Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Microb Cell Fact ; 22(1): 241, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012629

RESUMO

BACKGROUND: In whole-cell bio-catalysis, the biosystems engineering paradigm shifts from the global reconfiguration of cellular metabolism as in fermentation to a more focused, and more easily modularized, optimization of comparably short cascade reactions. Human milk oligosaccharides (HMO) constitute an important field for the synthetic application of cascade bio-catalysis in resting or non-living cells. Here, we analyzed the central catalytic module for synthesis of HMO-type sialo-oligosaccharides, comprised of CMP-sialic acid synthetase (CSS) and sialyltransferase (SiaT), with the specific aim of coordinated enzyme co-expression in E. coli for reaction flux optimization in whole cell conversions producing 3'-sialyllactose (3SL). RESULTS: Difference in enzyme specific activity (CSS from Neisseria meningitidis: 36 U/mg; α2,3-SiaT from Pasteurella dagmatis: 5.7 U/mg) was compensated by differential protein co-expression from tailored plasmid constructs, giving balance between the individual activities at a high level of both (α2,3-SiaT: 9.4 × 102 U/g cell dry mass; CSS: 3.4 × 102 U/g cell dry mass). Finally, plasmid selection was guided by kinetic modeling of the coupled CSS-SiaT reactions in combination with comprehensive analytical tracking of the multistep conversion (lactose, N-acetyl neuraminic acid (Neu5Ac), cytidine 5'-triphosphate; each up to 100 mM). The half-life of SiaT in permeabilized cells (≤ 4 h) determined the efficiency of 3SL production at 37 °C. Reaction at 25 °C gave 3SL (40 ± 4 g/L) in ∼ 70% yield within 3 h, reaching a cell dry mass-specific productivity of ∼ 3 g/(g h) and avoiding intermediary CMP-Neu5Ac accumulation. CONCLUSIONS: Collectively, balanced co-expression of CSS and SiaT yields an efficient (high-flux) sialylation module to support flexible development of E. coli whole-cell catalysts for sialo-oligosaccharide production.


Assuntos
Escherichia coli , N-Acilneuraminato Citidililtransferase , Humanos , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Escherichia coli/metabolismo , Oligossacarídeos/metabolismo , Bioengenharia , Sialiltransferases/genética , Sialiltransferases/metabolismo , Catálise
2.
Microbiol Spectr ; 11(6): e0294423, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850751

RESUMO

IMPORTANCE: The Gram-negative coccobacillus Mannheimia haemolytica is a natural inhabitant of the upper respiratory tract in ruminants and the most common bacterial agent involved in bovine respiratory disease complex development. Key virulence factors harbored by M. haemolytica are leukotoxin, lipopolysaccharide, capsule, adhesins, and neuraminidase which are involved in evading innate and adaptive immune responses. In this study, we have shown that CMP-sialic acid synthetase (neuA) is necessary for the incorporation of sialic acid onto the membrane, and inactivation of neuA results in increased phagocytosis and complement-mediated killing of M. haemolytica, thus demonstrating that sialylation contributes to the virulence of M. haemolytica.


Assuntos
Mannheimia haemolytica , Bovinos , Animais , Mannheimia haemolytica/genética , Mannheimia haemolytica/metabolismo , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Sorogrupo , Deleção de Genes , Fagocitose
3.
Biochem Biophys Res Commun ; 617(Pt 1): 16-21, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35667241

