Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 467-472, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565514

RESUMO

OBJECTIVE: To analyze the clinical phenotype and genotypes of two children with Carnitine-acylcarnitine translocase deficiency (CACTD). METHODS: Two children diagnosed with CACTD at the Gansu Provincial Maternal and Child Health Care Hospital respectively on January 3 and November 19, 2018 were selected as the study subjects. Trio-whole exome sequencing (trio-WES) was carried out, and candidate variants were validated through Sanger sequencing and pathogenicity analysis. RESULTS: Both children were males and had manifested mainly with hypoglycemia. Trio-WES and Sanger sequencing showed that child 1 had harbored compound heterozygous variants of the SLC25A20 gene, namely c.49G>C (p.Gly17Arg) and c.106-2A>G, which were inherited from his father and mother, respectively. Child 2 had harbored homozygous c.199-10T>G variants of the SLC25A20 gene, which were inherited from both of his parents. Among these, the c.106-2A>G and c.49G>C variants were unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.49G>C (p.Gly17Arg), c.106-2A>G, and c.199-10T>G variants were classified as likely pathogenic (PM2_supporting+PP3+PM3_strong+PP4), pathogenic (PVS1+PM2_supporting+PM5+PP3), and pathogenic (PVS1+PM2_supporting+PP3+PP5), respectively. CONCLUSION: Combined with their clinical phenotype and genetic analysis, both children were diagnosed with CACTD. Above finding has provided a basis for their treatment as well as genetic counseling and prenatal diagnosis for their families.


Assuntos
Carnitina Aciltransferases/deficiência , Aconselhamento Genético , Genômica , Erros Inatos do Metabolismo Lipídico , Criança , Masculino , Feminino , Gravidez , Humanos , Linhagem , Mães , Mutação , Proteínas de Membrana Transportadoras
2.
J Biol Chem ; 299(7): 104908, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307919

RESUMO

Whereas it is known that p53 broadly regulates cell metabolism, the specific activities that mediate this regulation remain partially understood. Here, we identified carnitine o-octanoyltransferase (CROT) as a p53 transactivation target that is upregulated by cellular stresses in a p53-dependent manner. CROT is a peroxisomal enzyme catalyzing very long-chain fatty acids conversion to medium chain fatty acids that can be absorbed by mitochondria during ß-oxidation. p53 induces CROT transcription through binding to consensus response elements in the 5'-UTR of CROT mRNA. Overexpression of WT but not enzymatically inactive mutant CROT promotes mitochondrial oxidative respiration, while downregulation of CROT inhibits mitochondrial oxidative respiration. Nutrient depletion induces p53-dependent CROT expression that facilitates cell growth and survival; in contrast, cells deficient in CROT have blunted cell growth and reduced survival during nutrient depletion. Together, these data are consistent with a model where p53-regulated CROT expression allows cells to be more efficiently utilizing stored very long-chain fatty acids to survive nutrient depletion stresses.


Assuntos
Carnitina Aciltransferases , Sobrevivência Celular , Nutrientes , Proteína Supressora de Tumor p53 , Regiões 5' não Traduzidas/genética , Carnitina/metabolismo , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/metabolismo , Processos de Crescimento Celular , Respiração Celular , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Mutação , Nutrientes/deficiência , Nutrientes/metabolismo , Oxirredução , Peroxissomos/enzimologia , Elementos de Resposta/genética , Estresse Fisiológico , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
3.
J Int Med Res ; 51(4): 3000605231163811, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37115522

RESUMO

The current case report describes the clinical, biochemical and genetic characteristics of carnitine-acylcarnitine translocase deficiency (CACTD) in infant male and female twins that presented with symptoms shortly after elective caesarean delivery. The clinical manifestations were neonatal hypoglycaemia, arrhythmia and sudden death. The age of onset was 1.5 days and the age of the death was 1.5-3.5 days. Dried blood filter paper analysis was used for the detection of acylcarnitine. Peripheral venous blood and skin samples were used for next-generation sequencing. The twins and their parents underwent gene analysis and whole exome sequencing analyses of the solute carrier family 25 member 20 (SLC25A20; also known as carnitine-acylcarnitine translocase) gene. Both infants carried compound heterozygous variants of the SLC25A20 gene: variant M1:c.706_707insT:p.R236L fs*12 and variant M2:c.689C>G:p.P230R. The M1 variant was paternal and had not been previously reported regarding CACTD. The M2 variant was maternal. CACTD has severe clinical manifestations and a poor prognosis, which is manifested as hypoketotic hypoglycaemia, hyperammonaemia, liver function damage and elevated creatine kinase.


