Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.814
Filtrar
1.
Chem Biol Drug Des ; 103(4): e14518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570329

RESUMO

Icariin has shown the potential to treat osteoarthritis (OA), but the specific mechanism still needs further exploration. Therefore, this study attempted to reveal the effect and mechanism of icariin on OA based on in vitro and in vivo experiments. In vivo, a mouse model of OA was established by cutting the anterior cruciate ligament, and 10 mg/kg icariin was given to mice orally. Then, the OA injury and pathological changes of cartilage tissue in mice were identified by OA index and hematoxylin and eosin staining. In vitro, the viability of C28/I2 cells incubated with different concentrations of icariin was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay. Subsequently, C28/I2 cells induced by IL-1ß were used as the cell model of OA, the expression of Sirtuin (SIRT)-1 in cells was knocked down, and icariin was added for intervention. Next, western blot was used to observe the expression level of sirtuin 1 (SIRT-1)-Nrf2-heme oxygenase 1 (HO-1) signaling pathway-related proteins in cells of each group. Besides, cell viability and apoptosis were detected by MTT and apoptosis assay, and DNA damage was observed by comet assay. In vivo experiments, intragastric administration of icariin could effectively reduce the OA index of mice, improve the pathological changes of cartilage tissue, and obviously activated the SIRT-1-Nrf2-HO-1 signaling pathway. In vitro experiments, icariin did not exhibit toxic effect on C28/I2 cells, but could activate the SIRT-1-Nrf2-HO-1 signaling pathway, improve the viability, reduce the level of apoptosis and relieve the DNA damage in OA cells; however, these effects were inhibited by si- SIRT-1. Icariin can improve the symptoms of OA by activating the SIRT-1-Nrf2-HO-1 signaling pathway.


Assuntos
Condrócitos , Flavonoides , Osteoartrite , Camundongos , Animais , Condrócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Heme Oxigenase-1/metabolismo , Transdução de Sinais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Apoptose
2.
Redox Rep ; 29(1): 2332038, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38563333

RESUMO

OBJECTIVES: Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS: The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS: An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION: Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.


Assuntos
Aminofenóis , Perda Auditiva , Ototoxicidade , Quinolonas , Humanos , Gentamicinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Qualidade de Vida , Estresse Oxidativo , Apoptose , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/farmacologia
3.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 262-267, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38584112

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has gradually become the most prevalent chronic liver disease in the world, but its pathogenesis has not been fully elucidated. Ferroptosis is a novel type of programmed cell death caused by iron-dependent lipid peroxidation. Heme oxygenase-1 is a recognized antioxidant enzyme and an important regulatory factor in ferroptosis that modulates ferroptosis through various pathways and, in turn, regulates NAFLD. This paper reviews the regulatory mechanism of heme oxygenase-1 on NAFLD in ferroptosis pathway, with a view to clarifying the occurrence and development mechanisms of NAFLD and providing new vision and targets for its prevention and treatment.


Assuntos
Ferroptose , Hepatopatia Gordurosa não Alcoólica , Humanos , Antioxidantes , Apoptose , Heme Oxigenase-1
4.
Biochem Pharmacol ; 223: 116193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582268

RESUMO

Ovarian aging leads to infertility and birth defects. We aimed to clarify the role of Indole-3-carbinol (I3C) in resistance to oxidative stress, apoptosis, and fibrosis in ovarian aging. I3C was administered via intraperitoneal injection for 3 weeks in young or old mice. Immunohistochemistry; Masson, Sirius red, and TUNEL staining; follicle counting; estrous cycle analysis; and Western blotting were used for validating the protective effect of I3C against ovarian senescence. Human granulosa-like tumor cell line and primary granulosa cells were used for in vitro assay. The results indicated that I3C inhibited ovarian fibrosis and apoptosis while increasing the number of primordial follicles. Mechanistic studies have shown that I3C promoted the nuclear translocation of nuclear factor-erythroid 2-related factor (Nrf2) and upregulated the expression of heme oxygenase 1 (HO-1). Additionally, I3C increased cell viability and decreased lactate dehydrogenase, malondialdehyde, reactive oxygen species and JC-1 levels. Furthermore, the antioxidant effect of I3C was found to be dependent on the activation of Nrf2 and HO-1, as demonstrated by the disappearance of the effect upon inhibition of Nrf2 expression. In conclusion, I3C can alleviate the ovarian damage caused by aging and may be a protective agent to delay ovarian aging.