RESUMO

The CMP-sialic acid synthetase (CSS) activates free sialic acid (Sia) to CMP-Sia using CTP, and is prerequisite for the sialylation of cell surface glycoconjugates. The vertebrate CSS consists of two domains, a catalytic N-domain and a non-catalytic C-domain. Although the C-domain is not required for the CSS enzyme to synthesize CMP-Sia, its involvement in the catalytic activity remains unknown. First, the real-time monitoring of CSS-catalyzed reaction was performed by 31P NMR using the rainbow trout CSS (rtCSS). While a rtCSS lacking the C-domain (rtCSS-N) similarly activated both deaminoneuraminic acid (Kdn) and N-acetylneuraminic acid (Neu5Ac), the full-length rtCSS (rtCSS-FL) did not activate Kdn as efficiently as Neu5Ac. These results suggest that the C-domain of rtCSS affects the enzymatic activity, when Kdn was used as a substrate. Second, the enzymatic activity of rtCSS-FL and rtCSS-N was measured under various concentrations of CMP-Kdn. Inhibition by CMP-Kdn was observed only for rtCSS-FL, but not for rtCSS-N, suggesting that the inhibition was C-domain-dependent. Third, the inhibitory effect of CMP-Kdn was also investigated using the mouse CSS (mCSS). However, no inhibition was observed with mCSS even at high concentrations of CMP-Kdn. Taken together, the data demonstrated that the C-domain is involved in the CMP-Kdn-dependent inhibition of rtCSS, which is a novel regulation of the Sia metabolism in rainbow trout.


Assuntos
N-Acilneuraminato Citidililtransferase , Oncorhynchus mykiss , Animais , Monofosfato de Citidina/análogos & derivados , Camundongos , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/metabolismo , Ácidos Neuramínicos , Ácidos Siálicos/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(25): e2201129119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696562

RESUMO

Sialic acids (Sias) on the B cell membrane are involved in cell migration, in the control of the complement system and, as sialic acid-binding immunoglobulin-like lectin (Siglec) ligands, in the regulation of cellular signaling. We studied the role of sialoglycans on B cells in a mouse model with B cell-specific deletion of cytidine monophosphate sialic acid synthase (CMAS), the enzyme essential for the synthesis of sialoglycans. Surprisingly, these mice showed a severe B cell deficiency in secondary lymphoid organs. Additional depletion of the complement factor C3 rescued the phenotype only marginally, demonstrating a complement-independent mechanism. The B cell survival receptor BAFF receptor was not up-regulated, and levels of activated caspase 3 and processed caspase 8 were high in B cells of Cmas-deficient mice, indicating ongoing apoptosis. Overexpressed Bcl-2 could not rescue this phenotype, pointing to extrinsic apoptosis. These results show that sialoglycans on the B cell surface are crucial for B cell survival by counteracting several death-inducing pathways.


Assuntos
Apoptose , Linfócitos B , Polissacarídeos , Ácidos Siálicos , Animais , Receptor do Fator Ativador de Células B/metabolismo , Linfócitos B/fisiologia , Sobrevivência Celular , Deleção de Genes , Camundongos , N-Acilneuraminato Citidililtransferase/genética , Polissacarídeos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo
5.
Sci Rep ; 11(1): 23211, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853329

RESUMO

Vertebrate CMP-sialic acid synthetase (CSS), which catalyzes the synthesis of CMP-sialic acid (CMP-Sia), consists of a 28 kDa-N-domain and a 20 kDa-C-domain. The N-domain is known to be a catalytic domain; however, the significance of the C-domain still remains unknown. To elucidate the function of the C-domain at the organism level, we screened the medaka TILLING library and obtained medaka with non-synonymous mutations (t911a), or single amino acid substitutions of CSS, L304Q, in the C-domain. Prominently, most L304Q medaka was lethal within 19 days post-fertilization (dpf). L304Q young fry displayed free Sia accumulation, and impairment of sialylation, up to 8 dpf. At 8 dpf, a marked abnormality in ventricular contraction and skeletal myogenesis was observed. To gain insight into the mechanism of L304Q-induced abnormalities, L304Q was biochemically characterized. Although bacterially expressed soluble L304Q and WT showed the similar Vmax/Km values, very few soluble L304Q was detected when expressed in CHO cells in sharp contrast to the WT. Additionally, the thermostability of various mutations of L304 greatly decreased, except for WT and L304I. These results suggest that L304 is important for the stability of CSS, and that an appropriate level of expression of soluble CSS is significant for animal survival.


