Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.986
Filtrar
1.
Biochem Biophys Res Commun ; 703: 149610, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38359610

RESUMO

O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293 cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, ß4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293 cells.


Assuntos
Acetilglucosamina , Receptores Notch , Humanos , Animais , Camundongos , Células HEK293 , Acetilglucosamina/metabolismo , Receptores Notch/metabolismo , Galactosiltransferases/genética , Glicosiltransferases , Drosophila/metabolismo , Sialiltransferases/genética , Polissacarídeos
2.
Pathol Res Pract ; 254: 155159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306862

RESUMO

INTRODUCTION: The biosynthesis of tumor-associated sialoglycans involves Sialyltransferases expressed in cancer cells differentially. The current review aspires to bridge the existing knowledge gaps by consolidating evidence regarding the role of Sialyltransferases in gynecological malignant tumors (ovarian, cervix, endometrial, and breast). METHODS: In this systematic review, we searched databases, including PubMed, Embase, Web of Science, Scopus and Cochrane Library. Twenty-two high-quality articles were selected out of 559 researched studies using radiomics quality score (RQS) tools. RESULTS: Our findings indicated that 7 articles were related to Sialyltransferases in ovarian cancer, in which 6 studies was examined only ST6Gal-I and one study examined the ST3Gal-I, ST3Gal-II, ST3Gal-III, ST3Gal-IV, ST3Gal-VI, and ST3Gal-6. In addition, 5 articles were related to Sialyltransferases in cervix cancer (ST6Gal-I), 3 articles to endometrial cancer (ST6Gal-I, ST3Gal-III, ST3Gal-IV, and ST3Gal-6), and 7 articles to breast cancer (ST6Gal-I gene in 5 studies, ST6GAL-II gene in one study, and ST8SIA1 and ST3GAL-V genes in one study). CONCLUSION: ST6Gal-I gene expression occurs at a high speed in ovarian, cervix, endometrial, and breast cancers, leading to metastasis to distant cells, cell destruction, cell invasion, and reduced patient survival.


Assuntos
Neoplasias da Mama , Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Neoplasias do Colo do Útero , Feminino , Humanos , Sialiltransferases/genética , Sialiltransferases/metabolismo , Neoplasias do Colo do Útero/patologia , Colo do Útero/patologia
3.
PeerJ ; 12: e16785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274327

RESUMO

Background: Changes in protein glycosylation have been reported in various diseases, including cancer; however, the consequences of altered glycosylation in meningiomas remains undefined. We established two benign meningioma cell lines-SUT-MG12 and SUT-MG14, WHO grade I-and demonstrated the glycan and glycosyltransferase profiles of the mucin-type O-linked glycosylation in the primary benign meningioma cells compared with two malignant meningioma cell lines-HKBMM and IOMM-Lee, WHO grade III. Changes in O-linked glycosylation profiles in malignant meningiomas were proposed. Methods: Primary culture technique, morphological analysis, and immunocytochemistry were used to establish and characterize two benign meningioma cell lines. The glycan profiles of the primary benign and malignant meningiomas cell lines were then analyzed using lectin cytochemistry. The gene expression of O-linked glycosyltransferases, mucins, sialyltransferases, and fucosyltransferases were analyzed in benign and malignant meningioma using the GEO database (GEO series GSE16581) and quantitative-PCR (qPCR). Results: Lectin cytochemistry revealed that the terminal galactose (Gal) and N-acetyl galactosamine (GalNAc) were highly expressed in primary benign meningioma cells (WHO grade I) compared to malignant meningioma cell lines (WHO grade III). The expression profile of mucin types O-glycosyltransferases in meningiomas were observed through the GEO database and gene expression experiment in meningioma cell lines. In the GEO database, C1GALT1-specific chaperone (COSMC) and mucin 1 (MUC1) were significantly increased in malignant meningiomas (Grade II and III) compared with benign meningiomas (Grade I). Meanwhile, in the cell lines, Core 2 ß1,6-N-acetylglucosaminyltransferase-2 (C2GNT2) was highly expressed in malignant meningiomas. We then investigated the complex mucin-type O-glycans structures by determination of sialyltransferases and fucosyltransferases. We found ST3 ß-galactoside α-2,3-sialyltransferase 4 (ST3GAL4) was significantly decreased in the GEO database, while ST3GAL1, ST3GAL3, α1,3 fucosyltransferases 1 and 8 (FUT1 and FUT8) were highly expressed in malignant meningioma cell lines-(HKBMM)-compared to primary benign meningioma cells-(SUT-MG12 and SUT-MG14). Conclusion: Our findings are the first to demonstrate the potential glycosylation changes in the O-linked glycans of malignant meningiomas compared with benign meningiomas, which may play an essential role in the progression, tumorigenesis, and malignancy of meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Glicosilação , Sialiltransferases/genética , Mucinas/química , Glicosiltransferases/metabolismo , Polissacarídeos/química , Fucosiltransferases/metabolismo , Lectinas/metabolismo
4.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326830

