Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 897
Filtrar
1.
Pestic Biochem Physiol ; 199: 105798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458668

RESUMO

Spiders, the major predatory enemies of insect pests in fields, are vulnerable to insecticides. In this study, we observed that the recommended dose of buprofezin delayed the molting of the pond wolf spider Pardosa pseudoannulata, although it had no lethal effect on the spiders. Since buprofezin is an insect chitin biosynthesis inhibitor, we identified two chitin synthase genes (PpCHS1 and PpCHS2) in P. pseudoannulata. Tissue-specific expression profiling showed that PpCHS1 was most highly expressed in cuticle. In contrast, PpCHS2 showed highest mRNA levels in the midgut and fat body. RNAi knockdown of PpCHS1 significantly delayed the molting of 12-days old spiderlings, whereas no significant effect on the molting was observed in the PpCHS2-silencing spiderlings. The expression of PpCHS1 was significantly suppressed in the spiderlings treated with buprofezin, but rescued by exogenous ecdysteroid ponasterone A (PA). Consistent with this result, the molting delay caused by buprofezin was also rescued by PA. The results revealed that buprofezin delayed the molting of spiders by suppressing PpCHS1 expression, which will benefit the protection of P. pseudoannulate and related spider species.


Assuntos
Animais Venenosos , Quitina Sintase , Aranhas , Tiadiazinas , Animais , Quitina Sintase/genética , Quitina Sintase/metabolismo , Muda/genética , Insetos , Aranhas/genética , Aranhas/metabolismo , Quitina/metabolismo
2.
J Agric Food Chem ; 72(8): 4339-4347, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38351620

RESUMO

This study aimed to investigate the role of the yeast cell wall and membrane in enhancing osmotic tolerance by antioxidant dipeptides (ADs) including Ala-His (AH), Thr-Tyr (TY), and Phe-Cys (FC). Results revealed that ADs could improve the integrity of the cell wall by restructuring polysaccharide structures. Specifically, FC significantly (p < 0.05) reduced the leakage of nucleic acid and protein by 2.86% and 5.36%, respectively, compared to the control. In addition, membrane lipid composition played a crucial role in enhancing yeast tolerance by ADs, including the increase of cell membrane integrity and the decrease of permeability by regulating the ratio of unsaturated fatty acids. The up-regulation of gene expression associated with the cell wall integrity pathway (RLM1, SLT2, MNN9, FKS1, and CHS3) and fatty acid biosynthesis (ACC1, HFA1, OLE1, ERG1, and FAA1) further confirmed the positive impact of ADs on yeast tolerance against osmotic stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Pressão Osmótica , Parede Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Quitina Sintase/metabolismo
3.
Science ; 383(6684): eadk3468, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359131

RESUMO

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) analyzed to date oligomerize and form resistosomes upon activation to initiate immune responses. Some NLRs are encoded in tightly linked co-regulated head-to-head genes whose products function together as pairs. We uncover the oligomerization requirements for different Arabidopsis paired CHS3-CSA1 alleles. These pairs form resting-state heterodimers that oligomerize into complexes distinct from NLRs analyzed previously. Oligomerization requires both conserved and allele-specific features of the respective CHS3 and CSA1 Toll-like interleukin-1 receptor (TIR) domains. The receptor kinases BAK1 and BIRs inhibit CHS3-CSA1 pair oligomerization to maintain the CHS3-CSA1 heterodimer in an inactive state. Our study reveals that paired NLRs hetero-oligomerize and likely form a distinctive "dimer of heterodimers" and that structural heterogeneity is expected even among alleles of closely related paired NLRs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Quitina Sintase , Proteínas NLR , Doenças das Plantas , Imunidade Vegetal , Receptores Imunológicos , Alelos , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quitina Sintase/química , Quitina Sintase/genética , Quitina Sintase/metabolismo , Mutação , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Multimerização Proteica
4.
J Food Sci ; 89(2): 1167-1186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193164

