Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612771

RESUMO

The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a significant threat to many immunocompromised cancer patients with pulmonary infections. This review highlights the complexity of interactions in the host's defensive eicosanoid signaling network and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs) and their mouse counterparts are integral elements of the innate immune system, mostly operating in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.


Assuntos
Ferroptose , Lipoxigenases , Humanos , Animais , Camundongos , Carcinogênese , Hospedeiro Imunocomprometido , Inflamação
2.
Biomolecules ; 14(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540697

RESUMO

Lipoxygenases make several biological functions in cells, based on the products of the catalyzed reactions. In diatoms, microalgae ubiquitous in aquatic ecosystems, lipoxygenases have been noted for the oxygenation of fatty acids with the production of oxylipins, which are involved in many physiological and pathological processes in marine organisms. The interest in diatoms' lipoxygenases and oxylipins has increased due to their possible biotechnological applications, ranging from ecology to medicine. We investigated using bioinformatics and molecular docking tools the lipoxygenases of diatoms and the possible interaction with substrates. A large-scale analysis of sequence resources allowed us to retrieve 45 sequences of lipoxygenases from diatoms. We compared and analyzed the sequences by multiple alignments and phylogenetic trees, suggesting the possible clustering in phylogenetic groups. Then, we modelled the 3D structure of representative enzymes from the different groups and investigated in detail the structural and functional properties by docking simulations with possible substrates. The results allowed us to propose a classification of the lipoxygenases from diatoms based on their sequence features, which may be reflected in specific structural differences and possible substrate specificity.


Assuntos
Diatomáceas , Lipoxigenases , Lipoxigenases/química , Lipoxigenases/genética , Diatomáceas/genética , Oxilipinas , Filogenia , Simulação de Acoplamento Molecular , Ecossistema , Biologia Computacional
3.
Artigo em Inglês | MEDLINE | ID: mdl-38484676

RESUMO

The peroxyl radicals generated by the activity of lipoxygenases (LOX) are mediators to trigger inflammatory diseases. Therefore, it is important to investigate potent LOX inhibitor for modulating the occurrence and resolving inflammatory processes. Artemisa vulgaris, is a herbal plant that is known for flavonoids, potentially inhibiting lipid peroxidation and scavenging radicals. The objectives of the present study were to obtain flavonoids rich extract from A. vulgaris, and determine the inhibitory mode of the extract against LOX. The flavonoids rich extract was optimized in an ultrasound assisted extraction using ionic liquids as extraction solvent. The results found that the optimum conditions; ratio of solid-to-liquid (1:10) and 30 min of extraction time could produce the high yield (10.14 %) and flavonoid content (5.30 mg QE/g). The LOX activity was demonstrated to follow a mixed mode of inhibition in the presence of the flavonoid rich extract as an inhibitor. The Michaelis-Menten constant (Km) was increased from 0.283 µM to 0.435 µM, whereas the maximum velocity was reduced from 0.22 µM/min to 0.058 µM/min in the inhibition. The flavonoids rich extract is likely to be a natural potent non-competitive inhibitor which may bind to free LOX or substrate-bound LOX.


Assuntos
Artemisia , Flavonoides , Flavonoides/farmacologia , Lipoxigenases , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia
4.
Appl Microbiol Biotechnol ; 108(1): 266, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498184