Assuntos
Hipoglicemia , Erros Inatos do Metabolismo Lipídico , Feminino , Humanos , Recém-Nascido , Masculino , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/metabolismo , Hipoglicemia/genética , Erros Inatos do Metabolismo Lipídico/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Gêmeos Dizigóticos
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835358

RESUMO

The Carnitine-Acylcarnitine Carrier is a member of the mitochondrial Solute Carrier Family 25 (SLC25), known as SLC25A20, involved in the electroneutral exchange of acylcarnitine and carnitine across the inner mitochondrial membrane. It acts as a master regulator of fatty acids ß-oxidation and is known to be involved in neonatal pathologies and cancer. The transport mechanism, also known as "alternating access", involves a conformational transition in which the binding site is accessible from one side of the membrane or the other. In this study, through a combination of state-of-the-art modelling techniques, molecular dynamics, and molecular docking, the structural dynamics of SLC25A20 and the early substrates recognition step have been analyzed. The results obtained demonstrated a significant asymmetry in the conformational changes leading to the transition from the c- to the m-state, confirming previous observations on other homologous transporters. Moreover, analysis of the MD simulations' trajectories of the apo-protein in the two conformational states allowed for a better understanding of the role of SLC25A20 Asp231His and Ala281Val pathogenic mutations, which are at the basis of Carnitine-Acylcarnitine Translocase Deficiency. Finally, molecular docking coupled to molecular dynamics simulations lend support to the multi-step substrates recognition and translocation mechanism already hypothesized for the ADP/ATP carrier.


Assuntos
Carnitina Aciltransferases , Proteínas de Membrana Transportadoras , Proteínas de Transporte da Membrana Mitocondrial , Humanos , Recém-Nascido , Carnitina Aciltransferases/química , Carnitina Aciltransferases/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Simulação de Acoplamento Molecular , Simulação por Computador
5.
J Biol Chem ; 299(2): 102848, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587768

RESUMO

In eukaryotes, carnitine is best known for its ability to shuttle esterified fatty acids across mitochondrial membranes for ß-oxidation. It also returns to the cytoplasm, in the form of acetyl-L-carnitine (LAC), some of the resulting acetyl groups for posttranslational protein modification and lipid biosynthesis. While dietary LAC supplementation has been clinically investigated, its effects on cellular metabolism are not well understood. To explain how exogenous LAC influences mammalian cell metabolism, we synthesized isotope-labeled forms of LAC and its analogs. In cultures of glucose-limited U87MG glioma cells, exogenous LAC contributed more robustly to intracellular acetyl-CoA pools than did ß-hydroxybutyrate, the predominant circulating ketone body in mammals. The fact that most LAC-derived acetyl-CoA is cytosolic is evident from strong labeling of fatty acids in U87MG cells by exogenous 13C2-acetyl-L-carnitine. We found that the addition of d3-acetyl-L-carnitine increases the supply of acetyl-CoA for cytosolic posttranslational modifications due to its strong kinetic isotope effect on acetyl-CoA carboxylase, the first committed step in fatty acid biosynthesis. Surprisingly, whereas cytosolic carnitine acetyltransferase is believed to catalyze acetyl group transfer from LAC to coenzyme A, CRAT-/- U87MG cells were unimpaired in their ability to assimilate exogenous LAC into acetyl-CoA. We identified carnitine octanoyltransferase as the key enzyme in this process, implicating a role for peroxisomes in efficient LAC utilization. Our work has opened the door to further biochemical investigations of a new pathway for supplying acetyl-CoA to certain glucose-starved cells.