Assuntos
Doenças dos Peixes/genética , Proteínas de Peixes/genética , N-Acilneuraminato Citidililtransferase/genética , Oryzias/genética , Mutação Puntual , Animais , Células CHO , Cardiomiopatias/genética , Cardiomiopatias/veterinária , Cricetulus , Estabilidade Enzimática , Proteínas de Peixes/química , Modelos Moleculares , N-Acilneuraminato Citidililtransferase/química , Oryzias/fisiologia , Domínios Proteicos , Solubilidade
6.
ACS Appl Mater Interfaces ; 13(41): 49433-49444, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612033

RESUMO

Multienzymatic cascade reactions are a powerful strategy for straightforward and highly specific synthesis of complex materials, such as active substances in drugs. Cross-inhibitions and incompatible reaction steps, however, often limit enzymatic activity and thus the conversion. Such limitations occur, e.g., in the enzymatic synthesis of the biologically active sialic acid cytidine monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). We addressed this challenge by developing a confinement and compartmentalization concept of hydrogel-immobilized enzymes for improving the efficiency of the enzyme cascade reaction. The three enzymes required for the synthesis of CMP-Neu5Ac, namely, N-acyl-d-glucosamine 2-epimerase (AGE), N-acetylneuraminate lyase (NAL), and CMP-sialic acid synthetase (CSS), were immobilized into bulk hydrogels and microstructured hydrogel-enzyme-dot arrays, which were then integrated into microfluidic devices. To overcome the cytidine triphosphate (CTP) cross-inhibition of AGE and NAL, only a low CTP concentration was applied and continuously conveyed through the device. In a second approach, the enzymes were compartmentalized in separate reaction chambers of the microfluidic device to completely avoid cross-inhibitions and enable the use of higher substrate concentrations. Immobilization efficiencies of up to 25% and pronounced long-term activity of the immobilized enzymes for several weeks were realized. Moreover, immobilized enzymes were less sensitive to inhibition and the substrate-channeling effect between immobilized enzymes promoted the overall conversion in the trienzymatic cascade reaction. Based on this, CMP-Neu5Ac was successfully synthesized by immobilized enzymes in noncompartmentalized and compartmentalized microfluidic devices. This study demonstrates the high potential of immobilizing enzymes in (compartmentalized) microfluidic devices to perform multienzymatic cascade reactions despite cross-inhibitions under continuous flow conditions. Due to the ease of enzyme immobilization in hydrogels, this concept is likely applicable for many cascade reactions with or without cross-inhibition characteristics.


Assuntos
Monofosfato de Citidina/análogos & derivados , Enzimas Imobilizadas/química , Hidrogéis/química , Ácidos Siálicos/síntese química , Carboidratos Epimerases/química , Proteínas de Transporte/química , Monofosfato de Citidina/síntese química , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microfluídica/métodos , N-Acilneuraminato Citidililtransferase/química , Oxo-Ácido-Liases/química , Polietilenoglicóis/química
7.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200006

RESUMO

Influenza A viruses (IAVs) initiate infection by attaching Hemagglutinin (HA) on the viral envelope to sialic acid (SA) receptors on the cell surface. Importantly, HA of human IAVs has a higher affinity for α-2,6-linked SA receptors, and avian strains prefer α-2,3-linked SA receptors, whereas swine strains have a strong affinity for both SA receptors. Host gene CMAS and ST3GAL4 were found to be essential for IAV attachment and entry. Loss of CMAS and ST3GAL4 hindered the synthesis of sialic acid receptors, which in turn prevented the adsorption of IAV. Further, the knockout of CMAS had an effect on the adsorption of swine, avian and human IAVs. However, ST3GAL4 knockout prevented the adsorption of swine and avian IAV and the impact on avian IAV was more distinct, whereas it had no effect on the adsorption of human IAV. Collectively, our findings demonstrate that knocking out CMAS and ST3GAL4 negatively regulated IAV replication by inhibiting the synthesis of SA receptors, which also provides new insights into the production of gene-edited animals in the future.