RESUMO

Lipoxygenases (LOXs) catalyze dioxygenation of polyunsaturated fatty acids (PUFAs) into fatty acid hydroperoxides (FAHPs), which can be further transformed into a number of value-added compounds. LOXs have garnered interest as biocatalysts for various industrial applications. Therefore, a high-throughput LOX activity assay is essential to evaluate their performance under different conditions. This study aimed to enhance the suitability of the ferrous-oxidized xylenol orange (FOX) assay for screening LOX activity across a wide pH range with different PUFAs. The narrow linear detection range of the standard FOX assay restricts its utility in screening LOX activity. To address this, the concentration of perchloric acid in the xylenol orange reagent was adjusted. The modified assay exhibited a fivefold expansion in the linear detection range for hydroperoxides and accommodated samples with pH values ranging from 3 to 10. The assay could quantify various hydroperoxide species, indicating its applicability in assessing LOX substrate preferences. Due to sensitivity to pH, buffer types, and hydroperoxide species, the assay required calibration using the respective standard compound diluted in the same buffer as the measured sample. The use of correction factors is suggested when financial constraints limit the use of FAHP standard compounds in routine LOX substrate preference analysis. FAHP quantification by the modified FOX assay aligned well with results obtained using the commonly used conjugated diene method, while offering a quicker and broader sample pH range assessment. Thus, the modified FOX assay can be used as a reliable high-throughput screening method for determining LOX activity. KEY POINTS: • Modifying perchloric acid level in FOX reagent expands its linear detection range • The modified FOX assay is applicable for screening LOX activity in a wide pH range • The modified FOX assay effectively assesses substrate specificity of LOX.


Assuntos
Peróxido de Hidrogênio , Percloratos , Fenóis , Sulfóxidos , Ensaios de Triagem em Larga Escala , Xilenos/química , Lipoxigenases
5.
Pharmacol Ther ; 256: 108612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369063

RESUMO

Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.


Assuntos
Neoplasias , Oxilipinas , Humanos , Oxilipinas/metabolismo , Lipoxigenases , Prostaglandina-Endoperóxido Sintases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Citocromos , Neoplasias/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/metabolismo
6.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396917

RESUMO

Lipoxygenases (LOXs) are a family of enzymes that includes different fatty acid oxygenases with a common tridimensional structure. The main functions of LOXs are the production of signaling compounds and the structural modifications of biological membranes. These features of LOXs, their widespread presence in all living organisms, and their involvement in human diseases have attracted the attention of the scientific community over the last decades, leading to several studies mainly focused on understanding their catalytic mechanism and designing effective inhibitors. The aim of this review is to discuss the state-of-the-art of a different, much less explored aspect of LOXs, that is, their interaction with lipid bilayers. To this end, the general architecture of six relevant LOXs (namely human 5-, 12-, and 15-LOX, rabbit 12/15-LOX, coral 8-LOX, and soybean 15-LOX), with different specificity towards the fatty acid substrates, is analyzed through the available crystallographic models. Then, their putative interface with a model membrane is examined in the frame of the conformational flexibility of LOXs, that is due to their peculiar tertiary structure. Finally, the possible future developments that emerge from the available data are discussed.


Assuntos
Bicamadas Lipídicas , Lipoxigenases , Animais , Humanos , Coelhos , Conformação Molecular , Ácidos Graxos
7.
Arthritis Res Ther ; 26(1): 51, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360827

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is typically preceded by an extended preclinical period where circulating autoantibodies, particularly anti-citrullinated protein antibodies (ACPA), are detectable in the absence of clinical arthritis. Increased dietary intake of anti-inflammatory omega-3 (ω3) polyunsaturated fatty acids (PUFA) has been shown to be associated with a lower the risk of developing incident RA in large epidemiological studies. It is currently not known how changes in fatty acid (FA) metabolism may impact on the progression towards RA in at-risk individuals. To begin to address this question, we profiled serum FAs and oxylipins in an established cohort of at-risk ACPA-positive first-degree relatives (FDR) of RA patients (N = 31), some of whom developed RA (N = 4), and compared their profile to ACPA-negative FDR from the same population (N = 10). METHODS: Gas chromatography (GC) was used for FA quantitation. Oxylipins were extracted and quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). RESULTS: Although we did not detect any meaningful differences in overall FA content between ACPA + and ACPA - FDR, the levels of oxylipins derived from FA metabolism demonstrated significant differences between the two groups, with the ACPA + group demonstrating enrichment in circulating arachidonic acid- and eicosapentaenoic acid-derived molecules. Compared with the ACPA - FDR group, the ACPA + FDR, including those who progressed into inflammatory arthritis, displayed higher levels of LOX-derived oxylipins. CONCLUSION: ACPA seropositivity in otherwise unaffected individuals at-risk for developing future RA based on family history (FDR) is associated with alterations in the serum oxylipin profile that suggests dysregulated LOX activity.