RESUMO

Reuterin is a natural antifungal agent derived from certain strains of Limosilactobacillus reuteri. Our previous study revealed that 6 mM reuterin inhibited completely the conidial germination of aflatoxigenic Aspergillus flavus. This study investigated the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination, which was pre-assumed that it correlated to the inhibition of some essential enzyme activity involved in conidial germination, specifically 1,3-ß-glucan synthase, chitin synthase, and catalases (catalase, bifunctional catalase-peroxidase, and spore-specific catalase). The complex of 1,3-ß-glucan synthase and chitin synthase with reuterin had a lower binding affinity than that with the substrate. Conversely, the complex of catalases with reuterin had a higher binding affinity than that with the substrate. It was suggested that 1,3-ß-glucan synthase and chitin synthase tended to bind the substrate rather than bind reuterin. In contrast, catalases tended to bind reuterin rather than bind the substrate. Therefore, reuterin could be a potential inhibitor of catalases but may not be an inhibitor of 1,3-ß-glucan synthase and chitin synthase. In this in silico study, we predicted that the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination was due to the inhibition of catalases activities by competitively binding to the enzymes active sites, thus resulting in the accumulation of reactive oxygen species in cells, leading to cells damage. PRACTICAL APPLICATION: This in silico study revealed that reuterin is a potential inhibitor of catalases in A. flavus, thereby interfering with the antioxidant system during conidial germination. This finding shows that reuterin can be used as an antifungal agent in food or agricultural products, inhibiting conidial germination completely.


Assuntos
Aspergillus flavus , Gliceraldeído/análogos & derivados , Propano , beta-Glucanas , Catalase/metabolismo , Esporos Fúngicos/metabolismo , Antifúngicos/química , Quitina Sintase/metabolismo
5.
J Biomol Struct Dyn ; 42(1): 461-474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36995127

RESUMO

Saprolegnia parasitica is an oomycete responsible for a fish disease called saprolegniosis, which poses an economic and environmental burden on aquaculture production. In Saprolegnia, CHS5 of S. parasitica (SpCHS5) contains an N-terminal domain, a catalytic domain of the glycosyltransferase -2 family containing a GT-A fold, and a C-terminal transmembrane domain. No three-dimensional structure of SpCHS5 is reported yet disclosing the structural details of this protein. We have developed a structural model of full-length SpCHS5 and validated it by molecular dynamics simulation technique. From the 1 microsecond simulations, we retrieved the stable RoseTTAFold model SpCHS5 protein to explain characteristics and structural features. Furthermore, from the analysis of the movement of chitin in the protein cavity, we assumed that ARG 482, GLN 527, PHE 529, PHE 530, LEU 540, SER 541, TYR 544, ASN 634, THR 641, TYR 645, THR 641, ASN 772 residues as a main cavity lining site. In SMD analysis, we investigated the opening of the transmembrane cavity required for chitin translocation. The pulling of chitin from the internal cavity to the extracellular region was observed through steered molecular dynamics simulations. A comparison of the initial and final structures of chitin complex showed that there's a transmembrane cavity opening in the simulations. Overall, this present work will help us understand the structural and functional basis of CHS5 and design inhibitors against SpCHS5.Communicated by Ramaswamy H. Sarma.


Assuntos
Saprolegnia , Animais , Saprolegnia/metabolismo , Fosfolipídeos , Quitina Sintase/metabolismo
6.
Insect Biochem Mol Biol ; 164: 104058, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072083

RESUMO

Chitin, a natural polymer of N-acetylglucosamine chains, is a principal component of the apical extracellular matrix in arthropods. Chitin microfibrils serve as structural components of natural biocomposites present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes, fungi and arthropods. In this review, we summarize the frontier advances of insect chitin synthesis. More specifically, we focus on the chitin synthase (CHS), which catalyzes the key biosynthesis step. CHS is also known as an attractive insecticidal target in that this enzyme is absent in mammals, birds or plants. As no insect chitin synthase structure have been reported so far, we review recent studies on glycosyltransferase domain structures derived from fungi and oomycetes, which are conserved in CHS from all species containing chitin. Auxiliary proteins, which coordinate with CHS in chitin biosynthesis and assembly, are also discussed.