Assuntos
Acetilcoenzima A , Acetilcarnitina , Carnitina Aciltransferases , Carnitina , Acetilcoenzima A/metabolismo , Acetilcarnitina/farmacologia , Carnitina/metabolismo , Carnitina Aciltransferases/metabolismo , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Oxirredução , Humanos , Linhagem Celular Tumoral
6.
J Invest Dermatol ; 143(2): 305-316.e5, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36058299

RESUMO

Circulating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA beta-oxidation‒related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival. Among the highest expressed regulators in melanoma circulating tumor cells were the carnitine transferases carnitine O-octanoyltransferase and carnitine acetyltransferase, which control the shuttle of peroxisome-derived medium-chain FAs toward mitochondria to fuel mitochondrial FA beta-oxidation. Knockdown of carnitine O-octanoyltransferase or carnitine acetyltransferase and short-term treatment with peroxisomal or mitochondrial FA beta-oxidation inhibitors thioridazine or ranolazine suppressed melanoma metastasis in mice. Carnitine O-octanoyltransferase and carnitine acetyltransferase depletion could be rescued by medium-chain FA supplementation, indicating that the peroxisomal supply of FAs is crucial for the survival of nonadherent melanoma cells. Our study identifies targeting the FA-based cross-talk between peroxisomes and mitochondria as a potential therapeutic opportunity to challenge melanoma progression. Moreover, the discovery of the antimetastatic activity of the Food and Drug Administration‒approved drug ranolazine carries translational potential.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Camundongos , Animais , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/metabolismo , Ranolazina , Oxirredução , Ácidos Graxos/metabolismo , Melanoma/tratamento farmacológico , Carnitina/metabolismo
7.
J Transl Med ; 20(1): 592, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514121

RESUMO

BACKGROUND: Several metabolic disorders and malignancies are directly related to abnormal mitochondrial solute carrier family 25 (SLC25A) members activity. However, its biological role in pancreatic cancer (PC) is not entirely understood. METHODS: The lasso method was used to create a novel prognostic risk model for PC based on SLC25A members, and its roles in tumor immunology and energy metabolism were explored. Furthermore, co-expression networks were constructed for SLC25A11, SLC25A29, and SLC25A44. Single-cell RNA sequencing (ScRNA-seq) revealed the distribution of gene expression in PC. Tumor immune infiltration was examined with the TIMER database. Lastly, drug sensitivity was investigated, and co-transcriptional factors were predicted. RESULTS: In the present study, a novel prognostic risk model was established and validated for PC based on SLC25A members. The high-risk group had a lower activation of oxidative phosphorylation and a more abundant immune infiltration phenotype than the low-risk group. According to co-expression network studies, SLC25A11, SLC25A29, and SLC25A44 were involved in the energy metabolism of PC and prevented tumor growth, invasion, and metastasis. ScRNA-seq research also pointed to their contribution to the tumor microenvironment. Moreover, the recruitment of numerous immune cells was positively correlated with SLC25A11 and SLC25A44 but negatively correlated with SLC25A29. Additionally, the sensitivity to 20 Food and Drug Administration-approved antineoplastic medicines was strongly linked to the aforementioned genes, where cisplatin sensitivity increased with the up-regulation of SLC25A29. Finally, the Scleraxis BHLH Transcription Factor (SCX) and other proteins were hypothesized to co-regulate the mRNA transcription of the genes. CONCLUSION: SLC25A members are crucial for tumor immune and energy metabolism in PC, and SLC25A11, SLC25A29, and SLC25A44 can be used as favorable prognostic markers. The use of these markers will provide new directions to unravel their action mechanisms in PC.


Assuntos
Neoplasias Pancreáticas , Humanos , Biologia Computacional , Metabolismo Energético , Mitocôndrias , Microambiente Tumoral , Biomarcadores Tumorais , Prognóstico , Carnitina Aciltransferases , Proteínas Mitocondriais , Neoplasias Pancreáticas
8.
Int J Biol Macromol ; 221: 1453-1465, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36122779

