Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.708
Filtrar
1.
Nat Commun ; 15(1): 3266, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627502

RESUMO

DNA methyltransferase 3A (DNMT3A) and its catalytically inactive cofactor DNA methyltransferase 3-Like (DNMT3L) proteins form functional heterotetramers to deposit DNA methylation in mammalian germ cells. While both proteins have an ATRX-DNMT3-DNMT3L (ADD) domain that recognizes histone H3 tail unmethylated at lysine-4 (H3K4me0), the combined and differential roles of the domains in the two proteins have not been fully defined in vivo. Here we investigate DNA methylation landscapes in female and male germ cells derived from mice with loss-of-function amino acid substitutions in the ADD domains of DNMT3A and/or DNMT3L. Mutations in either the DNMT3A-ADD or the DNMT3L-ADD domain moderately decrease global CG methylation levels, but to different degrees, in both germ cells. Furthermore, when the ADD domains of both DNMT3A and DNMT3L lose their functions, the CG methylation levels are much more reduced, especially in oocytes, comparable to the impact of the Dnmt3a/3L knockout. In contrast, aberrant accumulation of non-CG methylation occurs at thousands of genomic regions in the double mutant oocytes and spermatozoa. These results highlight the critical role of the ADD-H3K4me0 binding in proper CG and non-CG methylation in germ cells and the various impacts of the ADD domains of the two proteins.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Masculino , Feminino , Camundongos , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Células Germinativas/metabolismo , Mamíferos/metabolismo
2.
Nat Commun ; 15(1): 3111, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600075

RESUMO

DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Humanos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Mutação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Metilação de DNA/genética , DNA/metabolismo
3.
J Transl Med ; 22(1): 128, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308276

RESUMO

BACKGROUND: DNMT3L is a crucial DNA methylation regulatory factor, yet its function and mechanism in hepatocellular carcinoma (HCC) remain poorly understood. Bioinformatics-based big data analysis has increasingly gained significance in cancer research. Therefore, this study aims to elucidate the role of DNMT3L in HCC by integrating big data analysis with experimental validation. METHODS: Dozens of HCC datasets were collected to analyze the expression of DNMT3L and its relationship with prognostic indicators, and were used for molecular regulatory relationship evaluation. The effects of DNMT3L on the malignant phenotypes of hepatoma cells were confirmed in vitro and in vivo. The regulatory mechanisms of DNMT3L were explored through MSP, western blot, and dual-luciferase assays. RESULTS: DNMT3L was found to be downregulated in HCC tissues and associated with better prognosis. Overexpression of DNMT3L inhibits cell proliferation and metastasis. Additionally, CDO1 was identified as a target gene of DNMT3L and also exhibits anti-cancer effects. DNMT3L upregulates CDO1 expression by competitively inhibiting DNMT3A-mediated methylation of CDO1 promoter. CONCLUSIONS: Our study revealed the role and epi-transcriptomic regulatory mechanism of DNMT3L in HCC, and underscored the essential role and applicability of big data analysis in elucidating complex biological processes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Big Data , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Neoplasias Hepáticas/genética , Regiões Promotoras Genéticas/genética
4.
Chem Biol Interact ; 392: 110907, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395253

RESUMO

The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Neoplasias , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética
5.
Sci Adv ; 10(5): eadk8598, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295174

RESUMO

Here, we characterize the DNA methylation phenotypes of bone marrow cells from mice with hematopoietic deficiency of Dnmt3a or Dnmt3b (or both enzymes) or expressing the dominant-negative Dnmt3aR878H mutation [R882H in humans; the most common DNMT3A mutation found in acute myeloid leukemia (AML)]. Using these cells as substrates, we defined DNA remethylation after overexpressing wild-type (WT) DNMT3A1, DNMT3B1, DNMT3B3 (an inactive splice isoform of DNMT3B), or DNMT3L (a catalytically inactive "chaperone" for DNMT3A and DNMT3B in early embryogenesis). Overexpression of DNMT3A for 2 weeks reverses the hypomethylation phenotype of Dnmt3a-deficient cells or cells expressing the R878H mutation. Overexpression of DNMT3L (which is minimally expressed in AML cells) also corrects the hypomethylation phenotype of Dnmt3aR878H/+ marrow, probably by augmenting the activity of WT DNMT3A encoded by the residual WT allele. DNMT3L reactivation may represent a previously unidentified approach for restoring DNMT3A activity in hematopoietic cells with reduced DNMT3A function.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , DNA , Mutação , Metilação de DNA , Leucemia Mieloide Aguda/genética
6.
Funct Integr Genomics ; 24(1): 12, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228798