Assuntos
Vírus da Influenza A/fisiologia , N-Acilneuraminato Citidililtransferase/antagonistas & inibidores , Infecções por Orthomyxoviridae/virologia , Receptores de Superfície Celular/metabolismo , Sialiltransferases/antagonistas & inibidores , Replicação Viral , Animais , Sistemas CRISPR-Cas , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Suínos
8.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087464

RESUMO

Engagement of cell surface receptors by viruses is a critical determinant of viral tropism and disease. The reovirus attachment protein σ1 binds sialylated glycans and proteinaceous receptors to mediate infection, but the specific requirements for different cell types are not entirely known. To identify host factors required for reovirus-induced cell death, we conducted a CRISPR-knockout screen targeting over 20,000 genes in murine microglial BV2 cells. Candidate genes required for reovirus to cause cell death were highly enriched for sialic acid synthesis and transport. Two of the top candidates identified, CMP N-acetylneuraminic acid synthetase (Cmas) and solute carrier family 35 member A1 (Slc35a1), promote sialic acid expression on the cell surface. Two reovirus strains that differ in the capacity to bind sialic acid, T3SA+ and T3SA-, were used to evaluate Cmas and Slc35a1 as potential host genes required for reovirus infection. Following CRISPR-Cas9 disruption of either gene, cell surface expression of sialic acid was diminished. These results correlated with decreased binding of strain T3SA+, which is capable of engaging sialic acid. Disruption of either gene did not alter the low-level binding of T3SA-, which does not engage sialic acid. Furthermore, infectivity of T3SA+ was diminished to levels similar to those of T3SA- in cells lacking Cmas and Slc35a1 by CRISPR ablation. However, exogenous expression of Cmas and Slc35a1 into the respective null cells restored sialic acid expression and T3SA+ binding and infectivity. These results demonstrate that Cmas and Slc35a1, which mediate cell surface expression of sialic acid, are required in murine microglial cells for efficient reovirus binding and infection.IMPORTANCE Attachment factors and receptors are important determinants of dissemination and tropism during reovirus-induced disease. In a CRISPR cell survival screen, we discovered two genes, Cmas and Slc35a1, which encode proteins required for sialic acid expression on the cell surface and mediate reovirus infection of microglial cells. This work elucidates host genes that render microglial cells susceptible to reovirus infection and expands current understanding of the receptors on microglial cells that are engaged by reovirus. Such knowledge may lead to new strategies to selectively target microglial cells for oncolytic applications.


Assuntos
N-Acilneuraminato Citidililtransferase/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Infecções por Reoviridae/virologia , Reoviridae/fisiologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Camundongos , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/genética , Proteínas de Transporte de Nucleotídeos/genética , Receptores Virais/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismo , Ligação Viral , Replicação Viral
9.
Biochemistry ; 59(34): 3157-3168, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31583886

RESUMO

Cytidine 5'-monophosphate (CMP)-sialic acid synthetase (CSS) is an essential enzyme involved in the biosynthesis of carbohydrates and glycoconjugates containing sialic acids, a class of α-keto acids that are generally terminal key recognition residues by many proteins that play important biological and pathological roles. The CSS from Neisseria meningitidis (NmCSS) has been commonly used with other enzymes such as sialic acid aldolase and/or sialyltransferase in synthesizing a diverse array of compounds containing sialic acid or its naturally occurring and non-natural derivatives. To better understand its catalytic mechanism and substrate promiscuity, four NmCSS crystal structures trapped at various stages of the catalytic cycle with bound substrates, substrate analogues, and products have been obtained and are presented here. These structures suggest a mechanism for an "open" and "closed" conformational transition that occurs as sialic acid binds to the NmCSS/cytidine-5'-triphosphate (CTP) complex. The closed conformation positions critical residues to help facilitate the nucleophilic attack of sialic acid C2-OH to the α-phosphate of CTP, which is also aided by two observed divalent cations. Product formation drives the active site opening, promoting the release of products.