RESUMO

Mitochondrial carnitine/acylcarnitine carrier (CAC) is a member of the mitochondrial carrier (MC) family and imports acylcarnitine into the mitochondrial matrix in exchange for carnitine, playing a pivotal role in carnitine shuttle, crucial for fatty acid oxidation. The crystallized structure of CAC has not been solved yet, however, the availability of several in vitro/in silico studies, also based on the crystallized structures of the ADP/ATP carrier in the cytosolic-conformation and in the matrix-conformation, has made possible to confirm the hypothesis of the single-binding centered-gated pore mechanism for all the members of the MC family. In addition, our recent bioinformatics analyses allowed quantifying in silico the importance of protein residues of MC substrate binding region, of those involved in the formation of the matrix and cytosolic gates, and of those belonging to the Pro/Gly (PG) levels, proposed to be crucial for the tilting/kinking/bending of the six MC transmembrane helices, funneling the substrate translocation pathway. Here we present a combined in silico/in vitro analysis employed for investigating the role played by a group of 6 proline residues and 6 glycine residues, highly conserved in CAC, belonging to MC PG-levels. Residues of the PG-levels surround the similarly located MC common substrate binding region, and were proposed to lead conformational changes and substrate translocation, following substrate binding. For our analysis, we employed 3D molecular modeling approaches, alanine scanning site-directed mutagenesis and in vitro transport assays. Our analysis reveals that P130 (H3), G268 (H6) and G220 (H5), mutated in alanine, affect severely CAC transport activity (mutant catalytic efficiency lower than 5 % compared to the wild type CAC), most likely due to their major role in triggering CAC conformational changes, following carnitine binding. Notably, P30A (H1) and G121A (H3) CAC mutants, increase the carnitine uptake up to 217 % and 112 %, respectively, compared to the wild type CAC.


Assuntos
Carnitina Aciltransferases , Prolina , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/química , Carnitina Aciltransferases/metabolismo , Glicina , Carnitina , Alanina
9.
Methods Mol Biol ; 2546: 27-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127575

RESUMO

Acylcarnitines are formed in the mitochondria by esterification between carnitine and acyl-CoAs. This occurs enzymatically via carnitine acyltransferases. Specific acylcarnitines accumulate as a result of various organic acidurias and fatty acid oxidation disorders, and, thus, acylcarnitines profiles are used for the diagnosis of these disorders. Acylcarnitines monitoring can also be used for the follow-up of patients with these disorders. Tandem mass spectrometry (MS/MS) is the most commonly used method for the analysis of acylcarnitines. An MS/MS method for the quantification of a number of acylcarnitines is described. The method involves butylation of acylcarnitines using acidified butanol. Butylated acylcarnitines are analyzed using flow injection and precursor ion scan. Multiple-reaction monitoring (MRM) is used for the analysis of low-molecular-weight acylcarnitines.


Assuntos
Erros Inatos do Metabolismo Lipídico , Espectrometria de Massas em Tandem , Carnitina/análogos & derivados , Carnitina/análise , Carnitina Aciltransferases , Ácidos Graxos , Humanos , Espectrometria de Massas em Tandem/métodos
10.
Sleep ; 45(10)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810398

RESUMO

STUDY OBJECTIVES: Narcolepsy type 1 (NT1) is associated with metabolic abnormalities but their etiology remains largely unknown. The gene for carnitine palmitoyltransferase 1B (CPT1B) and abnormally low serum acylcarnitine levels have been linked to NT1. To elucidate the details of altered fatty acid metabolism, we determined levels of individual acylcarnitines and evaluated CPT1 activity in patients with NT1 and other hypersomnia. METHODS: Blood samples from 57 NT1, 51 other hypersomnia patients, and 61 healthy controls were analyzed. The levels of 25 major individual acylcarnitines were determined and the C0/(t[C16] + t[C18]) ratio was used as a CPT1 activity marker. We further performed transcriptome analysis using independent blood samples from 42 NT1 and 42 healthy controls to study the relevance of fatty acid metabolism. NT1-specific changes in CPT1 activity and in expression of related genes were investigated. RESULTS: CPT1 activity was lower in patients with NT1 (p = 0.00064) and other hypersomnia (p = 0.0014) than in controls. Regression analysis revealed that CPT1 activity was an independent risk factor for NT1 (OR: 1.68; p = 0.0031) and for other hypersomnia (OR: 1.64; p = 0.0042). There was a significant interaction between obesity (BMI <25, ≥25) and the SNP rs5770917 status such that nonobese NT1 patients without risk allele had better CPT1 activity (p = 0.0089). The expression levels of carnitine-acylcarnitine translocase (CACT) and CPT2 in carnitine shuttle were lower in NT1 (p = 0.000051 and p = 0.00014, respectively). CONCLUSIONS: These results provide evidences that abnormal fatty acid metabolism is involved in the pathophysiology of NT1 and other hypersomnia.