RESUMO

Promoter methylation is one of the most studied epigenetic modifications and it is highly relevant to the onset and progression of thyroid carcinoma (THCA). This study investigates the promoter methylation and expression pattern of intercellular adhesion molecule 5 (ICAM5) in THCA. CpG islands with aberrant methylation pattern in THCA, and the expression profiles of the corresponding genes in THCA, were analyzed using bioinformatics. ICAM5 was suggested to have a hypermethylation status, and it was highly expressed in THCA tissues and cells. Its overexpression promoted proliferation, mobility, and tumorigenic activity of THCA cells. As for the downstream signaling, ICAM5 was found to activate the MAPK/ERK and MAPK/JNK signaling pathways. Either inhibition of ERK or JNK blocked the oncogenic effects of ICAM5. DNA methyltransferases 1 (DNMT1) and DNMT3a were found to induce promoter hypermethylation of ICAM5 in THCA cells. Knockdown of DNMT1 or DNMT3a decreased the ICAM5 expression and suppressed malignant properties of THCA cells in vitro and in vivo, which were, however, restored by further artificial ICAM5 overexpression. Collectively, this study reveals that DNMT1 and DNMT3a mediates promoter hypermethylation and transcription activation of ICAM5 in THCA, which promotes malignant progression of THCA through the MAPK signaling pathway.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Neoplasias da Glândula Tireoide , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Ativação Transcricional , Metilação de DNA , Neoplasias da Glândula Tireoide/genética , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
7.
Nat Commun ; 15(1): 606, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242884

RESUMO

Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.


Assuntos
DNA Metiltransferase 3A , Insuficiência Cardíaca , Humanos , Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A/genética , Fibroblastos , Fibrose/genética , Fibrose/patologia , Insuficiência Cardíaca/genética , Hematopoese/genética , Leucócitos Mononucleares , Mutação , Cardiopatias/genética , Cardiopatias/patologia
8.
Analyst ; 149(4): 1002-1021, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204433

RESUMO

The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.


Assuntos
Neoplasias da Mama , DNA (Citosina-5-)-Metiltransferases , Humanos , Feminino , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Neoplasias da Mama/genética , DNA/metabolismo , Biomarcadores/metabolismo
9.
Int J Biochem Cell Biol ; 169: 106535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281697

RESUMO

Hereditary Sensory and Autonomic Neuropathy Type 1E (HSAN1E) is a rare autosomal dominant neurological disorder due to missense mutations in DNA methyltransferase 1 (DNMT1). To investigate the nature of the dominant effect, we compared methylomes of transgenic R1wtDnmt1 and R1Dnmt1Y495C mouse embryonic stem cells (mESCs) overexpressing WT and the mutant mouse proteins respectively, with the R1 (wild-type) cells. In case of R1Dnmt1Y495C, 15 out of the 20 imprinting control regions were hypomethylated with transcript level dysregulation of multiple imprinted genes in ESCs and neurons. Non-imprinted regions, minor satellites, major satellites, LINE1 and IAP repeats were unaffected. These data mirror the specific imprinting defects associated with transient removal of DNMT1 in mESCs, deletion of the maternal-effect DNMT1o variant in preimplantation mouse embryos, and in part, reprogramming to naïve human iPSCs. This is the first DNMT1 mutation demonstrated to specifically affect Imprinting Control Regions (ICRs), and reinforces the differences in maintenance methylation of ICRs over non-imprinted regions. Consistent with nervous system abnormalities in the HSAN1E disorder and involvement of imprinted genes in normal development and neurogenesis, R1Dnmt1Y495C cells showed dysregulated pluripotency and neuron marker genes, and yielded more slender, shorter, and extensively branched neurons. We speculate that R1Dnmt1Y495C cells produce predominantly dimers containing mutant proteins, leading to a gradual and specific loss of ICR methylation during early human development.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Impressão Genômica , Animais , Humanos , Camundongos , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Células-Tronco Embrionárias Murinas/metabolismo , Mutação
10.
Int J Dev Neurosci ; 84(2): 154-159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296839