RESUMO

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Galactosídeos , Fatores de Transcrição , Animais , Camundongos , Humanos , Fator de Ligação a CCCTC , Anticorpos Antiproteína Citrulinada , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camundongos Knockout , Sialiltransferases/genética
5.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103644

RESUMO

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Assuntos
Mutação , Sialiltransferases , Humanos , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Simulação por Computador , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Mutação Puntual , Conformação Proteica em Folha beta , Transporte Proteico , Algoritmo Florestas Aleatórias , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/genética , Sialiltransferases/metabolismo
6.
Acc Chem Res ; 57(2): 234-246, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38127793

RESUMO

ConspectusSialic acids are fascinating negatively charged nine-carbon monosaccharides. Sialic acid-containing glycans and glycoconjugates are structurally diverse, functionally important, and synthetically challenging molecules. We have developed highly efficient chemoenzymatic strategies that combine the power of chemical synthesis and enzyme catalysis to make sialic acids, sialyl glycans, sialyl glycoconjugates, and their derivatives more accessible, enabling the efforts to explore their functions and applications. The Account starts with a brief description of the structural diversity and the functional importance of naturally occurring sialic acids and sialosides. The development of one-pot multienzyme (OPME) chemoenzymatic sialylation strategies is then introduced, highlighting its advantages in synthesizing structurally diverse sialosides with a sialyltransferase donor substrate engineering tactic. With the strategy, systematic access to sialosides containing different sialic acid forms with modifications at C3/4/5/7/8/9, various internal glycans, and diverse sialyl linkages is now possible. Also briefly described is the combination of the OPME sialylation strategy with bacterial sialidases for synthesizing sialidase inhibitors. With the goal of simplifying the product purification process for enzymatic glycosylation reactions, glycosphingolipids that contain a naturally existing hydrophobic tag are attractive targets for chemoenzymatic total synthesis. A user-friendly highly efficient chemoenzymatic strategy is developed which involves three main processes, including chemical synthesis of lactosyl sphingosine as a water-soluble hydrophobic tag-containing intermediate, OPME enzymatic extension of its glycan component with a single C18-cartridge purification of the product, followed by a facile chemical acylation reaction. The strategy allows the introduction of different sialic acid forms and diverse fatty acyl chains into the products. Gram-scale synthesis has been demonstrated. OPME sialylation has also been demonstrated for the chemoenzymatic synthesis of sialyl glycopeptides and in vitro enzymatic N-glycan processing for the formation of glycoproteins with disialylated biantennary complex-type N-glycans. For synthesizing human milk oligosaccharides (HMOs) which are glycans with a free reducing end, acceptor substrate engineering and process engineering strategies are developed, which involve the design of a hydrophobic tag that can be easily installed into the acceptor substrate to allow facile purification of the product from enzymatic reactions and can be conveniently removed in the final step to produce target molecules. The process engineering involves heat-inactivation of enzymes in the intermediate steps in multistep OPME reactions for the production of long-chain sialoside targets in a single reaction pot and with a single C18-cartridge purification process. In addition, a chemoenzymatic synthon strategy has been developed. It involves the design of a derivative of the sialyltransferase donor substrate precursor, which is tolerated by enzymes in OPME reactions, introduced to enzymatic products, and then chemically converted to the desired target structures in the final step. The chemoenzymatic synthon approach has been used together with the acceptor substrate engineering method in the synthesis of complex bacterial glycans containing sialic acids, legionaminic acids, and derivatives. The biocatalysts characterized and their engineered mutants developed by the Chen group are described, with highlights on synthetically useful enzymes. We anticipate further development of chemoenzymatic strategies and biocatalysts to enable exploration of the sialic acid space.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Ácidos Siálicos/química , Sialiltransferases , Oligossacarídeos , Glicoconjugados
7.
Cells ; 12(23)2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067186