Assuntos
Artrópodes , Quitina Sintase , Animais , Quitina Sintase/metabolismo , Insetos/genética , Insetos/metabolismo , Artrópodes/metabolismo , Invertebrados/metabolismo , Fungos , Quitina/metabolismo , Mamíferos/metabolismo
7.
Pestic Biochem Physiol ; 197: 105680, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072537

RESUMO

We applied a new RNA interference (RNAi) system using rolling circle transcription (RCT) technology to generate RNA microspheres (RMS) for targeting two key chitin synthetic pathway genes [chitin synthase A (CHSA), chitin synthase B (CHSB)] in the larvae of the oriental armyworm (Mythimna separate), a RNAi-unsusceptible agriculturally important lepidopteran pest. Feeding the third-instar larvae with the RMS-CHSA- or RMS-CHSB-treated corn leaf discs suppressed the expression of CHSA by 81.7% or CHSB by 88.1%, respectively, at 72 h. The silencing of CHSA consequently affected the larval development, including the reduced body weight (54.0%) and length (41.3%), as evaluated on the 7th day, and caused significant larval mortalities (51.1%) as evaluated on the 14th day. Similar results were obtained with the larvae fed RMS-CHSB. We also compared RNAi efficiencies among different strategies: 1) two multi-target RMS [i.e., RMS-(CHSA + CHSB), RMS-CHSA + RMS-CHSB], and 2) multi-target RMS and single-target RMS (i.e., either RMS-CHSA or RMS-CHSB) and found no significant differences in RNAi efficiency. By using Cy3-labeled RMS, we confirmed that RMS can be rapidly internalized into Sf9 cells (<6 h). The rapid cellular uptake of RMS accompanied with significant RNAi efficiency through larval feeding suggests that the RCT-based RNAi system can be readily applied to study the gene functions and further developed as bio-pesticides for insect pest management. Additionally, our new RNAi system takes the advantage of the microRNA (miRNA)-mediated RNAi pathway using miRNA duplexes generated in vivo from the RMS by the target insect. The system can be used for RNAi in a wide range of insect species, including lepidopteran insects which often exhibit extremely low RNAi efficiency using other RNAi approaches.


Assuntos
MicroRNAs , Mariposas , Animais , Interferência de RNA , Quitina Sintase/genética , Quitina Sintase/metabolismo , Microesferas , Mariposas/genética , Mariposas/metabolismo , Insetos/genética , Larva/metabolismo , RNA de Cadeia Dupla
8.
Mol Biol Cell ; 34(13): ar132, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819693

RESUMO

The chitin synthase Chs3 is a multipass membrane protein whose trafficking is tightly controlled. Accordingly, its exit from the endoplasmic reticulum (ER) depends on several complementary mechanisms that ensure its correct folding. Despite its potential failure on its exit, Chs3 is very stable in this compartment, which suggests its poor recognition by ER quality control mechanisms such as endoplasmic reticulum-associated degradation (ERAD). Here we show that proper N-glycosylation of its luminal domain is essential to prevent the aggregation of the protein and its subsequent recognition by the Hrd1-dependent ERAD-L machinery. In addition, the interaction of Chs3 with its chaperone Chs7 seems to mask additional cytosolic degrons, thereby avoiding their recognition by the ERAD-C pathway. On top of that, Chs3 molecules that are not degraded by conventional ERAD can move along the ER membrane to reach the inner nuclear membrane, where they are degraded by the inner nuclear membrane-associated degradation (INMAD) system, which contributes to the intracellular homeostasis of Chs3. These results indicate that Chs3 is an excellent model to study quality control mechanisms in the cell and reinforce its role as a paradigm in intracellular trafficking research.


Assuntos
Quitina Sintase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Ubiquitina-Proteína Ligases/metabolismo
9.
Eur J Med Chem ; 260: 115777, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660485