Assuntos
Heme Oxigenase-1 , Indóis , Fator 2 Relacionado a NF-E2 , Camundongos , Feminino , Humanos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo , Fibrose , Apoptose
5.
Redox Rep ; 29(1): 2341537, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629506

RESUMO

BACKGROUND: Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS: Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS: Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1ß and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION: In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.


Assuntos
Antioxidantes , NF-kappa B , Ratos , Animais , Masculino , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Zinco/farmacologia , Acrilamida/toxicidade , Ratos Wistar , Sêmen/metabolismo , Estresse Oxidativo , Transdução de Sinais , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
6.
J Enzyme Inhib Med Chem ; 39(1): 2337191, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38634597

RESUMO

Colon cancer remains a clinical challenge in industrialised countries. Its treatment with 5-Flurouracil (5-FU) develops many side effects and resistance. Thus, several strategies have been undertaken so far, including the use of drug cocktails and polypharmacology. Heme oxygenase-1 (HO-1) is an emerging molecular target in the treatment of various cancers. We recently demonstrated that a combination of HO-1 inhibitors with 5-FU and the corresponding hybrids SI1/17, SI1/20, and SI1/22, possessed anticancer activity against prostate and lung cancer cells. In this work, we evaluated these hybrids in a model of colon cancer and found that SI1/22 and the respective combo have greater potency than 5-FU. Particularly, compounds inhibit HO-1 activity in cell lysates, increase ROS and the expression of HO-1, SOD, and Nrf2. Moreover, we observed a decrease of pro-caspase and an increase in cleaved PARP-1 and p62, suggesting apoptotic and autophagic cell death and potential application of these drugs as anticancer agents.


Assuntos
Antineoplásicos , Neoplasias do Colo , Masculino , Humanos , Fluoruracila/farmacologia , Heme Oxigenase-1 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Apoptose
7.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 228-234, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38584104

RESUMO

Objective: To analyze the clinical application value of serum heme oxygenase (HO)-1expression level in non-alcoholic fatty liver disease (NAFLD) and, based on that, establish a diagnostic model combined with glucose regulatory protein 78 (GRP78) so as to clarify its diagnostic effectiveness and application value. Methods: A total of 210 NAFLD patients diagnosed by abdominal B-ultrasound and liver elastography were included, and at the same time, 170 healthy controls were enrolled. The general clinical data, peripheral blood cell counts, and biochemical indicators of the research subjects were collected. The expression levels of HO-1 and GRP78 were detected using an enzyme-linked immunosorbent assay. Multivariate analysis was used to screen independent risk factors for NAFLD. Visual output was performed through nomogram diagrams, and the diagnostic model was constructed. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA) were used to evaluate the diagnostic effectiveness of NAFLD. Measurement data were analyzed using a t-test or Mann-Whitney U rank sum test to detect data differences between groups. Enumeration data were analyzed using the Fisher's exact probability test or the Pearson χ(2) test. Results: Compared with the healthy control group, the white blood cell count, aspartate aminotransferase (AST), alanine aminotransferase, gamma-glutamyl transferase (GTT), fasting blood glucose (Glu), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), serum HO-1, and GRP78 levels were significantly increased in the NAFLD group patients (P < 0.05). Binary logistic analysis results showed that AST, TG, LDL-C, serum HO-1, and GRP78 were independent risk factors for NAFLD (P < 0.05). A nomogram clinical predictive model HGATL was established using HO-1 (H), GRP78 (G) combined with AST (A), TG (T), and LDL-C (L), with the formula P=-21.469+3.621×HO-1+0.116 ×GRP78+0.674×AST+6.250×TG+4.122 ×LDL-C. The results confirmed that the area under the ROC curve of the HGATL model was 0.965 8, with an optimal cutoff value of 81.69, a sensitivity of 87.06%, a specificity of 92.82%, a P < 0.05, and the diagnostic effectiveness significantly higher than that of a single indicator. The calibration curve and DCA both showed that the model had good diagnostic performance. Conclusion: The HGATL model can be used as a novel, non-invasive diagnosis model for NAFLD and has a positive application value in NAFLD diagnosis and therapeutic effect evaluation. Therefore, it should be explored and promoted in clinical applications.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Glucose , LDL-Colesterol , Heme Oxigenase-1 , Chaperona BiP do Retículo Endoplasmático , Triglicerídeos
8.
J Cell Mol Med ; 28(7): e18243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509740