Assuntos
Biocatálise , N-Acilneuraminato Citidililtransferase/química , N-Acilneuraminato Citidililtransferase/metabolismo , Neisseria meningitidis/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Mutação , N-Acilneuraminato Citidililtransferase/genética
10.
Ann Hum Genet ; 84(1): 46-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495922

RESUMO

Intellectual disability (ID) describes a wide range of serious human diseases caused by defects in central nervous system development and function. Some mutant genes have been found to be associated with these diseases, but not all cases can be explained, thus suggesting that other disease-causing genes have not yet been discovered. Sialic acid is involved in a number of key biological processes, including embryo formation, nerve cell growth, and cancer cell metastasis, and very recently it has been suggested that N-acetylneuraminic acid synthase-mediated synthesis of sialic acid is required for brain and skeletal development. CMP-sialic acid synthetase (CMAS) is one of four enzymes involved in NeuNAc metabolism, as it catalyzes the formation of CMP-NeuNAc. Before the present study, no links between mutations in CMAS and incidences of human ID had been reported. In the current study, we recruited a recessive nonsyndromic ID pedigree with consanguineous marriage in which all patients have typical clinical manifestations of ID. We identified the NM_018686.3:c.563G > A (p.Arg188His) substitution in CMAS as being responsible for the disease in this family. Conservation analysis, structural prediction, and enzyme activity experiments demonstrated that (p.Arg188His) influences protein dimerization and alters CMAS enzyme activity. Our results offer a new orientation for future research and clinical diagnosis.


Assuntos
Genes Recessivos , Homozigoto , Deficiência Intelectual/etiologia , Mutação , N-Acilneuraminato Citidililtransferase/genética , Adulto , Sequência de Aminoácidos , Consanguinidade , Feminino , Seguimentos , Humanos , Deficiência Intelectual/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Homologia de Sequência , Adulto Jovem
11.
Nat Commun ; 10(1): 3698, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420548

RESUMO

Phosphonates are rare and unusually bioactive natural products. However, most bacterial phosphonate biosynthetic capacity is dedicated to tailoring cell surfaces with molecules like 2-aminoethylphosphonate (AEP). Although phosphoenolpyruvate mutase (Ppm)-catalyzed installation of C-P bonds is known, subsequent phosphonyl tailoring (Pnt) pathway steps remain enigmatic. Here we identify nucleotidyltransferases in over two-thirds of phosphonate biosynthetic gene clusters, including direct fusions to ~60% of Ppm enzymes. We characterize two putative phosphonyl tailoring cytidylyltransferases (PntCs) that prefer AEP over phosphocholine (P-Cho) - a similar substrate used by the related enzyme LicC, which is a virulence factor in Streptococcus pneumoniae. PntC structural analyses reveal steric discrimination against phosphocholine. These findings highlight nucleotidyl activation as a predominant chemical logic in phosphonate biosynthesis and set the stage for probing diverse phosphonyl tailoring pathways.


Assuntos
Ácido Aminoetilfosfônico/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/fisiologia , N-Acilneuraminato Citidililtransferase/metabolismo , Organofosfonatos/metabolismo , Actinobacteria , Bactérias/genética , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Cristalização , Cristalografia por Raios X , Escherichia coli , N-Acilneuraminato Citidililtransferase/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfolipídeos/metabolismo , Fosforilcolina/metabolismo , Fosfotransferases (Fosfomutases) , Polissacarídeos/metabolismo , Especificidade por Substrato
12.
Acta Crystallogr D Struct Biol ; 75(Pt 6): 564-577, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31205019

RESUMO

Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process.