RESUMO

A series of spiro[pyrrolidine-2,3'-quinoline]-2'-one derivatives were designed and synthesized for the discovery of novel antifungal drugs. The bioactivities of all derivatives were screened by evaluating their inhibitory effects against chitin synthase (CHS) and antimicrobial activities in vitro. Enzyme inhibition experiments showed that all the synthesized compounds inhibited the chitin synthase. Compounds 4d, 4k, 4n and 4o showed inhibitory effects against CHS with IC50 values which were close to that of the control drug (polyoxin B). The results of enzyme kinetics experiment showed that these compounds were non-competitive inhibitors of chitin synthase (Ki of compound 4o is 0.14 mM). Antimicrobial experiments showed that these compounds exhibited moderate to excellent antifungal activity against pathogenic fungal strains while the compounds showed little potency against bacteria. Among them, compounds 4d, 4f, 4k and 4n showed stronger antifungal activities against C. albicans than those of fluconazole and polyoxin B. Compounds 4f, 4n and 4o showed better antifungal activities against A. flavus than those of fluconazole and polyoxin B. Compound 4d showed similar activity to that of fluconazole and stronger activity than those of polyoxin B against C. neoformans and A. fumigatus. It is also showed that these compounds have the potency against drug-resistant fungal variants. The results of sorbitol protection assay and evaluation of antifungal activity against micafungin-resistant strains experiment further illustrated that these compounds inhibited the synthesis of chitin of fungal cell wall. Drug combination experiments showed that these compounds had synergistic or additive effects when combined with fluconazole or polyoxin B. The synergistic effects with polyoxin B further confirmed the compounds were non-competitive inhibitors of chitin synthase. Additionally, docking studies showed that these compounds had strong affinity with chitin synthase from C. albicans (CaChs2). These results indicate that the target of these synthesized compounds is chitin synthase, and these compounds had excellent antifungal activity while possessed the potency against drug-resistant fungal variants.


Assuntos
Cryptococcus neoformans , Quinolinas , Antifúngicos/farmacologia , Fluconazol , Quitina Sintase , Quitina , Candida albicans , Piperazinas
10.
Parasit Vectors ; 16(1): 259, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533099

RESUMO

BACKGROUND: Mosquitoes are an important vector of viral transmission, and due to the complexity of the pathogens they transmit, vector control may be the most effective strategy to control mosquito-borne diseases. Chitin is required for insect growth and development and is absent in higher animals and plants, so regulating the chitin synthesis pathway can serve as a potentially effective means to control vector insects. Most of the current research on the chitin synthase (CHS) gene is focused on chitin synthase-1 (CHS-1), while relatively little is known about chitin synthase-2 (CHS-2). RESULTS: The CHS-2 gene of Ae. albopictus is highly conserved and closely related to that of Aedes aegypti. The expression of CHS-2 in the third-instar larvae and pupal stage of Ae. albopictus was relatively high, and CHS-2 expression in adult mosquitoes reached the highest value 24 h after blood-feeding. In the fourth-instar larvae of Ae. albopictus, CHS-2 expression was significantly higher in the midgut than in the epidermis. Silencing CHS-2 in Ae. albopictus larvae had no effect on larval survival and emergence. The expression of four genes related to chitin synthesis enzymes was significantly upregulated, the expression level of three genes was unchanged, and only the expression level of GFAT was significantly downregulated. The expression of chitin metabolism-related genes was also upregulated after silencing. The level of chitin in the midgut of Ae. albopictus larvae was significantly decreased, while the chitinase activity was unchanged. The epithelium of the midgut showed vacuolization, cell invagination and partial cell rupture, and the structure of the peritrophic membrane was destroyed or even absent. METHODS: The expression of CHS-2 in different developmental stages and tissues of Aedes albopictus was detected by real-time fluorescence quantitative PCR (qPCR). After silencing CHS-2 of the fourth-instar larvae of Ae. albopictus by RNA interference (RNAi), the expression levels of genes related to chitin metabolism, chitin content and chitinase activity in the larvae were detected. The structure of peritrophic membrane in the midgut of the fourth-instar larvae after silencing was observed by paraffin section and hematoxylin-eosin (HE) staining. CONCLUSION: CHS-2 can affect midgut chitin synthesis and breakdown by regulating chitin metabolic pathway-related genes and is involved in the formation of the midgut peritrophic membrane in Ae. albopictus, playing an important role in growth and development. It may be a potential target for enhancing other control methods.