RESUMO

Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer. Our experiments using glioma cell lines, human astrocytes (hA), and primary glioma samples revealed different gene expressions of sialyltransferases among cells, highlighting the complexity of the system. Glycation has a differential effect on sialyltransferase expression, upregulating ST8SIA4 in the LN229 and U251 cell lines and decreasing the expression in normal hA. Subsequently, polysialylation increased in the LN229 and U251 cell lines and decreased in hA. This increase in polysialylation could lead to a more aggressive phenotype due to its involvement in cancer hallmark processes such as immune evasion, resistance to apoptosis, and enhancing invasion. Our findings provide insights into the mechanisms underlying GBM aggressiveness and suggest that targeting glycation and sialylation could be a potential therapeutic strategy.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Óxido de Magnésio/uso terapêutico , Reação de Maillard , Linhagem Celular Tumoral , Glioma/metabolismo , Sialiltransferases/genética
8.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139047

RESUMO

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Assuntos
Cálcio , Neocórtex , Camundongos , Animais , Cálcio/metabolismo , Interneurônios/metabolismo , Calbindina 2/metabolismo , Calbindinas/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Sialiltransferases/genética , Sialiltransferases/metabolismo , Gangliosídeos/metabolismo , Neocórtex/metabolismo , Mutação , Mamíferos/metabolismo
9.
ACS Chem Biol ; 18(11): 2418-2429, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37934063

RESUMO

Exo-enzymatic glycan labeling strategies have emerged as versatile tools for efficient and selective installation of terminal glyco-motifs onto live cell surfaces. Through employing specific enzymes and nucleotide-sugar probes, cells can be equipped with defined glyco-epitopes for modulating cell function or selective visualization and enrichment of glycoconjugates. Here, we identifyCampylobacter jejunisialyltransferase Cst-II I53S as a tool for cell surface glycan modification, expanding the exo-enzymatic labeling toolkit to include installation of α2,8-disialyl epitopes. Labeling with Cst-II was achieved with biotin- and azide-tagged CMP-Neu5Ac derivatives on a model glycoprotein and native sialylated cell surface glycans across a panel of cell lines. The introduction of modified Neu5Ac derivatives onto cells by Cst-II was also retained on the surface for 6 h. By examining the specificity of Cst-II on cell surfaces, it was revealed that the α2,8-sialyltransferase primarily labeled N-glycans, with O-glycans labeled to a lesser extent, and there was an apparent preference for α2,3-linked sialosides on cells. This approach thus broadens the scope of tools for selective exo-enzymatic labeling of native sialylated glycans and is highly amenable for the construction of cell-based arrays.


Assuntos
Polissacarídeos , Sialiltransferases , Sialiltransferases/metabolismo , Membrana Celular/metabolismo , Polissacarídeos/metabolismo , Glicoconjugados , Epitopos
10.
Eur J Med Res ; 28(1): 515, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968767