RESUMO

Humans lacking heme oxygenase 1 (HMOX1) display growth retardation, haemolytic anaemia, and vulnerability to stress; however, cardiac function remains unclear. We aimed to explore the cardiac function of zebrafish lacking hmox1a at baseline and in response to stress. We generated zebrafish hmox1a mutants using CRISPR/Cas9 genome editing technology. Deletion of hmox1a increases cardiac output and further induces hypertrophy in adults. Adults lacking hmox1a develop myocardial interstitial fibrosis, restrain cardiomyocyte proliferation and downregulate renal haemoglobin and cardiac antioxidative genes. Larvae lacking hmox1a fail to respond to hypoxia, whereas adults are insensitive to isoproterenol stimulation in the heart, suggesting that hmox1a is necessary for cardiac response to stress. Haplodeficiency of hmox1a stimulates non-mitochondrial respiration and cardiac cell proliferation, increases cardiac output in larvae in response to hypoxia, and deteriorates cardiac function and structure in adults upon isoproterenol treatment. Intriguingly, haplodeficiency of hmox1a upregulates cardiac hmox1a and hmox1b in response to isoproterenol. Collectively, deletion of hmox1a results in cardiac remodelling and abrogates cardiac response to hypoxia and isoproterenol. Haplodeficiency of hmox1a aggravates cardiac response to the stress, which could be associated with the upregulation of hmox1a and hmox1b. Our data suggests that HMOX1 homeostasis is essential for maintaining cardiac function and promoting cardioprotective effects.


Assuntos
Cardiomiopatias , Heme Oxigenase (Desciclizante) , Animais , Humanos , Peixe-Zebra/genética , Isoproterenol/farmacologia , Heme Oxigenase-1/genética , Miocárdio , Hipóxia , Miócitos Cardíacos
9.
CNS Neurosci Ther ; 30(3): e14701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38544366

RESUMO

AIMS: The relationship between heme oxygenase-1 (HO-1) and human ischemic stroke outcome remains unclear, which was investigated in this study. METHODS: Acute ischemic stroke patients admitted within 24 h were enrolled. Serum HO-1 levels at baseline were measured via ELISA. Poor 3-month functional outcome was defined as modified Rankin Scale (mRS) score 3-6. Multivariable-adjusted binary logistic regression and restricted cubic spline models were employed to examine association between serum HO-1 and functional outcome. HO-1's additive prognostic utility was assessed by net reclassification index (NRI) and integrated discrimination improvement (IDI). RESULTS: Of 194 eligible patients, 79 (40.7%) developed poor functional outcomes at 3-month follow-up. The highest quartile of serum HO-1 was independently associated with a lower risk of poor functional outcome (adjusted OR 0.13, 95% CI 0.04-0.45; p = 0.001) compared with the lowest HO-1 category. The relationship between higher HO-1 levels and reduced risk of poor functional outcome was linear and dose responsive (p = 0.002 for linearity). Incorporating HO-1 into the analysis with conventional factors significantly improved reclassification for poor functional outcomes (NRI = 41.2%, p = 0.004; IDI = 5.0%, p = 0.004). CONCLUSIONS: Elevated serum HO-1 levels at baseline were independently associated with improved 3-month functional outcomes post-ischemic stroke. Serum HO-1 measurement may enhance outcome prediction beyond conventional clinical factors.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/complicações , Acidente Vascular Cerebral/complicações , Biomarcadores , Heme Oxigenase-1 , Prognóstico , Fatores de Risco
10.
Anticancer Drugs ; 35(5): 397-411, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527419