Assuntos
Anticorpos Antiproteína Citrulinada , Artrite Reumatoide , Humanos , Oxilipinas , Espectrometria de Massas em Tandem , Autoanticorpos , Lipoxigenases
8.
Food Chem ; 445: 138699, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359566

RESUMO

This study investigated the effectiveness of cold-plasma treatment using air and argon as input gas on deactivation of lipolytic enzymes in lightly-milled-rice (LMR). The results showed no significant inactivation in lipase and lipoxygenase using air-plasma. However, using argon as input gas, the residual activities of lipase and lipoxygenase were reduced to 64.51 % and 29.15 % of initial levels, respectively. Argon plasma treatment resulted in more substantial augmentation in peak and breakdown viscosities of LMR starch, suggesting an enhancement in palatability of cooked LMR with increased stickiness and decreased hardness. In contrast to the decrease in volatile compounds in LMR following argon plasma treatment, the concentrations of several prevalent aroma compounds, including 1-hexanol, 1-hexanal, and 2-pentylfuran, exhibited significant increments, reaching 1489.70 ng/g, 3312.10 ng/g, and 58.80 ng/g, respectively. These findings suggest the potential for enhancing various facets of the commercial qualities of LMR by utilizing different input gases during plasma treatment.


Assuntos
Oryza , Gases em Plasma , Oryza/química , Argônio , Lipase/metabolismo , Lipoxigenases/metabolismo
9.
Biomed Pharmacother ; 171: 116153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232664

RESUMO

Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by persistent inflammation and joint destruction. A lipid mediator (LM, namely, 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX in a ratio of 3:47:50) produced by soybean lipoxygenase from DHA, exhibits anti-inflammatory activity. In this study, we determined the effect of LM on collagen antibody-induced arthritis (CAIA) in mice and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in RAW264.7 cells. LM effectively downregulated the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K, inhibited osteoclast formation, and suppressed the NF-κB signaling pathway in vitro. In vivo, LM at 10 µg/kg/day significantly decreased paw swelling and inhibited progression of arthritis in CAIA mice. Moreover, proinflammatory cytokine (tumor necrosis factor-α, interleukin (IL)-6, IL-1ß, IL-17, and interferon-γ) levels in serum were decreased, whereas IL-10 levels were increased following LM treatment. Furthermore, LM alleviated joint inflammation, cartilage erosion, and bone destruction in the ankles, which may be related to matrix metalloproteinase and Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathway. Our findings suggest that LM attenuates arthritis severity, restores serum imbalances, and modifies joint damage. Thus, LM represents a promising therapy for relieving RA symptoms.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Osteoclastos , Ligante RANK/metabolismo , Soja , Ácidos Docosa-Hexaenoicos/farmacologia , Artrite Reumatoide/metabolismo , Artrite Experimental/patologia , Inflamação/metabolismo , Lipoxigenases/metabolismo , Lipoxigenases/farmacologia
10.
Funct Plant Biol ; 512024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38220246

RESUMO

Soybean (Glycine max ) is the world's most widely grown seed legume. One of the most important pests that decrease seed quality and reduce yield of soybean crops is the southern green stink bug (Nezara viridula ). Insect damage triggers accumulation of defensive compounds such as protease inhibitors (PIs), isoflavonoids and reactive oxygen species, which are regulated by the lipoxygenase (LOX)-regulated jasmonic acid (JA) to stop insect feeding. This study identified and characterised the role of LOX isoforms in the modulation of chemical defences in seeds of field-grown soybean that decreased digestive enzyme activities of N. viridula after insect attack. Stink bugs attack increased LOX 1 and LOX 2 expression, and activities of LOX 1 and LOX 3 isoenzymes in developing soybean seeds. In addition, stink bug damage and methyl jasmonate application induced expression and activity of both cysteine PIs and trypsin PIs in developing soybean seeds, suggesting that herbivory induced JA in soybean seeds. High PI activity levels in attacked seeds decreased cysteine proteases and α-amylases activities in the gut of stink bugs that fed on field-grown soybean. We demonstrated that LOX isoforms of seeds are concomitantly induced with JA-regulated PIs by stink bugs attack, and these PIs inhibit the activity of insect digestive enzymes. To our knowledge, this is the first study to investigate the participation of LOX in modulating JA-regulated defences against stink bugs in seeds of field-grown soybean, and our results suggest that soybean PIs may inhibit α-amylase activity in the gut of N. viridula .