RESUMO

BACKGROUND: Aberrant glycosylation, catalyzed by the specific glycosyltransferase, is one of the dominant features of cancers. Among the glycosyltransferase subfamilies, sialyltransferases (SiaTs) are an essential part which has close linkages with tumor-associated events, such as tumor growth, metastasis and angiogenesis. Considering the relationship between SiaTs and cancer, the current study attempted to establish an effective prognostic model with SiaTs-related genes (SRGs) to predict patients' outcome and therapeutic responsiveness of bladder cancer. METHODS: RNA-seq data, clinical information and genomic mutation data were downloaded (TCGA-BLCA and GSE13507 datasets). The comprehensive landscape of the 20 SiaTs was analyzed, and the differentially expressed SiaTs-related genes were screened with "DESeq2" R package. ConsensusClusterPlus was applied for clustering, following with survival analysis with Kaplan-Meier curve. The overall survival related SRGs were determined with univariate Cox proportional hazards regression analysis, and the least absolute shrinkage and selection operator (LASSO) regression analysis was performed to generate a SRGs-related prognostic model. The predictive value was estimated with Kaplan-Meier plot and the receiver operating characteristic (ROC) curve, which was further validated with the constructed nomogram and decision curve. RESULTS: In bladder cancer tissues, 17 out of the 20 SiaTs were differentially expressed with CNV changes and somatic mutations. Two SiaTs_Clusters were determined based on the expression of the 20 SiaTs, and two gene_Clusters were identified based on the expression of differentially expressed genes between SiaTs_Clusters. The SRGs-related prognostic model was generated with 7 key genes (CD109, TEAD4, FN1, TM4SF1, CDCA7L, ATOH8 and GZMA), and the accuracy for outcome prediction was validated with ROC curve and a constructed nomogram. The SRGs-related prognostic signature could separate patients into high- and low-risk group, where the high-risk group showed poorer outcome, more abundant immune infiltration, and higher expression of immune checkpoint genes. In addition, the risk score derived from the SRGs-related prognostic model could be utilized as a predictor to evaluate the responsiveness of patients to the medical therapies. CONCLUSIONS: The SRGs-related prognostic signature could potentially aid in the prediction of the survival outcome and therapy response for patients with bladder cancer, contributing to the development of personalized treatment and appropriate medical decisions.


Assuntos
Sialiltransferases , Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Nomogramas , Glicosiltransferases , Fatores de Transcrição de Domínio TEA , Proteínas Repressoras
11.
Microb Cell Fact ; 22(1): 241, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012629

RESUMO

BACKGROUND: In whole-cell bio-catalysis, the biosystems engineering paradigm shifts from the global reconfiguration of cellular metabolism as in fermentation to a more focused, and more easily modularized, optimization of comparably short cascade reactions. Human milk oligosaccharides (HMO) constitute an important field for the synthetic application of cascade bio-catalysis in resting or non-living cells. Here, we analyzed the central catalytic module for synthesis of HMO-type sialo-oligosaccharides, comprised of CMP-sialic acid synthetase (CSS) and sialyltransferase (SiaT), with the specific aim of coordinated enzyme co-expression in E. coli for reaction flux optimization in whole cell conversions producing 3'-sialyllactose (3SL). RESULTS: Difference in enzyme specific activity (CSS from Neisseria meningitidis: 36 U/mg; α2,3-SiaT from Pasteurella dagmatis: 5.7 U/mg) was compensated by differential protein co-expression from tailored plasmid constructs, giving balance between the individual activities at a high level of both (α2,3-SiaT: 9.4 × 102 U/g cell dry mass; CSS: 3.4 × 102 U/g cell dry mass). Finally, plasmid selection was guided by kinetic modeling of the coupled CSS-SiaT reactions in combination with comprehensive analytical tracking of the multistep conversion (lactose, N-acetyl neuraminic acid (Neu5Ac), cytidine 5'-triphosphate; each up to 100 mM). The half-life of SiaT in permeabilized cells (≤ 4 h) determined the efficiency of 3SL production at 37 °C. Reaction at 25 °C gave 3SL (40 ± 4 g/L) in ∼ 70% yield within 3 h, reaching a cell dry mass-specific productivity of ∼ 3 g/(g h) and avoiding intermediary CMP-Neu5Ac accumulation. CONCLUSIONS: Collectively, balanced co-expression of CSS and SiaT yields an efficient (high-flux) sialylation module to support flexible development of E. coli whole-cell catalysts for sialo-oligosaccharide production.