RESUMO

This study aimed to investigate the role and molecular mechanism of heme oxygenase-1 (HMOX1) in chemotherapy resistance in small-cell lung cancer (SCLC). Employed bioinformatics, qPCR, and Western Blot to assess HMOX1 levels in SCLC versus normal tissues and its prognostic relevance. CCK-8, flow cytometry, and thiobarbituric acid assays determined HMOX1's impact on SCLC chemosensitivity, ferroptosis markers, lipid peroxidation, and mic14's role in chemoresistance. In the GSE40275 and GSE60052 cohorts, HMOX1 expression was downregulated in SCLC tissues compared to normal tissues. Higher HMOX1 expression was associated with improved prognosis in the Sun Yat-sen University Cancer Hospital cohort and GSE60052 cohort. The RNA and protein levels of HMOX1 were reduced in drug-resistant SCLC cell lines compared to chemosensitive cell lines. Upregulation of HMOX1 increased chemosensitivity and reduced drug resistance in SCLC, while downregulation of HMOX1 decreased chemosensitivity and increased drug resistance. Upregulation of HMOX1 elevated the expression of ferroptosis-related proteins ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while decreasing the expression of GPX4 and xCT. Conversely, downregulation of HMOX1 decreased the expression of ACSL4, CD71, Transferrin, Ferritin Heavy Chain, and Ferritin Light Chain, while increasing the expression of GPX4 and xCT. Upregulation of HMOX1 promoted cellular lipid peroxidation, whereas downregulation of HMOX1 inhibited cellular lipid peroxidation. Upregulation of HMOX1 reduced the RNA level of mic14, while downregulation of HMOX1 increased the RNA level of mic14. mic14 exhibited inhibitory effects on cellular lipid peroxidation in SCLC cells and contributed to reduced chemosensitivity and increased drug resistance in chemoresistant SCLC cell lines. HMOX1 plays a role in ferroptosis by regulating mic14 expression, thereby reversing chemoresistance in SCLC.


Assuntos
Ferroptose , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Apoferritinas/genética , Apoferritinas/farmacologia , Apoferritinas/uso terapêutico , Heme Oxigenase-1/genética , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , RNA/farmacologia , RNA/uso terapêutico , Transferrinas/farmacologia
11.
Int Wound J ; 21(3): e14815, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468410

RESUMO

Diabetic foot ulcers (DFUs) are a serious chronic complication of diabetes mellitus and a leading cause of disability and death in diabetic patients. However, current treatments remain unsatisfactory. Although macrophages are associated with DFU, their exact role in this disease remains uncertain. This study sought to detect macrophage-related genes in DFU and identify possible therapeutic targets. Single-cell datasets (GSE223964) and RNA-seq datasets (GSM68183, GSE80178, GSE134431 and GSE147890) associated with DFU were retrieved from the gene expression omnibus (GEO) database for this study. Analysis of the provided single-cell data revealed the distribution of macrophage subpopulations in the DFU. Four independent RNA-seq datasets were merged into a single DFU cohort and further analysed using bioinformatics. This included differential expression (DEG) analysis, multiple machine learning algorithms to identify biomarkers and enrichment analysis. Finally, key results were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western bolt. Finally, the findings were validated using RT-qPCR and western blot. We obtained 802 macrophage-related genes in single-cell analysis. Differential expression analysis yielded 743 DEGs. Thirty-seven macrophage-associated DEGs were identified by cross-analysis of marker genes with macrophage-associated DEGs. Thirty-seven intersections were screened and cross-analysed using four machine learning algorithms. Finally, HMOX1 was identified as a potentially valuable biomarker. HMOX1 was significantly associated with biological pathways such as the insulin signalling pathway. The results showed that HMOX1 was significantly overexpressed in DFU samples. In conclusion, the analytical results of this study identified HMOX1 as a potentially valuable biomarker associated with macrophages in DFU. The results of our analysis improve our understanding of the mechanism of macrophage action in this disease and may be useful in developing targeted therapies for DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/genética , Pé Diabético/terapia , Macrófagos/metabolismo , Biomarcadores , Análise de Célula Única , Heme Oxigenase-1/genética
12.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473826

RESUMO

Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.