Assuntos
Aedes , Quitinases , Animais , Larva , Aedes/genética , Aedes/metabolismo , Interferência de RNA , Quitina/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Mosquitos Vetores , Quitinases/genética
11.
Mar Biotechnol (NY) ; 25(6): 837-845, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610536

RESUMO

Synthesis of chitin is a subject of great interest in the fields of physiology and immunology of crustaceans. Chitinous tissues include not only the carapace, but also an acellular membrane in the intestine called the peritrophic membrane (PM). Here, we describe the first report of chitin synthase (CHS) of a penaeid shrimp, kuruma shrimp Penaeus japonicus. Histological observations showed that fecal matter in the midgut of kuruma shrimp was wrapped with a PM, which physically separated it from the midgut epithelium. Subsequently, the chitin synthase transcript was amplified from the midgut of the shrimp. The chitin synthase gene of kuruma shrimp (MjCHS) encodes 1,523 amino acid residues. Structural prediction analysis showed that the N-terminal region of MjCHS protein included nine transmembrane helices, the middle region included the catalytic region with several conserved motifs which are found in CHSs from other arthropods, and the C-terminal region included seven transmembrane helices. Although insects have distinct exoskeletal and intestinal chitin synthases, the phylogenetic analysis suggested that crustaceans have a single CHS. MjCHS mRNA was constantly detected in the digestive tract, including the midgut and hepatopancreas of both juvenile and adult kuruma shrimp, suggesting a stable synthesis of chitin in those organs. In contrast, MjCHS mRNA was also detected in the hindgut and uropod of juvenile shrimp. After molting, the mRNA levels of MjCHS in the stomach and uropod were higher than other molting cycles. These results suggest that MjCHS contributes to chitin synthesis in both the digestive tract and the epidermis, providing fundamental insights into chitin synthesis of crustaceans.


Assuntos
Penaeidae , Animais , Penaeidae/genética , Penaeidae/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Filogenia , Trato Gastrointestinal , Quitina/metabolismo , RNA Mensageiro/metabolismo
12.
Nat Commun ; 14(1): 4776, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553334

RESUMO

Chitin is one of the most abundant natural biopolymers and serves as a critical structural component of extracellular matrices, including fungal cell walls and insect exoskeletons. As a linear polymer of ß-(1,4)-linked N-acetylglucosamine, chitin is synthesized by chitin synthases, which are recognized as targets for antifungal and anti-insect drugs. In this study, we determine seven different cryo-electron microscopy structures of a Saccharomyces cerevisiae chitin synthase in the absence and presence of glycosyl donor, acceptor, product, or peptidyl nucleoside inhibitors. Combined with functional analyses, these structures show how the donor and acceptor substrates bind in the active site, how substrate hydrolysis drives self-priming, how a chitin-conducting transmembrane channel opens, and how peptidyl nucleoside inhibitors inhibit chitin synthase. Our work provides a structural basis for understanding the function and inhibition of chitin synthase.


Assuntos
Quitina Sintase , Quitina , Quitina Sintase/química , Quitina Sintase/metabolismo , Quitina/metabolismo , Microscopia Crioeletrônica , Nucleosídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Catálise
13.
Pest Manag Sci ; 79(11): 4463-4473, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37409377

RESUMO

BACKGROUND: Current mosquito-borne disease vector control strategies, largely based on chemical insecticides, are seriously threatened by increasing resistance worldwide. There is also growing concerned about the adverse effects of insecticides on nontarget organisms and the environment, therefore effective and ecologically friendly alternative approaches are urgently needed. Targeting critical steps of reproduction is considered a potential way to control mosquito populations. Herein, we focused on the roles of chitin synthase A (encoded by chsa) in the reproduction of female mosquitoes. RESULTS: The injection of small interfering RNA targeting Cpchsa in female Culex pipiens pallens (Diptera: Culicidae) had antireproductive effects, including decreased follicle numbers, egg-laying, and hatching rate. Scanning electron microscopy observations showed that Cpchsa silencing caused a defective egg envelope, including absence of the vitelline membrane and cracked chorion layers, which resulted in abnormal permeability. Widely distributed nurse cell apoptosis and follicular epithelial cell autophagy were observed in Cpchsa-silenced ovaries during the vitellogenesis phase. Consistent with the detective egg envelope formation during oogenesis, the exochorionic eggshell structures were also affected in eggs deposited by Cpchsa-silenced mosquitoes. CONCLUSION: This study provided fundamental evidence for the role of chitin synthase A in the female reproductive process of mosquitoes and might result in a novel alternative strategy for mosquito control. © 2023 Society of Chemical Industry.