Assuntos
Ciclopentanos , Soja , Heterópteros , Oxilipinas , Animais , Lipoxigenases , Sementes , Heterópteros/fisiologia , Isoformas de Proteínas , Inibidores Enzimáticos , Receptores Depuradores Classe E
11.
Arch Biochem Biophys ; 752: 109874, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38145834

RESUMO

The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.


Assuntos
Lipoxigenase , Lipoxigenases , Animais , Coelhos , Lipoxigenases/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/química , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Araquidonato 12-Lipoxigenase
12.
Int J Immunopathol Pharmacol ; 37: 3946320231223826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134963

RESUMO

Introduction: Aberrant epithelial-mesenchymal transition (EMT) and migration frequently occur during tumour progression. BML-111, an analogue of lipoxin A4, has been implicated in inflammation in cancer research. Methods: 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, western blot, Reverse Transcription Polymerase Chain Reaction (RT-PCR), transwell assay, immunofluorescence, and immunohistochemistry were conducted in this study. Results: In vitro experiments revealed that BML-111 inhibited EMT and migration in CoCl2-stimulated MCF-7 cells. These effects were achieved by inhibiting MMP-2 and MMP-9, which are downregulated by 5-lipoxygenase (5-LOX). Moreover, BML-111 inhibited EMT and migration of breast cancer cells in BALB/c nude mice inoculated with MCF-7 cells. Conclusion: Our results suggest that BML-111 may be a potential therapeutic drug for breast cancer and that blocking the 5-LOX pathway could be a possible approach for mining effective drug targets.


Assuntos
Neoplasias da Mama , Lipoxinas , Camundongos , Humanos , Animais , Feminino , Células MCF-7 , Lipoxinas/farmacologia , Lipoxinas/metabolismo , Lipoxinas/uso terapêutico , Camundongos Nus , Transição Epitelial-Mesenquimal , Lipoxigenases/farmacologia , Lipoxigenases/uso terapêutico , Movimento Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células , Linhagem Celular Tumoral
13.
Nat Commun ; 14(1): 7385, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968313

RESUMO

Infections and vaccines can induce enhanced long-term responses in innate immune cells, establishing an innate immunological memory termed trained immunity. Here, we show that monocytes with a trained immunity phenotype, due to exposure to the Bacillus Calmette-Guérin (BCG) vaccine, are characterized by an increased biosynthesis of different lipid mediators (LM) derived from long-chain polyunsaturated fatty acids (PUFA). Pharmacological and genetic approaches show that long-chain PUFA synthesis and lipoxygenase-derived LM are essential for the BCG-induced trained immunity responses of human monocytes. Furthermore, products of 12-lipoxygenase activity increase in monocytes of healthy individuals after BCG vaccination. Grasping the underscoring lipid metabolic pathways contributes to our understanding of trained immunity and may help to identify therapeutic tools and targets for the modulation of innate immune responses.


Assuntos
Vacina BCG , Imunidade Treinada , Humanos , Imunidade Inata , Lipoxigenases , Lipídeos
14.
BMC Plant Biol ; 23(1): 584, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993774

