity and lactate production were all increased in adipocyte-differentiated cells with decreased PGC-1α for switching energy utilization to glycolytic metabolism. Reduced Akr1A1 expression in osteoblast-committed cells relieves its inhibition of SIRT1-mediated activation of PGC-1α and TAZ for facilitating osteogenesis and mitochondrial metabolism. SIGNIFICANCE: Several metabolism-involved regulators including Akr1A1, SIRT1, PPARγ, PGC-1α and TAZ were differentially expressed in osteoblast- and adipocyte-committed MSCs. More importantly, Akr1A1 was identified as a new key regulator for controlling the MSC lineage commitment in favor of adipogenesis but detrimental to osteogenesis. Such information should be useful to develop perspective new therapeutic agents to reverse the adipo-osteogenic differentiation of BMSCs, in a way to increase in osteogenesis but decrease in adipogenesis.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Adipogenia/fisiologia , Osteogênese/fisiologia , Sirtuína 1/metabolismo , Diferenciação Celular/fisiologia , Lactatos/metabolismo , Aldo-Ceto Redutases/metabolismo
14.
Eur Rev Med Pharmacol Sci ; 27(6 Suppl): 127-136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38112953

RESUMO

OBJECTIVE: Lipedema is a debilitating chronic condition predominantly affecting women, characterized by the abnormal accumulation of fat in a symmetrical, bilateral pattern in the extremities, often coinciding with hormonal imbalances. PATIENTS AND METHODS: Despite the conjectured role of sex hormones in its etiology, a definitive link has remained elusive. This study explores the case of a patient possessing a mutation deletion within the C-terminal region of Aldo-keto reductases Member C2 (AKR1C2), Ser320PheTer2, that could lead to heightened enzyme activity. A cohort of 19 additional lipedema patients and 2 additional affected family members14 were enrolled in this study. The two additional affected family members are relatives of the patient with the AKR1C1 L213Q variant, which is included in the 19 cohorts and described in literature. RESULTS: Our investigation revealed that AKR1C2 was overexpressed, as quantified by qPCR, in 5 out of 21 (24%) lipedema patients who did not possess mutations in the AKR1C2 gene. Collectively, these findings implicate AKR1C2 in the pathogenesis of lipedema, substantiating its causative role. CONCLUSIONS: This study demonstrates that the activating mutation in the enzyme or its overexpression is a causative factor in the development of lipedema. Further exploration and replication in diverse populations will bolster our understanding of this significant connection.


Assuntos
Hidroxiesteroide Desidrogenases , Lipedema , Humanos , Feminino , Aldo-Ceto Redutases/genética , Hidroxiesteroide Desidrogenases/genética , Mutação
15.
Microb Cell Fact ; 22(1): 213, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840127

RESUMO

Enantio-pure α-hydroxy amides are valuable intermediates for the synthesis of chiral pharmaceuticals. The asymmetric reduction of α-keto amides to generate chiral α-hydroxy amides is a difficult and challenging task in biocatalysis. In this study, iolS, an aldo-keto reductase from Bacillus subtilis 168 was exhibited as a potential biocatalyst, which could catalyze the reduction of diaryl α-keto amide such as 2-oxo-N, 2-diphenyl-acetamide (ONDPA) with moderate S-selectivity (76.1%, ee) and 60.5% conversion. Through semi-rational engineering, two stereocomplementary variants (I57F/F126L and N21A/F126A) were obtained with ee value of 97.6% (S) and 99.9% (R) toward ONDPA (1a), respectively, delivering chiral α-hydroxy amide with > 98% conversions. Moreover, the excellent S- and R-preference variants displayed improved stereoselectivities toward the other α-keto amide compounds. Molecular dynamic and docking analysis revealed that the two key residues at 21 and 126 were identified as the "switch", which specifically controlled the stereopreference of iolS by regulating the shape of substrate binding pocket as well as the substrate orientation. Our results offer an effective strategy to obtain α-hydroxy amides with high optical purity and provide structural insights into altering the stereoselectivity of AKRs.


Assuntos
Aldeído Redutase , Amidas , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/química , Aldo-Ceto Redutases/metabolismo , Especificidade por Substrato , Biocatálise , Catálise , Aldeído Redutase/metabolismo
16.
Planta ; 258(6): 107, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897513

RESUMO

MAIN CONCLUSION: The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.


Assuntos
Aldeído Redutase , Aloe , Aldo-Ceto Redutases/genética , Aldeído Redutase/genética , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aloe/genética , Aloe/metabolismo , Filogenia , NADP/genética , Plantas/metabolismo
17.
Methods Enzymol ; 689: 303-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802576

RESUMO

Aldo-keto reductase family 1C (AKR1C) members transform steroids via their 3-, 17-, and 20-ketosteroid reductase activities. The biochemical study of these enzymes can help to inform their roles in hormone-dependent diseases and develop therapeutic inhibitors. This work describes a protocol to purify AKR1C1-4 members from a bacterial expression system using two chromatography steps. It also describes the basis of discontinuous assays to measure steroid conversion.