Assuntos
Culex , Culicidae , Inseticidas , Animais , Feminino , Inseticidas/farmacologia , Culex/genética , Quitina Sintase/genética , Mosquitos Vetores/genética , Reprodução
14.
Eur J Med Chem ; 255: 115388, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141707

RESUMO

A series of spiro-quinazolinone scaffolds were constructed based on the bioactivity of quinazolinone and the inherent feature of spirocycle to design novel chitin synthase inhibitors that possess mode of action different from that of the currently used antifungal agents. Among them, the spiro[thiophen-quinazolin]-one derivatives containing α, ß-unsaturated carbonyl fragments had shown inhibitory activities against chitin synthase and antifungal activities. The enzymatic experiments showed that among the sixteen compounds, compounds 12d, 12g, 12j, 12l and 12m exhibited inhibitions against chitin synthase with IC50 values of 116.7 ± 19.6 µM, 106.7 ± 14.2 µM, 102.3 ± 9.6 µM, 122.7 ± 22.2 µM and 136.8 ± 12.4 µM, respectively, which were comparable to that of polyoxin B (IC50 = 93.5 ± 11.1 µM). The assays of enzymatic Kinetic parameters showed that compound 12g was a non-competitive inhibitor of chitin synthase. The antifungal assays showed that compounds 12d, 12g, 12j, 12l and 12m exhibited a broad-spectrum of antifungal activity against the four strains tested in vitro. In which, compounds 12g and 12j had stronger antifungal activity against four tested strains than that of polyoxin B and similar to that of fluconazole, while compounds 12d, 12l and 12m showed antifungal activity comparable to that of polyoxin B against four tested strains. Meanwhile, compounds 12d, 12g, 12j, 12l and 12m exhibited good antifungal activity against fluconazole-resistant and micafungin-resistant fungi variants with MIC values ranging from 4 to 32 µg/mL while the MIC values of reference drugs were above 256 µg/mL. Furthermore, the results of drug-combination experiments showed that compounds 12d, 12g, 12j, 12l and 12m had synergistic or additive effects with fluconazole or polyoxin B. The results of sorbitol protection experiment and the experiment of antifungal activity against micafungin-resistant fungi further demonstrated that these compounds target chitin synthase. The result of cytotoxicity assay showed that compound 12g had low toxicity toward human lung cancer A549 cells and the ADME analysis in silico displayed that compound 12g possessed promising pharmacokinetic properties. The molecular docking indicated that compound 12g formed multiple hydrogen bond interactions binding to chitin synthase, which might be conductive to increasing the binding affinity and inhibiting the activity of chitin synthase. The above results indicated that the designed compounds were chitin synthase inhibitors with selectivity and broad-spectrum antifungal activity and could be act as the lead compounds against drug-resistant fungi.


Assuntos
Antifúngicos , Quitina Sintase , Humanos , Antifúngicos/química , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Quinazolinonas/farmacologia , Fluconazol , Micafungina , Quitina , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Fungos/metabolismo , Desenho de Fármacos
15.
Biomolecules ; 13(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37238647

RESUMO

Cnidarians are commonly recognized as sea jellies, corals, or complex colonies such as the Portuguese man-of-war. While some cnidarians possess rigid internal calcareous skeletons (e.g., corals), many are soft-bodied. Intriguingly, genes coding for the chitin-biosynthetic enzyme, chitin synthase (CHS), were recently identified in the model anemone Nematostella vectensis, a species lacking hard structures. Here we report the prevalence and diversity of CHS across Cnidaria and show that cnidarian chitin synthase genes display diverse protein domain organizations. We found that CHS is expressed in cnidarian species and/or developmental stages with no reported chitinous or rigid morphological structures. Chitin affinity histochemistry indicates that chitin is present in soft tissues of some scyphozoan and hydrozoan medusae. To further elucidate the biology of chitin in cnidarian soft tissues, we focused on CHS expression in N. vectensis. Spatial expression data show that three CHS orthologs are differentially expressed in Nematostella embryos and larvae during development, suggesting that chitin has an integral role in the biology of this species. Understanding how a non-bilaterian lineage such as Cnidaria employs chitin may provide new insight into hitherto unknown functions of polysaccharides in animals, as well as their role in the evolution of biological novelty.