Assuntos
Carnitina O-Palmitoiltransferase , Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferases/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Distúrbios do Sono por Sonolência Excessiva/complicações , Distúrbios do Sono por Sonolência Excessiva/genética , Ácidos Graxos , Humanos , Narcolepsia/genética , Fatores de Risco
11.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563000

RESUMO

The mitochondrial carnitine/acylcarnitine carrier (CAC) transports short-, medium- and long-carbon chain acylcarnitines across the mitochondrial inner membrane in exchange for carnitine. How CAC recognizes the substrates with various fatty acyl groups, especially long-chain fatty acyl groups, remains unclear. Here, using nuclear magnetic resonance (NMR) technology, we have shown that the CAC protein reconstituted into a micelle system exhibits a typical six transmembrane structure of the mitochondrial carrier family. The chemical shift perturbation patterns of different fatty acylcarnitines suggested that the segment A76-G81 in CAC specifically responds to the long-chain fatty acylcarnitine. Molecular dynamics (MD) simulations of palmitoyl-L-carnitine inside the CAC channel showed the respective interaction and motion of the long-chain acylcarnitine in CAC at the cytosol-open state and matrix-open state. Our data provided a molecular-based understanding of CAC structure and transport mechanism.


Assuntos
Carnitina Aciltransferases , Carnitina , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferases/metabolismo , Espectroscopia de Ressonância Magnética , Mitocôndrias/metabolismo
12.
Biochim Biophys Acta Bioenerg ; 1863(5): 148557, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367451

RESUMO

We herein report the identification of the lantanide praseodymium trivalent ion Pr3+ as inhibitor of mitochondrial transporters for basic amino acids and phylogenetically related carriers belonging to the Slc25 family. The inhibitory effect of Pr3+ has been tested using mitochondrial transporters reconstituted into liposomes being effective in the micromolar range, acting as a competitive inhibitor of the human basic amino acids carrier (BAC, Slc25A29), the human carnitine/acylcarnitine carrier (CAC, Slc25A20). Furthermore, we provide computational evidence that the complete inhibition of the transport activity of the recombinant proteins is due to the Pr3+ coordination to key acidic residues of the matrix salt bridge network. Besides being used as a first choice stop inhibitor for functional studies in vitro of mitochondrial carriers reconstituted in proteoliposomes, Pr3+ might also represent a useful tool for structural studies of the mitochondrial carrier family.


Assuntos
Carnitina Aciltransferases , Praseodímio , Aminoácidos Básicos , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferases/química , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas Mitocondriais/metabolismo
13.
Hum Exp Toxicol ; 41: 9603271211065978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35135371

RESUMO

The aim of this study was to examine the effects of lipid emulsions on carnitine palmitoyltransferase I (CPT-I), carnitine acylcarnitine translocase (CACT), carnitine palmitoyltransferase II (CPT-II), and the mitochondrial dysfunctions induced by toxic doses of local anesthetics in H9c2 rat cardiomyoblasts. The effects of local anesthetics and lipid emulsions on the activities of CPT-I, CACT, and CPT-II, and concentrations of local anesthetics were examined. The effects of lipid emulsions, N-acetyl-L-cysteine (NAC), and mitotempo on the bupivacaine-induced changes in cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and intracellular calcium levels were examined. CACT, without significantly altering CPT-I and CPT-II, was inhibited by toxic concentration of local anesthetics. The levobupivacaine- and bupivacaine-induced inhibition of CACT was attenuated by all concentrations of lipid emulsion, whereas the ropivacaine-induced inhibition of CACT was attenuated by medium and high concentrations of lipid emulsion. The concentration of levobupivacaine was slightly attenuated by lipid emulsion. The bupivacaine-induced increase of ROS and calcium and the bupivacaine-induced decrease of MMP were attenuated by ROS scavengers NAC and mitotempo, and the lipid emulsion. Collectively, these results suggested that the lipid emulsion attenuated the levobupivacaine-induced inhibition of CACT, probably through the lipid emulsion-mediated sequestration of levobupivacaine.