RESUMO

BACKGROUND: The aleurone layer is a part of many plant seeds, and during seed germination, aleurone cells undergo PCD, which is promoted by GA from the embryo. However, the numerous components of the GA signaling pathway that mediate PCD of the aleurone layers remain to be identified. Few genes and transcriptomes have been studied thus far in aleurone layers to improve our understanding of how PCD occurs and how the regulatory mechanism functions during PCD. Our previous studies have shown that histone deacetylases (HDACs) are required in GA-induced PCD of aleurone layer. To further explore the molecular mechanisms by which epigenetic modifications regulate aleurone PCD, we performed a global comparative transcriptome analysis of embryoless aleurones treated with GA or histone acetylase (HAT) inhibitors. RESULTS: In this study, a total of 7,919 differentially expressed genes (DEGs) were analyzed, 2,554 DEGs of which were found to be common under two treatments. These identified DEGs were involved in various biological processes, including DNA methylation, lipid metabolism and ROS signaling. Further investigations revealed that inhibition of DNA methyltransferases prevented aleurone PCD, suggesting that active DNA methylation plays a role in regulating aleurone PCD. GA or HAT inhibitor induced lipoxygenase gene expression, leading to lipid degradation, but this process was not affected by DNA methylation. However, DNA methylation inhibitor could regulate ROS-related gene expression and inhibit GA-induced production of hydrogen peroxide (H2O2). CONCLUSION: Overall, linking of lipoxygenase, DNA methylation, and H2O2 may indicate that GA-induced higher HDAC activity in aleurones causes breakdown of lipids via regulating lipoxygenase gene expression, and increased DNA methylation positively mediates H2O2 production; thus, DNA methylation and lipid metabolism pathways may represent an important and complex signaling network in maize aleurone PCD.


Assuntos
Giberelinas , Zea mays , Espécies Reativas de Oxigênio/metabolismo , Giberelinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Metabolismo dos Lipídeos/genética , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Metilação de DNA , Sementes/genética , Sementes/metabolismo , Perfilação da Expressão Gênica , Lipoxigenases/genética , Lipoxigenases/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Blood ; 142(14): 1180-1181, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796520
16.
Food Res Int ; 173(Pt 1): 113309, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803620

RESUMO

The roles of enzymatic (Lipoxygenases, LOX) oxidation and autoxidation in the dry-cured processing of mackerel were investigated by adding exogenous substances in this study. Four groups, namely control, chlorogenic acid (inhibiting LOX activity), EDTA-2Na (inhibiting autoxidation), and exogenous LOX (adding eLOX), were assigned. The results showed that lipid oxidation of mackerel was reduced by inhibiting LOX activity and autoxidation, while adding eLOX promoted lipid oxidation. Inhibition of LOX activity and autoxidation suppressed fatty acid accumulation mainly in the air-drying and curing stage, respectively. The total contents of key flavors in the mackerel during dry-cured processing were decreased by inhibiting LOX activity and autoxidation, and the former inhibitory effect was stronger than autoxidation, while it was corresponding increased through adding eLOX, of particular in the later stage of air-drying. Collectively, LOX could promote the flavor formation of the mackerel in the dry-cured processing, which could be applied in the flavor adjustment of aquatic products or some similar fields.


Assuntos
Lipoxigenases , Perciformes , Animais , Oxirredução , Alimentos Marinhos , Ácidos Graxos
17.
Mol Biol Rep ; 50(11): 9283-9294, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812350

RESUMO

BACKGROUND: Deficiency of vitamin E results in several neurological and age-related disorders in humans. Utilization of maize mutants with favourable vte4-allele led to the development of several α-tocopherol (vitamin E) rich (16-19 µg/g) maize hybrids worldwide. However, the degradation of tocopherols during post-harvest storage substantially affects the efficacy of these genotypes. METHODS AND RESULTS: We studied the role of lipoxygenase enzyme and Lipoxygenase 3 (LOX3) gene on the degradation of tocopherols at monthly intervals under traditional storage up to six months in two vte4-based contrasting-tocopherol retention maize inbreds viz. HKI323-PVE and HKI193-1-PVE. The analysis revealed significant degradation of tocopherols across storage intervals in both the inbreds. Lower retention of α-tocopherol was noticed in HKI193-1-PVE. HKI323-PVE with the higher retention of α-tocopherol showed lower lipoxygenase activity throughout the storage intervals. LOX3 gene expression was higher (~ 1.5-fold) in HKI193-1-PVE compared to HKI323-PVE across the storage intervals. Both lipoxygenase activity and LOX3 expression peaked at 120 days after storage (DAS) in both genotypes. Further, a similar trend was observed for LOX3 expression and lipoxygenase activity. The α-tocopherol exhibited a significantly negative correlation with lipoxygenase enzyme and expression of LOX3 across the storage intervals. CONCLUSIONS: HKI323-PVE with high tocopherol retention, low -lipoxygenase activity, and -LOX3 gene expression can act as a potential donor in the vitamin E biofortification program. Protein-protein association network analysis also indicated the independent effect of vte4 and LOX genes. This is the first comprehensive report analyzing the expression of the LOX3 gene and deciphering its vital role in the retention of α-tocopherol in biofortified maize varieties under traditional storage.