Assuntos
Micotoxinas , Zearalenona , Humanos , Feminino , Animais , Ovinos , Zearalenona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo , Células da Granulosa/metabolismo , Antioxidantes/farmacologia , Micotoxinas/metabolismo , Apoptose
13.
Cells ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474340

RESUMO

The enzyme heme oxygenase-1 (HO-1) is pivotal in reproductive processes, particularly in placental and vascular development. This study investigated the role of HO-1 and its byproduct, carbon monoxide (CO), in trophoblastic spheroid implantation. In order to deepen our understanding of the role of HO-1 during implantation, we conducted in vivo experiments on virgin and pregnant mice, aiming to unravel the cellular and molecular mechanisms. Using siRNA, HO-1 was knocked down in JEG-3 and BeWo cells and trophoblastic spheroids were generated with or without CO treatment. Adhesion assays were performed after transferring the spheroids to RL-95 endometrial epithelial cell layers. Additionally, angiogenesis, stress, and toxicity RT2-Profiler™ PCR SuperArray and PCR analyses were performed in uterine murine samples. HO-1 knockdown by siRNA impeded implantation in the 3D culture model, but this effect could be reversed by CO. Uteruses from virgin Hmox1-/- females exhibited altered expression of angiogenesis and stress markers. Furthermore, there was a distinct expression pattern of cytokines and chemokines in uteruses from gestation day 14 in Hmox1-/- females compared to Hmox1+/+ females. This study strongly supports the essential role of HO-1 during implantation. Moreover, CO appears to have the potential to compensate for the lack of HO-1 during the spheroid attachment process. The absence of HO-1 results in dysregulation of angiogenesis and stress-related genes in the uterus, possibly contributing to implantation failure.


Assuntos
Heme Oxigenase-1 , Placenta , Gravidez , Feminino , Camundongos , Animais , Heme Oxigenase-1/metabolismo , Placenta/metabolismo , Linhagem Celular Tumoral , 60489 , Útero/metabolismo , RNA Interferente Pequeno/metabolismo , Expressão Gênica
14.
Int J Nanomedicine ; 19: 2709-2732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510794

RESUMO

Purpose: Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods: MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/ß-Tricalcium phosphate (PCL/ß-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results: Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion: This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.


Assuntos
Fosfatos de Cálcio , Diabetes Mellitus , Melatonina , Nanocompostos , Humanos , Tecidos Suporte/química , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2 , Células Endoteliais , Antioxidantes/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Heme Oxigenase-1 , Indutores da Angiogênese/farmacologia , 60489 , Estudos Prospectivos , Osteogênese , Transdução de Sinais , Regeneração Óssea
15.
ACS Nano ; 18(11): 8307-8324, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437643

RESUMO

Periodontitis is a chronic inflammatory disease closely associated with reactive oxygen species (ROS) involvement. Eliminating ROS to control the periodontal microenvironment and alleviate the inflammatory response could potentially serve as an efficacious therapy for periodontitis. Melatonin (MT), renowned for its potent antioxidant and anti-inflammatory characteristics, is frequently employed as an ROS scavenger in inflammatory diseases. However, the therapeutic efficacy of MT remains unsatisfactory due to the low water solubility and poor bioavailability. Carbon dots have emerged as a promising and innovative nanomaterial with facile synthesis, environmental friendliness, and low cost. In this study, melatonin-derived carbon dots (MT-CDs) were successfully synthesized via the hydrothermal method. The MT-CDs have good water solubility and biocompatibility and feature excellent ROS-scavenging capacity without additional modification. The in vitro experiments proved that MT-CDs efficiently regulated intracellular ROS, which maintained mitochondrial homeostasis and suppressed the production of inflammatory mediators. Furthermore, findings from the mouse model of periodontitis indicated that MT-CDs significantly inhibited the deterioration of alveolar bone and reduced osteoclast activation and inflammation, thereby contributing to the regeneration of damaged tissue. In terms of the mechanism, MT-CDs may scavenge ROS, thereby preventing cellular damage and the production of inflammatory factors by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. The findings will offer a vital understanding of the advancement of secure and effective ROS-scavenging platforms for more biomedical applications.


Assuntos
Melatonina , Periodontite , Camundongos , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1 , Periodontite/tratamento farmacológico , Água , Carbono
16.
J Pharmacol Sci ; 154(4): 225-235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485340

RESUMO

In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.