Assuntos
Bupivacaína/toxicidade , Carnitina Aciltransferases/efeitos dos fármacos , Carnitina Aciltransferases/metabolismo , Levobupivacaína/toxicidade , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Ropivacaina/toxicidade , Anestésicos Locais/administração & dosagem , Anestésicos Locais/toxicidade , Animais , Bupivacaína/administração & dosagem , Emulsões/administração & dosagem , Emulsões/toxicidade , Inibidores Enzimáticos/metabolismo , Levobupivacaína/administração & dosagem , Masculino , Ratos , Ropivacaina/administração & dosagem
14.
Taiwan J Obstet Gynecol ; 61(1): 153-156, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35181030

RESUMO

OBJECTIVE: We investigated a strategy of exome sequencing DNA from the unaffected parents and applied a set of filtering criteria to identify genes where both partners are heterozygous for a potentially pathogenic variant. CASE REPORT: We report a non-consanguineous couple who had three daughters, all spontaneous preterm birth at 36 weeks gestation and died in the first period after birth, suspected inborn errors of metabolism. Two days after birth, the first daughter presented with difficulty breathing, cyanosis and died; the second died at 33 days old; the third daughter was isolated under special care and was taken to the mother's room, developed the same symptoms and died after 5 days. Dried blood spot testing screen of 55 congenital metabolic disorders was negative. CONCLUSION: Heterogenous variant in SLC25A20 gene was found in both parents, contributing to the delineations of the neonatal phenotypes related to SLC25A20 mutation in CACTD.


Assuntos
Carnitina Aciltransferases/deficiência , Erros Inatos do Metabolismo Lipídico/genética , Proteínas de Membrana Transportadoras/genética , Nascimento Prematuro , Carnitina Aciltransferases/genética , Feminino , Humanos , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/mortalidade , Proteínas de Membrana Transportadoras/deficiência , Mutação , Gravidez , Terceiro Trimestre da Gravidez , Sequenciamento do Exoma
15.
Leg Med (Tokyo) ; 54: 101990, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34784499

RESUMO

Carnitine-acylcarnitine translocase deficiency (CACTD) is a rare and life-threatening autosomal recessive disorder of fatty acid ß-oxidation (FAO). Most patients with CACTD develop severe metabolic decompensation which deteriorates progressively and rapidly, causing death in infancy or childhood. As CACTD in some patients is asymptomatic or only with some nonspecific symptoms, the diagnosis is easy to be ignored, resulting in sudden death, which often triggers medical disputes. Herein, we report a case of neonatal sudden death with CACTD. The neonate showed a series of severe metabolic crisis, deteriorated rapidly and eventually died 3 days after delivery. Tandem mass spectrometry (MS-MS) screening of dry blood spots before death showed that the level of long-chain acylcarnitines, especially C12-C18 acylcarnitine, was increased significantly, and therefore a diagnosis of inherited metabolic disease (IMD) was suspected. Autopsy and histopathological results demonstrated that there were diffuse vacuoles in the heart and liver of the deceased. Mutation analysis revealed that the patient was a compound heterozygote with c.199-10 T > G and a novel c.1A > T mutation in the SLC25A20 gene. Pathological changes such as heart failure, arrhythmia and cardiac arrest related to mitochondrial FAO disorders are the direct cause of death, while gene mutation is the underlying cause of death.


Assuntos
Carnitina Aciltransferases , Proteínas de Membrana Transportadoras , Carnitina , Carnitina Aciltransferases/genética , Morte Súbita/etiologia , Heterozigoto , Humanos , Recém-Nascido , Proteínas de Membrana Transportadoras/genética , Mutação
16.
Clin Biochem ; 98: 48-53, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626609

RESUMO

OBJECTIVE: Carnitine-acylcarnitine Translocase (CACT) deficiency (OMIM 212138) and carnitine palmitoyl transferase 2 (CPT2) deficiency (OMIM 60065050) are rare inherited disorders of mitochondrial long chain fatty acid oxidation. The aim of our study is to review the clinical, biochemical and molecular characteristics in children diagnosed with CACT and CPT2 deficiencies in Malaysia. DESIGN AND METHODS: This is a retrospective study. We reviewed medical records of six patients diagnosed with CACT and CPT2 deficiencies. They were identified from a selective high-risk screening of 50,579 patients from January 2010 until Jun 2020. RESULTS: All six patients had either elevation of the long chain acylcarnitines and/or an elevated (C16 + C18:1)/C2 acylcarnitine ratio. SLC25A20 gene sequencing of patient 1 and 6 showed a homozygous splice site mutation at c.199-10 T > G in intron 2. Two novel mutations at c.109C > T p. (Arg37*) in exon 2 and at c.706C > T p. (Arg236*) in exon 7 of SLC25A20 gene were found in patient 2. Patient 3 and 4 (siblings) exhibited a compound heterozygous mutation at c.638A > G p. (Asp213Gly) and novel mutation c.1073 T > G p. (Leu358Arg) in exon 4 of CPT2 gene. A significant combined prevalence at 0.01% of CACT and CPT2 deficiencies was found in the symptomatic Malaysian patients. CONCLUSIONS: The use of the (C16 + C18:1)/C2 acylcarnitine ratio in dried blood spot in our experience improves the diagnostic specificity for CACT/CPT2 deficiencies over long chain acylcarnitine (C16 and C18:1) alone. DNA sequencing for both genes aids in confirming the diagnosis.