RESUMO

OBJECTIVE: Schizophrenia belongs to a severe mental illness with complicated clinical presentations, an ill-defined pathogenesis, and no known cause. Many genetic studies imply that polygenic interaction is important in the development of schizophrenia. The main mechanism of the RELN-BDNF-CREB-DNMT signaling pathway in neurodevelopment involves RELN, brain-derived neurotrophic factor (BDNF), transcription factor cyclic adenosine monophosphate response element binding protein (CREB), DNA methyltransferase 1 (DNMT1), as well as DNA methyltransferase 3B (DNMT3B). An early case-control research on 15 polymorphisms in the RELN, CREB, BDNF, DNMT1, and DNMT3B genes was done. A single gene variation has little effect on the pathogenesis of schizophrenia, but the combination of intergenic variation loci has a bigger impact because schizophrenia is a complex polygenic disorder. The objective of the current study sought to explore the impact of genetic interactions between RELN, BDNF, CREB, DNMT1, and DNMT3B on schizophrenia in order to further highlight the genetic factors influencing the risk of schizophrenia. METHODS: Taking the case-control study design, with the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) to be the evaluation norm, 134 individuals suffering from schizophrenia hospitalized in the Third People's Hospital of Zhongshan City within January 2018 to April 2020 (case group) were selected, and 64 healthy individuals (control group) from the same geographical area had been chosen as well. MassArray identified DNMT1 gene single nucleotide polymorphisms (rs2114724 and rs2228611) and DNMT3B gene SNPs (rs2424932, rs1569686, rs6119954, and rs2424908). Using the generalized multifactor dimensionality reduction (GMDR), the RELN-BDNF-CREB-DNMT pathway's gene interactions were examined for their impact on schizophrenia. RESULTS: GMDR analysis showed that the three-order interaction model RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) was the optimal model (p = 0.001), with the consistency of cross-validation of 10/10 and the test accuracy of 0.8711. CONCLUSION: The interaction between the RELN (rs2073559, rs2229864)-DNMT3B (rs2424908) may be related to schizophrenia, and large sample sizes should be verified in different population.


Assuntos
60603 , Predisposição Genética para Doença , Proteína Reelina , Esquizofrenia , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos de Casos e Controles , DNA (Citosina-5-)-Metiltransferases/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Transdução de Sinais , Proteína Reelina/genética , 60603/genética
11.
Nucleic Acids Res ; 52(4): 1896-1908, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38164970

RESUMO

We used structure guided mutagenesis and directed enzyme evolution to alter the specificity of the CG specific bacterial DNA (cytosine-5) methyltransferase M.MpeI. Methylation specificity of the M.MpeI variants was characterized by digestions with methylation sensitive restriction enzymes and by measuring incorporation of tritiated methyl groups into double-stranded oligonucleotides containing single CC, CG, CA or CT sites. Site specific mutagenesis steps designed to disrupt the specific contacts between the enzyme and the non-substrate base pair of the target sequence (5'-CG/5'-CG) yielded M.MpeI variants with varying levels of CG specific and increasing levels of CA and CC specific MTase activity. Subsequent random mutagenesis of the target recognizing domain coupled with selection for non-CG specific methylation yielded a variant, which predominantly methylates CC dinucleotides, has very low activity on CG and CA sites, and no activity on CT sites. This M.MpeI variant contains a one amino acid deletion (ΔA323) and three substitutions (N324G, R326G and E305N) in the target recognition domain. The mutant enzyme has very strong preference for A and C in the 3' flanking position making it a CCA and CCC specific DNA methyltransferase.