Assuntos
Ensaios Enzimáticos , Esteroides , Aldo-Ceto Redutases/genética , Esteroides/metabolismo
18.
Turk J Gastroenterol ; 34(12): 1197-1205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823316

RESUMO

BACKGROUND/AIMS: Gastric cancer is a prevalent malignancy with unfavorable prognosis partially resulting from its high metastasis rate. Clarifying the molecular mechanism of gastric cancer occurrence and progression for improvement of therapeutic efficacy and prognosis is needed. The study tended to delineate the role and regulatory mechanism of aldo-keto reductase 1B10 (AKR1B10) in gastric cancer progression. MATERIALS AND METHODS: The relationship of AKR1B10 expression with survival rate in gastric cancer was analyzed through Kaplan-Meier analysis. The mRNA levels of AKR1B10 and integrin subunit alpha 5 (ITGA5) in gastric cancer tissues and cell lines were measured by real-time quantitative polymerase chain reaction. Protein levels of AKR1B10 and integrin subunit alpha 5 were assayed via western blot. The molecular relationship between AKR1B10 and ITGA5 was analyzed by co-immunoprecipitation assay. Cell viability was assayed through Cell Counting Kit-8, invasion and migration of tumor cells was assessed through wound healing and transwell assays. Transwell assay was utilized to detect invasion. The adhesion of gastric cancer cells was detected using cell adhesion assays. RESULTS: The results unveiled that integrin subunit alpha 5 was upregulated, while AKR1B10 was downregulated in gastric cancer tissues and cells. Overexpressing AKR1B10 hindered gastric cancer cell proliferation, migration, invasion and adhesion. It was striking that we certified the inhibitory effect of AKR1B10 on integrin subunit alpha 5 expression and their (AKR1B10 and ITGA5)) negative relationship via bioinformatics method, real-time quantitative polymerase chain reaction, and co-immunoprecipitation assays. Via rescue experiments, it was concluded that AKR1B10 served as tumor suppressor potentially by ITGA5 expression in gastric cancer. CONCLUSION: Our results indicated that AKR1B10 inhibited migration, invasion, and adhesion of gastric cancer cells via modulation of ITGA5.


Assuntos
Aldo-Ceto Redutases , Integrinas , Neoplasias Gástricas , Humanos , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Gástricas/patologia
19.
Am J Pathol ; 193(10): 1603-1617, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717980

RESUMO

Lung adenocarcinoma (LUAD) is a common subtype of primary lung cancer. Fatty acid oxidation plays a key role in LUAD development by providing energy for tumor cells. This study aimed to identify the role of ring finger protein 152 (RNF152) in LUAD. RNF152 was down-regulated in LUAD, and low RNF152 expression correlated with a poor prognosis in LUAD patients. RNF152 overexpression inhibited the proliferation and malignant phenotype of LUAD cells, whereas RNF152 knockdown exerted an opposite effect. Tumor cells overexpressing RNF152 showed less fatty acid oxidation compared with control cells, whereas RNF152 knockdown induced fatty acid uptake and oxidation. Further analysis revealed the binding reaction between RNF152 and interleukin-1 receptor-associated kinase 1 (IRAK1). RNF152 reduced the stability of IRAK1 in LUAD cells by promoting its ubiquitination. RNF152-overexpressed tumor cells exhibited a significantly lower level of Aldo-Keto reductase family 1 member 10 (AKR1B10), whereas up-regulation of IRAK1 restored the expression of AKR1B10 in RNF152-overexpressed cells. Furthermore, up-regulation of IRAK1 eliminated the antitumor effect of RNF152 in LUAD cells. Mouse xenograft models confirmed the inhibitory effect of RNF152 on the tumorigenesis and metastasis of LUAD. Taken together, RNF152 played a tumor suppressive role in LUAD by promoting IRAK1 ubiquitination and IRAK1-mediated down-regulation of AKR1B10, thereby reversing the malignant phenotype of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Quinases Associadas a Receptores de Interleucina-1/genética , Adenocarcinoma de Pulmão/genética , Regulação para Cima , Modelos Animais de Doenças , Ácidos Graxos , Neoplasias Pulmonares/genética , Aldo-Ceto Redutases , Ubiquitina-Proteína Ligases/genética
20.
Drug Metab Dispos ; 51(12): 1569-1577, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722844

RESUMO

Enzymes catalyzing the reduction reaction of xenobiotics are mainly members of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies. The intestine, together with the liver, is responsible for first-pass effects and is an organ that determines the bioavailability of orally administered drugs. In this study, we evaluated the mRNA and protein expression levels of 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 7 SDR isoforms (CBR1, CBR3, CBR4, DCXR, DHRS4, HSD11B1, and HSD17B12) in each region of the human intestine using next-generation sequencing and data-independent acquisition proteomics. At both the mRNA and protein levels, most AKR isoforms were highly expressed in the upper regions of the intestine, namely the duodenum and jejunum, and then declined toward the rectum. Among the members in the SDR superfamily, CBR1 and DHRS4 were highly expressed in the upper regions, whereas the expression levels of the other isoforms were almost uniform in all regions. Significant positive correlations between mRNA and protein levels were observed in AKR1A1, AKR1B1, AKR1B10, AKR1C3, AKR7A2, AKR7A3, CBR1, and CBR3. The mRNA level of AKR1B10 was highest, followed by AKR7A3 and CBR1, each accounting for more than 10% of the sum of all AKR and SDR levels in the small intestine. This expression profile in the human intestine was greatly different from that in the human liver, where AKR1C isoforms are predominantly expressed. SIGNIFICANCE STATEMENT: In this study comprehensively determined the mRNA and protein expression profiles of aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase isoforms involved in xenobiotic metabolism in the human intestine and found that most of them are highly expressed in the upper region, where AKR1B10, AKR7A3, and CBR1 are predominantly expressed. Since the intestine is significantly involved in the metabolism of orally administered drugs, the information provided here is valuable for pharmacokinetic studies in drug development.


Assuntos
Redutases-Desidrogenases de Cadeia Curta , Humanos , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Isoformas de Proteínas/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Intestinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...