Assuntos
Carnitina Aciltransferases/deficiência , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Éxons , Íntrons , Erros Inatos do Metabolismo Lipídico/genética , Proteínas de Membrana Transportadoras/genética , Erros Inatos do Metabolismo/genética , Mutação , Sítios de Splice de RNA , Carnitina Aciltransferases/sangue , Carnitina Aciltransferases/genética , Carnitina O-Palmitoiltransferase/sangue , Criança , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/sangue , Malásia , Masculino , Erros Inatos do Metabolismo/sangue , Estudos Retrospectivos
17.
Turk J Pediatr ; 63(4): 691-696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449152

RESUMO

BACKGROUND: Carnitine-acylcarnitine translocase deficiency (CACTD) is a rare, autosomal recessive, and highly lethal fatty acid oxidation (FAO) disorder caused by defective acylcarnitine transport across the mitochondrial membrane. CACTD is characterized by severe episodes of hypoglycemia and hyperammonemia, seizures, cardiomyopathy, liver dysfunction, severe neurological damage, and muscle weakness. Herein, we described the clinical features, biochemical, and molecular findings of three patients with CACTD, presented with poor feeding, hypoglycemia, liver dysfunctions, and hyperammonemia, but died despite intensive treatment. CASES: All cases had similar signs and symptoms like poor feeding and respiratory failure associated with liver dysfunction. Urinary organic acid profiles in the presence of hypoglycemia and hyperammonemia led us to the possible diagnosis of one of fatty acid ß-oxidation defects. Results of the molecular analyses were compatible with CACTD. In addition to known mutation (c.270delC;p.Phe91Leufs*38) we detected a novel one (c.408C > A;p.Cys136*). CONCLUSIONS: All three cases died despite a very intensive therapy. Based on our experience with these three cases, it can be said that CACTD has a relatively poor prognosis, molecular studies are of most importance in suspected cases for the final diagnosis and such studies might be of help while giving genetic counselling and guidance to parents for future pregnancies.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Musculares , Carnitina , Carnitina Aciltransferases/genética , Feminino , Humanos , Proteínas de Membrana Transportadoras , Mutação , Gravidez
18.
J Inherit Metab Dis ; 44(4): 903-915, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33634872

RESUMO

Carnitine acyl-carnitine translocase deficiency (CACTD) is a rare autosomal recessive disorder of mitochondrial long-chain fatty-acid transport. Most patients present in the first 2 days of life, with hypoketotic hypoglycaemia, hyperammonaemia, cardiomyopathy or arrhythmia, hepatomegaly and elevated liver enzymes. Multi-centre international retrospective chart review of clinical presentation, biochemistry, treatment modalities including diet, subsequent complications, and mode of death of all patients. Twenty-three patients from nine tertiary metabolic units were identified. Seven attenuated patients of Pakistani heritage, six of these homozygous c.82G>T, had later onset manifestations and long-term survival without chronic hyperammonemia. Of the 16 classical cases, 15 had cardiac involvement at presentation comprising cardiac arrhythmias (9/15), cardiac arrest (7/15), and cardiac hypertrophy (9/15). Where recorded, ammonia levels were elevated in all but one severe case (13/14 measured) and 14/16 had hypoglycaemia. Nine classical patients survived longer-term-most with feeding difficulties and cognitive delay. Hyperammonaemia appears refractory to ammonia scavenger treatment and carglumic acid, but responds well to high glucose delivery during acute metabolic crises. High-energy intake seems necessary to prevent decompensation. Anaplerosis utilising therapeutic d,l-3-hydroxybutyrate, Triheptanoin and increased protein intake, appeared to improve chronic hyperammonemia and metabolic stability where trialled in individual cases. CACTD is a rare disorder of fatty acid oxidation with a preponderance to severe cardiac dysfunction. Long-term survival is possible in classical early-onset cases with long-chain fat restriction, judicious use of glucose infusions, and medium chain triglyceride supplementation. Adjunctive therapies supporting anaplerosis may improve longer-term outcomes.