Assuntos
Metilação de DNA , Metiltransferases , Metiltransferases/genética , Metiltransferases/metabolismo , Oligonucleotídeos/química , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , DNA/química , Especificidade por Substrato , DNA (Citosina-5-)-Metiltransferases/genética
12.
EMBO Rep ; 25(3): 1130-1155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291337

RESUMO

The correct establishment of DNA methylation patterns is vital for mammalian development and is achieved by the de novo DNA methyltransferases DNMT3A and DNMT3B. DNMT3B localises to H3K36me3 at actively transcribing gene bodies via its PWWP domain. It also functions at heterochromatin through an unknown recruitment mechanism. Here, we find that knockout of DNMT3B causes loss of methylation predominantly at H3K9me3-marked heterochromatin and that DNMT3B PWWP domain mutations or deletion result in striking increases of methylation in H3K9me3-marked heterochromatin. Removal of the N-terminal region of DNMT3B affects its ability to methylate H3K9me3-marked regions. This region of DNMT3B directly interacts with HP1α and facilitates the bridging of DNMT3B with H3K9me3-marked nucleosomes in vitro. Our results suggest that DNMT3B is recruited to H3K9me3-marked heterochromatin in a PWWP-independent manner that is facilitated by the protein's N-terminal region through an interaction with a key heterochromatin protein. More generally, we suggest that DNMT3B plays a role in DNA methylation homeostasis at heterochromatin, a process which is disrupted in cancer, aging and Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome.


Assuntos
Metilação de DNA , Face/anormalidades , Heterocromatina , Doenças da Imunodeficiência Primária , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Mutação , Mamíferos/genética , Mamíferos/metabolismo
13.
Bioessays ; 46(1): e2300140, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994176

RESUMO

DNA methylation is a repressive epigenetic modification that is essential for development and its disruption is widely implicated in disease. Yet, remarkably, ablation of DNA methylation in transgenic mouse models has limited impact on transcriptional states. Across multiple tissues and developmental contexts, the predominant transcriptional signature upon loss of DNA methylation is the de-repression of a subset of germline genes, normally expressed in gametogenesis. We recently reported loss of de novo DNA methyltransferase DNMT3B resulted in up-regulation of germline genes and impaired syncytiotrophoblast formation in the murine placenta. This defect led to embryonic lethality. We hypothesize that de-repression of germline genes in the Dnmt3b knockout underpins aspects of the placental phenotype by interfering with normal developmental processes. Specifically, we discuss molecular mechanisms by which aberrant expression of the piRNA pathway, meiotic proteins or germline transcriptional regulators may disrupt syncytiotrophoblast development.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Feminino , Camundongos , Gravidez , Animais , Metilação de DNA/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Ativação Transcricional , Placenta/metabolismo , Camundongos Transgênicos , Trofoblastos/metabolismo , Células Germinativas
14.
FEBS J ; 291(1): 92-113, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584564