Assuntos
Escherichia coli , N-Acilneuraminato Citidililtransferase , Humanos , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Escherichia coli/metabolismo , Oligossacarídeos/metabolismo , Bioengenharia , Sialiltransferases/genética , Sialiltransferases/metabolismo , Catálise
12.
Int Immunopharmacol ; 125(Pt A): 111130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897948

RESUMO

Ulcerative colitis (UC) is a chronic, relapsing inflammatory disease that affects human intestines. Immune imbalance is one of the important factors inducing UC. After the activation of CD4+ T cells, pro-inflammatory cytokines are produced to induce colonic inflammation. α2,6-Sialylation, catalyzed by α2,6-sialyltransferase (ST6GAL1), affects the proliferation, activation, and T cell receptor (TCR) signaling of CD4+ T cells, but its role in CD4+ T cell polarization, regulation of Th17 / Treg balance, and its role in UC are still unclear. We found the number of CD4+ T and Th17 cells increased in colonic tissue with UC. The level of α2,6-sialylation of CD4+ T cells in patients with UC was significantly increased. De-α2,6-sialylation significantly reduced the symptoms of UC in rats. ST6GAL1 gene knockout inhibited the polarization of CD4+ T cells to Th17 cells, and promoted the polarization of CD4+ T cells to Treg cells. ST6GAL1 knockout significantly inhibited the IL-17 signaling pathway in CD4+ T cells and inhibited the secretion of pro-inflammatory cytokine IL-17a. ST6GAL1 and IL-17a are highly expressed in patients with UC, and there is a positive correlation between them. In conclusion, reduced α2,6-sialylation inhibits the polarization of CD4+ T cells to Th17 cells, inhibits IL-17a signaling pathway and reduces the level of pro-inflammatory cytokine IL-17a to alleviate the symptoms of UC, which is a potential novel target for the clinical treatment of UC.


Assuntos
Colite Ulcerativa , Humanos , Ratos , Animais , Interleucina-17/metabolismo , Células Th17 , Citocinas/metabolismo , Linfócitos T Reguladores , Sialiltransferases/genética
13.
Hum Mol Genet ; 32(24): 3323-3341, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676252

RESUMO

GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue. Pathogenic mechanisms underlying the neural phenotypes associated with GM3SD are unknown. To explore how loss of GM3 impacts neural-specific glycolipid glycosylation and cell signaling, GM3SD patient fibroblasts bearing one of two different ST3GAL5 variants were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to neural crest cells (NCCs). GM3 and GM3-derived gangliosides were undetectable in cells carrying either variant, while LacCer precursor levels were elevated compared to wildtype (WT). NCCs of both variants synthesized elevated levels of neutral lacto- and globo-series, as well as minor alternatively sialylated GSLs compared to WT. Ceramide profiles were also shifted in GM3SD variant cells. Altered GSL profiles in GM3SD cells were accompanied by dynamic changes in the cell surface proteome, protein O-GlcNAcylation, and receptor tyrosine kinase abundance. GM3SD cells also exhibited increased apoptosis and sensitivity to erlotinib-induced inhibition of epidermal growth factor receptor signaling. Pharmacologic inhibition of O-GlcNAcase rescued baseline and erlotinib-induced apoptosis. Collectively, these findings indicate aberrant cell signaling during differentiation of GM3SD iPSCs and also underscore the challenge of distinguishing between variant effect and genetic background effect on specific phenotypic consequences.


Assuntos
Gangliosídeos , Glicoesfingolipídeos , Humanos , Cloridrato de Erlotinib , Glicoesfingolipídeos/metabolismo , Gangliosídeo G(M3)/genética , Gangliosídeo G(M3)/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Transdução de Sinais
14.
Int J Mol Sci ; 24(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37629178