Assuntos
Tocoferóis , alfa-Tocoferol , Humanos , Zea mays/genética , Vitamina E , Lipoxigenases
18.
Bioresour Technol ; 388: 129750, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717704

RESUMO

Resolvin D5 (RvD5), 7S,17S-dihydroxy-4Z,8E,10Z,13Z,15E,19Z-docosahexaenoic acid (DHA) is a specialized pro-resolving mediator (SPM) generated in human macrophages. It is implicated in the resolution of inflammation and synthesized using an inefficient chemical process. Here, DHA-enriched oil hydrolysate was prepared from oils by lipase with resin treatment and solvent extraction. The reaction factors on the biotransformation of oil hydrolysate into RvD5 were optimized using Escherichia coli expressing arachidonate double-oxygenating 15S-lipoxygenase. After optimization, the cells converted 5.0 mM (1.64 g/L) DHA in oil hydrolysate into 4.0 mM (1.44 g/L) RvD5 in a bioreactor for 3.0 h, which was 15-fold higher than that in a flask before optimization, and RvD5 with a purity of > 97% was prepared from reaction solution by treatments of resins. This is the first trial for the production of C22-dihydroxy fatty acid using a bioreactor. This study will contribute to the large-scale production of SPMs from oils.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamação , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Escherichia coli/metabolismo , Reatores Biológicos , Lipoxigenases
19.
Biochemistry (Mosc) ; 88(6): 842-845, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37748879

RESUMO

Discovery of Thiomargarita magnifica - an exceptionally large giant sulfur bacterium - urges us to pay additional attention to the giant sulfur bacteria and to revisit our recent bioinformatic finding of lipoxygenases in the representatives of the genus Beggiatoa. These close relatives of Thiomargarita magnifica meet the similar size requirements by forming multicellular structures. We hypothesize that their lipoxygenases are a part of the oxylipin signaling system that provides high level of cell-to-cell signaling complexity which, in turn, enables them to reach large sizes.


Assuntos
Lipoxigenase , Lipoxigenases , Lipoxigenase/genética , Evolução Biológica , Bactérias , Enxofre
20.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629162

RESUMO

The GC-MS profiling of the endogenous oxylipins (Me/TMS) from cucumber (Cucumis sativus L.) leaves, flowers, and fruit peels revealed a remarkable abundance of 16-hydroxy-9,12,14-octadecatrienoic acid (16-HOT). Incubations of homogenates from these organs with α-linolenic acid yielded 16(S)-hydroperoxide (16-HPOT) as a predominant product. Targeted proteomic analyses of these tissues revealed the presence of several highly homologous isoforms of the putative "9S-lipoxygenase type 6". One of these isoenzymes (CsLOX3, an 877 amino acid polypeptide) was prepared by heterologous expression in E. coli and exhibited 16(S)- and 13(S)-lipoxygenase activity toward α-linolenic and linoleic acids, respectively. Furthermore, α-linolenate was a preferred substrate. The molecular structures of 16(S)-HOT and 16(S)-HPOT (Me or Me/TMS) were unequivocally confirmed by the mass spectral data, 1H-NMR, 2D 1H-1H-COSY, TOCSY, HMBC, and HSQC spectra, as well as enantiomeric HPLC analyses. Thus, the vegetative CsLOX3, biosynthesizing 16(S)-HPOT, is the first 16(S)-LOX and ω3-LOX ever discovered. Eicosapentaenoic and hexadecatrienoic acids were also specifically transformed to the corresponding ω3(S)-hydroperoxides by CsLOX3.


Assuntos
Cucumis sativus , Ácidos Graxos Ômega-3 , Cucumis sativus/genética , Ácido alfa-Linolênico , Escherichia coli , Proteômica , Peróxido de Hidrogênio , Lipoxigenases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...