Assuntos
Quitina Sintase , Anêmonas-do-Mar , Animais , Quitina Sintase/genética , Quitina , Filogenia
16.
Chembiochem ; 24(16): e202300388, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37253095

RESUMO

Glycosyltransferases (GTs) are a large and diverse group of enzymes responsible for catalyzing the formation of a glycosidic bond between a donor molecule, usually a monosaccharide, and a wide range of acceptor molecules, thus, playing critical roles in various essential biological processes. Chitin and cellulose synthases are two inverting processive integral membrane GTs, belonging to the type-2 family involved in the biosynthesis of chitin and cellulose, respectively. Herein, we report that bacterial cellulose and chitin synthases share an E-D-D-ED-QRW-TK active site common motif that is spatially co-localized. This motif is conserved among distant bacterial evolutionary species despite their low amino acid sequence and structural similarities between them. This theoretical framework offers a new perspective to the current view that bacterial cellulose and chitin synthases are substrate specific and that chitin and cellulose are organism specific. It lays the ground for future in vivo and in silico experimental assessment of cellulose synthase catalytic promiscuity against uridine diphosphate N-acetylglucosamine and chitin synthase against uridine diphosphate glucose, respectively.


Assuntos
Celulose , Quitina Sintase , Quitina Sintase/genética , Quitina Sintase/química , Quitina Sintase/metabolismo , Domínio Catalítico , Sequência de Aminoácidos , Bactérias/metabolismo , Quitina
17.
Curr Genet ; 69(2-3): 175-188, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071151

RESUMO

In fungi, the cell wall plays a crucial role in morphogenesis and response to stress from the external environment. Chitin is one of the main cell wall components in many filamentous fungi. In Aspergillus nidulans, a class III chitin synthase ChsB plays a pivotal role in hyphal extension and morphogenesis. However, little is known about post-translational modifications of ChsB and their functional impacts. In this study, we showed that ChsB is phosphorylated in vivo. We characterized strains that produce ChsB using stepwise truncations of its N-terminal disordered region or deletions of some residues in that region and demonstrated its involvement in ChsB abundance on the hyphal apical surface and in hyphal tip localization. Furthermore, we showed that some deletions in this region affected the phosphorylation states of ChsB, raising the possibility that these states are important for the localization of ChsB to the hyphal surface and the growth of A. nidulans. Our findings indicate that ChsB transport is regulated by its N-terminal disordered region.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Hifas , Parede Celular/metabolismo , Quitina Sintase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
18.
Med Mycol ; 61(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120732

RESUMO

The classical dermatophytes diagnosis is based on mycological culture and microscopy observation both human and animal hair, skin, and nail samples. The aim of this work was to develop the new in-house real-time PCR with pan-dematophyte reaction for detection and identification of the main dermatophytes directly from hair samples, providing a simple and rapid diagnosis of dermatophytosis in dogs and cats. An in-house SYBR-Green real-time PCR was designed and used for detecting a DNA fragment encoding chitin synthase 1 (CHS1). A total of 287 samples were processed by culture, microscopic examination with KOH 10%, and real-time PCR (qPCR) analysis. Melting curve analysis of the CHS1 fragment revealed to be reproducible, showing a single distinct peak for each species of dermatophyte, namely Trichophyton mentagrophytes, T. verrucosum, Microsporum canis, and Nannizzia gypsea (formerly M. gypseum). Then, out of the 287 clinically suspected cases of dermatophytosis, 50% were positive for dermatophytes by qPCR, 44% by mycological culture, and 25% by microscopic examination. Microsporum canis was identified in 117 samples tested by culture and 134 samples tested by qPCR, followed by N. gypsea in 5 samples (either tested by culture or qPCR) and T. mentagrophytes detected in 4 and 5 samples when tested by culture or qPCR, respectively. Overall, qPCR allowed the diagnosis of dermatophytosis in clinical samples. The results suggest this newly proposed in-house real-time PCR assay can be used as alternative diagnosis and rapid identification of dermatophytes frequently associated to clinical hair samples of dogs and cats.