RESUMO

TRDMT1/DNMT2 belongs to the conserved family of nucleic acid methyltransferases. Unlike the animal systems, studies on TRDMT1/DNMT2 in land plants have been limited. We show that TRDMT1/DNMT2 is strongly conserved in the green lineage. Studies in mosses have previously shown that TRDMT1/DNMT2 plays a crucial role in modulating molecular networks involved in stress perception and signalling and in transcription/stability of specific tRNAs under stress. To gain deeper insight into its biological roles in a flowering plant, we examined more closely the previously reported Arabidopsis SALK_136635C line deficient in TRDMT1/DNMT2 function [Goll MG et al. (2006) Science 311, 395-398]. RNAs derived from Arabidopsis Dnmt2-deficient plants lacked m5 C38 in tRNAAsp . In this study, by transient expression assays we show that Arabidopsis TRDMT1/DNMT2 is distributed in the nucleus, cytoplasm and RNA-processing bodies, suggesting a role for TRDMT1/DNMT2 in RNA metabolic processes possibly by shuttling between cellular compartments. Bright-field and high-resolution SEM and qPCR analysis reveal roles of TRDMT1/DNMT2 in proper growth and developmental progression. Quantitative proteome analysis by LC-MS/MS coupled with qPCR shows AtTRDMT1/AtDNMT2 function to be crucial for protein synthesis and cellular homeostasis via housekeeping roles and proteins with poly-Asp stretches and RNA pol II activity on selected genes are affected in attrdmt1/atdnmt2. This shift in metabolic pathways primes the mutant plants to become increasingly sensitive to oxidative and osmotic stress. Taken together, our study sheds light on the mechanistic role of TRDMT1/DNMT2 in a flowering plant.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatografia Líquida , DNA , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metiltransferases , Plantas/metabolismo , RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Espectrometria de Massas em Tandem
15.
Am J Med Genet A ; 194(2): 211-217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37795572

RESUMO

Tatton-Brown-Rahman syndrome (TBRS) or DNMT3A-overgrowth syndrome is characterized by overgrowth and intellectual disability associated with minor dysmorphic features, obesity, and behavioral problems. It is caused by variants of the DNMT3A gene. We report four patients with this syndrome due to de novo DNMT3A pathogenic variants, contributing to a deeper understanding of the genetic basis and pathophysiology of this autosomal dominant syndrome. Clinical and magnetic resonance imaging assessments were also performed. All patients showed corpus callosum anomalies, small posterior fossa, and a deep left Sylvian fissure; as well as asymmetry of the uncinate and arcuate fascicles and marked increased cortical thickness. These results suggest that structural neuroimaging anomalies have been previously overlooked, where corpus callosum and brain tract alterations might be unrecognized neuroimaging traits of TBRS syndrome caused by DNMT3A variants.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Anormalidades Múltiplas/genética , Anormalidades Musculoesqueléticas/complicações , Síndrome , Neuroimagem
16.
Cytokine ; 173: 156436, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979214

RESUMO

Failure of bone healing after fracture often results in nonunion, but the underlying mechanism of nonunion pathogenesis is poorly understood. Herein, we provide evidence to clarify that the inflammatory microenvironment of atrophic nonunion (AN) mice suppresses the expression levels of DNA methyltransferases 2 (DNMT2) and 3A (DNMT3a), preventing the methylation of CpG islands on the promoters of C-terminal binding protein 1/2 (CtBP1/2) and resulting in their overexpression. Increased CtBP1/2 acts as transcriptional corepressors that, along with histone acetyltransferase p300 and Runt-related transcription factor 2 (Runx2), suppress the expression levels of six genes involved in bone healing: BGLAP (bone gamma-carboxyglutamate protein), ALPL (alkaline phosphatase), SPP1 (secreted phosphoprotein 1), COL1A1 (collagen 1a1), IBSP (integrin binding sialoprotein), and MMP13 (matrix metallopeptidase 13). We also observe a similar phenomenon in osteoblast cells treated with proinflammatory cytokines or treated with a DNMT inhibitor (5-azacytidine). Forced expression of DNMT2/3a or blockage of CtBP1/2 with their inhibitors can reverse the expression levels of BGLAP/ALPL/SPP1/COL1A1/IBSP/MMP13 in the presence of proinflammatory cytokines. Administration of CtBP1/2 inhibitors in fractured mice can prevent the incidence of AN. Thus, we demonstrate that the downregulation of bone healing genes dependent on proinflammatory cytokines/DNMT2/3a/CtBP1/2-p300-Runx2 axis signaling plays a critical role in the pathogenesis of AN. Disruption of this signaling may represent a new therapeutic strategy to prevent AN incidence after bone fracture.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Citocinas , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Consolidação da Fratura , Animais , Camundongos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Citocinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metiltransferases/metabolismo , Osteoblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Consolidação da Fratura/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo
17.
J Clin Invest ; 134(3)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051594

RESUMO

Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.