RESUMO

The enzymes α-2,6-sialyltransferase 1 (ST6Gal1), neuraminidase 1 (Neu1), α-2,3-sialyltransferase 1 (ST3Gal1), and neuraminidase 3 (Neu3) are known to affect immune cell function. However, it is not known whether the levels of these enzymes relate to remission definitions or differentiate American College of Rheumatology (ACR), European League Against Rheumatism (EULAR), and Simplified Disease Activity Index (SDAI) responses in patients with rheumatoid arthritis (RA). We measured the ST6Gal1, Neu1, ST3Gal1, and Neu3 levels of B cells and monocytes in RA patients and correlated the cells' enzyme levels/ratios with the improvement in the ACR, EULAR and SDAI responses and with the two remission definitions. The difference in the B-cell Neu1 levels differed between the ACR 70% improvement and non-improvement groups (p = 0.043), between the EULAR good major response (improvement) and non-good response groups (p = 0.014), and also between the SDAI 50% or 70% improvement and non-improvement groups (p = 0.001 and 0.018, respectively). The same held true when the RA patients were classified by positive rheumatoid factor or the use of biologics. The B-cell Neu1 levels significantly indicated 2005 modified American Rheumatism Association and 2011 ACR/EULAR remission definitions (area under the curve (AUC) = 0.674 with p = 0.001, and AUC = 0.682 with p < 0.001, respectively) in contrast to the CRP and ESR (all AUCs < 0.420). We suggest that B-cell Neu1 is superior for discriminating ACR, EULAR, and SDAI improvement and is good for predicting two kinds of remission definitions.


Assuntos
Artrite Reumatoide , Doenças Reumáticas , Humanos , Monócitos , Neuraminidase , Artrite Reumatoide/diagnóstico , Ácido N-Acetilneuramínico , Sialiltransferases
15.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37643018

RESUMO

The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 ß-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Receptores ErbB/genética , Metaplasia/patologia , Sialiltransferases/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD
16.
Oncoimmunology ; 12(1): 2240678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554309

RESUMO

Pediatric patients with high-risk neuroblastoma often relapse with chemotherapy-resistant, incurable disease. Relapsed neuroblastomas harbor chemo-resistant mesenchymal tumor cells and increased expression/activity of the transcriptional co-regulator, the Yes-Associated Protein (YAP). Patients with relapsed neuroblastoma are often treated with immunotherapy such as the anti-GD2 antibody, dinutuximab, in combination with chemotherapy. We have previously shown that YAP mediates both chemotherapy and MEK inhibitor resistance in relapsed RAS mutated neuroblastoma and so posited that YAP might also be involved in anti-GD2 antibody resistance. We now show that YAP genetic inhibition significantly enhances sensitivity of mesenchymal neuroblastomas to dinutuximab and gamma delta (γδ) T cells both in vitro and in vivo. Mechanistically, YAP inhibition induces increased GD2 cell surface expression through upregulation of ST8SIA1, the gene encoding GD3 synthase and the rate-limiting enzyme in GD2 biosynthesis. The mechanism of ST8SIA1 suppression by YAP is independent of PRRX1 expression, a mesenchymal master transcription factor, suggesting YAP may be the downstream effector of mesenchymal GD2 resistance. These results therefore identify YAP as a therapeutic target to augment GD2 immunotherapy responses in patients with neuroblastoma.


Assuntos
Neuroblastoma , Sialiltransferases , Proteínas de Sinalização YAP , Humanos , Regulação para Baixo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/uso terapêutico , Imunoterapia/métodos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Animais , Sialiltransferases/metabolismo
17.
J Pathol ; 261(1): 71-84, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550801

RESUMO

Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Próstata , Sialiltransferases , Masculino , Humanos , Glicosilação , Polissacarídeos/química , Polissacarídeos/metabolismo , Reino Unido , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD/metabolismo
18.
Biomed Pharmacother ; 165: 115091, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421784