Assuntos
Heme Oxigenase-1 , Microglia , Animais , Camundongos , Heme Oxigenase-1/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aprendizagem da Esquiva , Citocinas/metabolismo , Interleucina-6/metabolismo , Comportamento Social , Tolerância Imunológica , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
17.
FASEB J ; 38(6): e23572, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38512139

RESUMO

Asthma is characterized by airway remodeling and hyperreactivity. Our earlier studies determined that the nitric oxide (NO)-soluble guanylyl cyclase (sGC)-cGMP pathway plays a significant role in human lung bronchodilation. However, this bronchodilation is dysfunctional in asthma due to high NO levels, which cause sGC to become heme-free and desensitized to its natural activator, NO. In order to determine how asthma impacts the various lung segments/lobes, we mapped the inflammatory regions of lungs to determine whether such regions coincided with molecular signatures of sGC dysfunction. We demonstrate using murine models of asthma (OVA and CFA/HDM) that the inflamed segments of these murine lungs can be tracked by upregulated expression of HO1 and these regions in turn overlap with regions of heme-free sGC as evidenced by a decreased sGC-α1ß1 heterodimer and an increased response to heme-independent sGC activator, BAY 60-2770, relative to naïve uninflamed regions. We also find that NO generated from iNOS upregulation in the inflamed segments has a higher impact on developing heme-free sGC as increasing iNOS activity correlates linearly with elevated heme-independent sGC activation. This excess NO works by affecting the epithelial lung hemoglobin (Hb) to become heme-free in asthma, thereby causing the Hb to lose its NO scavenging function and exposing the underlying smooth muscle sGC to excess NO, which in turn becomes heme-free. Recognition of these specific lung segments enhances our understanding of the inflamed lungs in asthma with the ultimate aim to evaluate potential therapies and suggest that regional and not global inflammation impacts lung function in asthma.


Assuntos
Asma , Heme Oxigenase-1 , Heme , Animais , Humanos , Camundongos , Alérgenos , Heme Oxigenase-1/metabolismo , Inflamação , Óxido Nítrico , Guanilil Ciclase Solúvel
18.
Phytomedicine ; 127: 155466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461764

RESUMO

BACKGROUND: The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY: We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS: Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION: In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.


Assuntos
Heme Oxigenase-1 , Doenças Neuroinflamatórias , Humanos , Heme Oxigenase-1/metabolismo , Depressão/tratamento farmacológico , Heme Oxigenase (Desciclizante)/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo
19.
J Cell Mol Med ; 28(6): e18146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426932

RESUMO

Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1ß and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.


Assuntos
Acne Vulgar , Saponinas , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/efeitos adversos , Saponinas/farmacologia , Saponinas/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Bactérias Gram-Negativas/metabolismo , Acne Vulgar/tratamento farmacológico , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo
20.
Pancreatology ; 24(3): 363-369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431445

RESUMO

OBJECTIVE: Hemin, a heme oxygenase 1 activator has shown efficacy in the prevention and treatment of acute pancreatitis in mouse models. We conducted a randomized controlled trial (RCT) to assess the protective effect of Hemin administration to prevent post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) in patients at risk. METHODS: In this multicenter, multinational, placebo-controlled, double-blind RCT, we assigned patients at risk for PEP to receive a single intravenous dose of Hemin (4 mg/kg) or placebo immediately after ERCP. Patients were considered to be at risk on the basis of validated patient- and/or procedure-related risk factors. Neither rectal NSAIDs nor pancreatic stent insertion were allowed in randomized patients. The primary outcome was the incidence of PEP. Secondary outcomes included lipase elevation, mortality, safety, and length of stay. RESULTS: A total of 282 of the 294 randomized patients had complete follow-up. Groups were similar in terms of clinical, laboratory, and technical risk factors for PEP. PEP occurred in 16 of 142 patients (11.3%) in the Hemin group and in 20 of 140 patients (14.3%) in the placebo group (p = 0.48). Incidence of severe PEP reached 0.7% and 4.3% in the Hemin and placebo groups, respectively (p = 0.07). Significant lipase elevation after ERCP did not differ between groups. Length of hospital stay, mortality and severe adverse events rates were similar between groups. CONCLUSION: We failed to detect large improvements in PEP rate among participants at risk for PEP who received IV hemin immediately after the procedure compared to placebo. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number, NCT01855841).


Assuntos
Heme Oxigenase-1 , Pancreatite , Animais , Camundongos , Humanos , Hemina , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Administração Retal , Anti-Inflamatórios não Esteroides/uso terapêutico , Pancreatite/etiologia , Lipase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...