The aim of this work was to develop a molecular detection strategy for dermatophytes by SYBR-Green real-time PCR of hair samples from animals. The melting curve analysis of the CHS1 fragment revealed to be reproducible, showing a single distinct peak for distinct dermatophyte species and allowed the diagnosis of dermatophytosis in dogs and cats caused mainly by Trichophyton mentagrophytes, Microsporum sp., and Nannizzia gypsea).


Assuntos
Arthrodermataceae , Doenças do Gato , Dermatomicoses , Doenças do Cão , Tinha , Gatos , Animais , Cães , Humanos , Arthrodermataceae/genética , Dermatomicoses/diagnóstico , Dermatomicoses/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças do Gato/diagnóstico , Doenças do Cão/diagnóstico , Microsporum/genética , Cabelo , Quitina Sintase/genética , Tinha/veterinária , Trichophyton/genética
19.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972305

RESUMO

Chitin is one of the most abundant polysaccharides in nature, forming important structures in insects, crustaceans, and fungal cell walls. Vertebrates on the other hand are generally considered "nonchitinous" organisms, despite having highly conserved chitin metabolism-associated genes. Recent work has revealed that the largest group of vertebrates, the teleosts, have the potential to both synthesize and degrade endogenous chitin. Yet, little is known about the genes and proteins responsible for these dynamic processes. Here, we used comparative genomics, transcriptomics, and chromatin accessibility data to characterize the repertoire, evolution, and regulation of genes involved in chitin metabolism in teleosts, with a particular focus on Atlantic salmon. Reconstruction of gene family phylogenies provides evidence for an expansion of teleost and salmonid chitinase and chitin synthase genes after multiple whole-genome duplications. Analyses of multi-tissue gene expression data demonstrated a strong bias of gastrointestinal tract expression for chitin metabolism genes, but with different spatial and temporal tissue specificities. Finally, we integrated transcriptomes from a developmental time series of the gastrointestinal tract with chromatin accessibility data to identify putative transcription factors responsible for regulating chitin metabolism gene expression (CDX1 and CDX2) as well as tissue-specific divergence in the regulation of gene duplicates (FOXJ2). The findings presented here support the hypothesis that chitin metabolism genes in teleosts play a role in developing and maintaining a chitin-based barrier in the teleost gut and provide a basis for further investigations into the molecular basis of this barrier.


Assuntos
Quitinases , Salmo salar , Animais , Salmo salar/genética , Quitina Sintase/genética , Quitinases/genética , Genoma , Vertebrados , Cromatina , Filogenia
20.
J Econ Entomol ; 116(2): 574-583, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36757382

RESUMO

The black cutworm, Agrotis ipsilon (Hufnagel), a seasonal migrant and a prolific generalist, can feed on nearly all vegetables and grain crops, causing considerable economic impacts on a global scale. Given its cryptic nature, A. ipsilon management has been extremely challenging. Chitin synthase (CHS), a key enzyme involved in chitin biosynthetic pathway and crucially important for the growth and development of insects, is the molecular target of chitin synthesis inhibitors, a group of broad-spectrum insecticides that is compatible with Integrated Pest Management practices. In this study, we investigated the potential of targeting chitin synthases to control A. ipsilon. As a result, two chitin synthases, AiCHS1 and AiCHS2, were identified and cloned from A. ipsilon. The temporal-spatial distribution study showed that AiCHS1 was predominantly expressed at the pupal stage and most abundant among tissues of head capsule and integument, while AiCHS2 was mainly expressed at the sixth instar larval stage and tissues of foregut and midgut. RNAi-based functional study confirmed gene silencing caused significant reduction in the expression levels of the corresponding mRNA, as well as resulted in abnormal pupation and mortality, respectively. Furthermore, under the treatment of lufenuron, a chitin synthesis inhibitor, A. ipsilon responded with an elevated expression in AiCHS1 and AiCHS2, while larvae showed difficulty in shedding old cuticle, and a cumulative mortality of 69.24% at 48 h. In summary, chitin synthases are crucial for chitin biosynthesis in A. ipsilon and can be targeted for the control (e.g., RNAi-based biopesticides) of this devastating insect pest.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Quitina Sintase , Larva , Controle Biológico de Vetores/métodos , Quitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...