RESUMO

Metastasis accounts for the majority of cancer-associated mortalities, representing a huge health and economic burden. One of the mechanisms that enables metastasis is hypersialylation, characterized by an overabundance of sialylated glycans on the tumor surface, which leads to repulsion and detachment of cells from the original tumor. Once the tumor cells are mobilized, sialylated glycans hijack the natural killer T-cells through self-molecular mimicry and activatea downstream cascade of molecular events that result in inhibition of cytotoxicity and inflammatory responses against cancer cells, ultimately leading to immune evasion. Sialylation is mediated by a family of enzymes known as sialyltransferases (STs), which catalyse the transfer of sialic acid residue from the donor, CMP-sialic acid, onto the terminal end of an acceptor such as N-acetylgalactosamine on the cell-surface. Upregulation of STs increases tumor hypersialylation by up to 60% which is considered a distinctive hallmark of several types of cancers such as pancreatic, breast, and ovarian cancer. Therefore, inhibiting STs has emerged as a potential strategy to prevent metastasis. In this comprehensive review, we discuss the recent advances in designing novel sialyltransferase inhibitors using ligand-based drug design and high-throughput screening of natural and synthetic entities, emphasizing the most successful approaches. We analyse the limitations and challenges of designing selective, potent, and cell-permeable ST inhibitors that hindered further development of ST inhibitors into clinical trials. We conclude by analysing emerging opportunities, including advanced delivery methods which further increase the potential of these inhibitors to enrich the clinics with novel therapeutics to combat metastasis.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácido N-Acetilneuramínico/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido N-Acetilneuramínico do Monofosfato de Citidina , Polissacarídeos/uso terapêutico , Sialiltransferases
19.
FEBS Open Bio ; 13(9): 1651-1657, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401916

RESUMO

This study attempts to answer the question of whether mice with biallelic and monoallelic disruption of the St3gal5 (GM3 synthase) gene might benefit from GM1 replacement therapy. The GM3 produced by this sialyltransferase gives rise to downstream GD3 and the ganglio-series of gangliosides. The latter includes the a-series (GM1 + GD1a), which has proved most essential for neuron survival and function (especially GM1, for which GD1a provides a reserve pool). These biallelic mice serve as a model for children with this relatively rare autosomal recessive condition (ST3GAL5-/-) who suffer rapid neurological decline including motor loss, intellectual disability, visual and hearing loss, failure to thrive, and other severe conditions leading to an early death by 2-5 years of age without supportive care. Here, we studied both these mice, which serve as a model for the parents and close relatives of these children who are likely to suffer long-term disabilities due to partial deficiency of GM1, including Parkinson's disease (PD). We find that the movement and memory disorders manifested by both types of mice can be resolved with GM1 application. This suggests the potential therapeutic value of GM1 for disorders stemming from GM1 deficiency, including GM3 synthase deficiency and PD. It was noteworthy that the GM1 employed in these studies was synthetic rather than animal brain-derived, reaffirming the therapeutic efficacy of the former.


Assuntos
Gangliosídeo G(M1) , Doença de Parkinson , Camundongos , Animais , Gangliosídeos , Sialiltransferases/genética
20.
Sci Rep ; 13(1): 10582, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386100

RESUMO

Sialic acid (SA) is present at the terminal ends of carbohydrate chains in glycoproteins and glycolipids and is involved in various biological phenomena. The biological function of the disialyl-T (SAα2-3Galß1-3(SAα2-6)GalNAcα1-O-Ser/Thr) structure is largely unknown. To elucidate the role of disialyl-T structure and determine the key enzyme from the N-acetylgalactosaminide α2,6-sialyltransferase (St6galnac) family involved in its in vivo synthesis, we generated St6galnac3- and St6galnac4-deficient mice. Both single-knockout mice developed normally without any prominent phenotypic abnormalities. However, the St6galnac3::St6galnact4 double knockout (DKO) mice showed spontaneous hemorrhage of the lymph nodes (LN). To identify the cause of bleeding in the LN, we examined podoplanin, which modifies the disialyl-T structures. The protein expression of podoplanin in the LN of DKO mice was similar to that in wild-type mice. However, the reactivity of MALII lectin, which recognizes disialyl-T, in podoplanin immunoprecipitated from DKO LN was completely abolished. Moreover, the expression of vascular endothelial cadherin was reduced on the cell surface of high endothelial venule (HEV) in the LN, suggesting that hemorrhage was caused by the structural disruption of HEV. These results suggest that podoplanin possesses disialyl-T structure in mice LN and that both St6galnac3 and St6galnac4 are required for disialyl-T synthesis.


Assuntos
Hemorragia , Linfonodos , Sialiltransferases , Animais , Camundongos , Antígenos Virais de Tumores/análise , Antígenos Virais de Tumores/metabolismo , Membrana Celular , Linfonodos/irrigação sanguínea , Camundongos Knockout , Hemorragia/genética , Hemorragia/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...