Assuntos
Carnitina Aciltransferases/deficiência , Carnitina/uso terapêutico , Dieta com Restrição de Gorduras , Erros Inatos do Metabolismo Lipídico/dietoterapia , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Suplementos Nutricionais , Humanos , Recém-Nascido , Internacionalidade , Estudos Retrospectivos , Taxa de Sobrevida
19.
Appl Biochem Biotechnol ; 193(5): 1469-1481, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33484445

RESUMO

Inhibition of lipid accumulation is the key step to prevent nonalcoholic fatty liver (NAFL) progressing to nonalcoholic steatohepatitis. We aimed to study the effect of low-molecular-weight citrus pectin (LCP) against lipid accumulation and the underlying mechanism. Oleic acid (OA)-induced lipid deposition in HepG2 cells was applied to mimic in vitro model of lipid accumulation. Oil Red O (ORO) stain result showed lipid accumulation was significantly reduced, and levels of adipose triglyceride lipase (ATGL) and carnitine palmitoyltransferase-1 (CPT-1), involved in triacylglycerol catabolism and fatty acid ß-oxidation, detected by RT-qPCR were increased after OA-stimulated HepG2 cells treated with LCP. RNA sequencing analysis identified 740 differentially expressed genes (DEGs) in OA-stimulated HepG2 cells treated with the LCP group (OA+LCP group), and bioinformatics analysis indicated that some DEGs were enriched in lipid metabolism-related processes and pathways. The expression of the top 8 known DEGs in the OA+LCP group was then verified by RT-qPCR, which showed that fold change (abs) of METTL7B was the highest among the 8 candidates. In addition, overexpression of METTL7B in HepG2 cells significantly inhibited the lipid accumulation and enhanced levels of ATGL and CPT-1. In conclusion, LCP inhibited lipid accumulation through the upregulation of METTL7B, and further enhancement of ATGL and CPT-1 levels. LCP is expected to develop as a promising agent to ameliorate fat accumulation in NAFL.


Assuntos
Proteínas de Transporte/metabolismo , Pectinas/farmacologia , Carnitina Aciltransferases/metabolismo , Proteínas de Transporte/genética , Biologia Computacional , Células Hep G2 , Humanos , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos
20.
Arterioscler Thromb Vasc Biol ; 41(2): 755-768, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356393

RESUMO

OBJECTIVE: Vascular calcification is a critical pathology associated with increased cardiovascular event risk, but there are no Food and Drug Administration-approved anticalcific therapies. We hypothesized and validated that an unbiased screening approach would identify novel mediators of human vascular calcification. Approach and Results: We performed an unbiased quantitative proteomics and pathway network analysis that identified increased CROT (carnitine O-octanoyltransferase) in calcifying primary human coronary artery smooth muscle cells (SMCs). Additionally, human carotid artery atherosclerotic plaques contained increased immunoreactive CROT near calcified regions. CROT siRNA reduced fibrocalcific response in calcifying SMCs. In agreement, histidine 327 to alanine point mutation inactivated human CROT fatty acid metabolism enzymatic activity and suppressed SMC calcification. CROT siRNA suppressed type 1 collagen secretion, and restored mitochondrial proteome alterations, and suppressed mitochondrial fragmentation in calcifying SMCs. Lipidomics analysis of SMCs incubated with CROT siRNA revealed increased eicosapentaenoic acid, a vascular calcification inhibitor. CRISPR/Cas9-mediated Crot deficiency in LDL (low-density lipoprotein) receptor-deficient mice reduced aortic and carotid artery calcification without altering bone density or liver and plasma cholesterol and triglyceride concentrations. CONCLUSIONS: CROT is a novel contributing factor in vascular calcification via promoting fatty acid metabolism and mitochondrial dysfunction, as such CROT inhibition has strong potential as an antifibrocalcific therapy.


Assuntos
Aterosclerose/enzimologia , Carnitina Aciltransferases/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Mitocôndrias/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Calcificação Vascular/enzimologia , Adulto , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Carnitina Aciltransferases/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Mitocôndrias/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Osteogênese , Proteoma , Proteômica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...