Assuntos
Metilação de DNA , Fraturas Ósseas , Animais , Humanos , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Fraturas Ósseas/genética , Inflamação/genética , Camundongos Transgênicos
18.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069050

RESUMO

Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.


Assuntos
Metilação de DNA , Glucosefosfato Desidrogenase , Animais , Ratos , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilases de Modificação do DNA/genética , Expressão Gênica , Impressão Genômica , Glucosefosfato Desidrogenase/genética
19.
Biomolecules ; 13(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136588

RESUMO

Parent-of-origin-dependent gene expression of a few hundred human genes is achieved by differential DNA methylation of both parental alleles. This imprinting is required for normal development, and defects in this process lead to human disease. Induced pluripotent stem cells (iPSCs) serve as a valuable tool for in vitro disease modeling. However, a wave of de novo DNA methylation during reprogramming of iPSCs affects DNA methylation, thus limiting their use. The DNA methyltransferase 3B (DNMT3B) gene is highly expressed in human iPSCs; however, whether the hypermethylation of imprinted loci depends on DNMT3B activity has been poorly investigated. To explore the role of DNMT3B in mediating de novo DNA methylation at imprinted DMRs, we utilized iPSCs generated from patients with immunodeficiency, centromeric instability, facial anomalies type I (ICF1) syndrome that harbor biallelic hypomorphic DNMT3B mutations. Using a whole-genome array-based approach, we observed a gain of methylation at several imprinted loci in control iPSCs but not in ICF1 iPSCs compared to their parental fibroblasts. Moreover, in corrected ICF1 iPSCs, which restore DNMT3B enzymatic activity, imprinted DMRs did not acquire control DNA methylation levels, in contrast to the majority of the hypomethylated CpGs in the genome that were rescued in the corrected iPSC clones. Overall, our study indicates that DNMT3B is responsible for de novo methylation of a subset of imprinted DMRs during iPSC reprogramming and suggests that imprinting is unstable during a specific time window of this process, after which the epigenetic state at these regions becomes resistant to perturbation.


Assuntos
Síndromes de Imunodeficiência , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Mutação , Síndromes de Imunodeficiência/genética , Impressão Genômica
20.
Mar Drugs ; 21(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132942

RESUMO

Epigenetic modifications, mainly aberrant DNA methylation, have been shown to silence the expression of genes involved in epigenetic diseases, including cancer suppression genes. Almost all conventional cancer therapeutic agents, such as the DNA hypomethylation drug 5-aza-2-deoxycytidine, have insurmountable side effects. To investigate the role of the well-known DNA protectant (ectoine) in skin cell DNA methylation and cancer cell proliferation, comprehensive methylome sequence analysis, 5-methyl cytosine (5mC) analysis, proliferation and tumorigenicity assays, and DNA epigenetic modifications-related gene analysis were performed. The results showed that extended ectoine treatment globally hypomethylated DNA in skin cells, especially in the CpG island (CGIs) element, and 5mC percentage was significantly reduced. Moreover, ectoine mildly inhibited skin cell proliferation and did not induce tumorigenicity in HaCaT cells injected into athymic nude mice. HaCaT cells treated with ectoine for 24 weeks modulated the mRNA expression levels of Dnmt1, Dnmt3a, Dnmt3b, Dnmt3l, Hdac1, Hdac2, Kdm3a, Mettl3, Mettl14, Snrpn, and Mest. Overall, ectoine mildly demethylates DNA in skin cells, modulates the expression of epigenetic modification-related genes, and reduces cell proliferation. This evidence suggests that ectoine is a potential anti-aging agent that prevents DNA hypermethylation and subsequently activates cancer-suppressing genes.


Assuntos
Metilação de DNA , Neoplasias , Animais , Camundongos , Camundongos Nus , DNA/metabolismo , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...