Assuntos
Proteínas de Bactérias/química , N-Acilneuraminato Citidililtransferase/química , Vibrio cholerae/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X/métodos , Cistina Difosfato/química , Cistina Difosfato/metabolismo , Ácido N-Acetilneuramínico do Monofosfato de Citidina/química , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , N-Acilneuraminato Citidililtransferase/farmacologia , N-Acilneuraminato Citidililtransferase/fisiologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Ácidos Siálicos/metabolismo
13.
Int J Cancer ; 144(9): 2290-2302, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578646

RESUMO

Sialylated glycan structures are known for their immunomodulatory capacities and their contribution to tumor immune evasion. However, the role of aberrant sialylation in colorectal cancer and the consequences of complete tumor desialylation on anti-tumor immunity remain unstudied. Here, we report that CRISPR/Cas9-mediated knock out of the CMAS gene, encoding a key enzyme in the sialylation pathway, in the mouse colorectal cancer MC38 cell line completely abrogated cell surface expression of sialic acids (MC38-Sianull ) and, unexpectedly, significantly increased in vivo tumor growth compared to the control MC38-MOCK cells. This enhanced tumor growth of MC38-Sianull cells could be attributed to decreased CD8+ T cell frequencies in the tumor microenvironment only, as immune cell frequencies in tumor-draining lymph nodes remained unaffected. In addition, MC38-Sianull cells were able to induce CD8+ T cell apoptosis in an antigen-independent manner. Moreover, low CMAS gene expression correlated with reduced recurrence-free survival in a human colorectal cancer cohort, supporting the clinical relevance of our work. Together, these results demonstrate for the first time a detrimental effect of complete tumor desialylation on colorectal cancer tumor growth, which greatly impacts the design of novel cancer therapeutics aimed at altering the tumor glycosylation profile.


Assuntos
Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/patologia , N-Acilneuraminato Citidililtransferase/genética , Ácidos Siálicos/metabolismo , Evasão Tumoral/imunologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Intervalo Livre de Doença , Glicosilação , Humanos , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
14.
Carbohydr Res ; 472: 115-121, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30562693

RESUMO

An efficient streamlined chemoenzymatic approach has been developed for gram-scale synthesis of Lewis a angtigen (LeaßProN3) and a library of sialyl Lewis a antigens (sLeaßProN3) containing different sialic acid forms. Intially, commercially available inexpensive N-acetylglucosamine (GlcNAc) was converted to its N'-glycosyl p-toluenesulfonohydrazide in one step. Followed by chemical glycosylation, GlcNAcßProN3 was synthesized using this protecting group-free method in high yield (82%). Sequential one-pot multienzyme (OPME) ß1-3-galactosylation of GlcNAcßProN3 followed by OPME α1-4-fucosylation reactions produced target LeaßProN3 in gram-scale. Structurally diverse sialic acid forms was successfully introduced using a OPME sialylation reation containing a CMP-sialic acid synthetase and Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) mutant PmST1 M144D with or without a sialic acid aldolase to form sLeaßProN3 containing naturally occurring or non-natural sialic acid forms in preparative scales.


Assuntos
Antígenos do Grupo Sanguíneo de Lewis/química , N-Acilneuraminato Citidililtransferase/metabolismo , Ácidos Siálicos/química , Sialiltransferases/metabolismo , Acetilglucosamina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , N-Acilneuraminato Citidililtransferase/genética , Pasteurella multocida/enzimologia , Sialiltransferases/genética , Compostos de Tosil/química
15.
Chembiochem ; 18(13): 1251-1259, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28395125

RESUMO

Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human ß-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.


Assuntos
Antígenos CD/metabolismo , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Monofosfato de Citidina/análogos & derivados , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Antígenos CD/química , Antígenos CD/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Monofosfato de Citidina/química , Monofosfato de Citidina/metabolismo , Ácido N-Acetilneuramínico do Monofosfato de Citidina/química , Expressão Gênica , Glicolipídeos/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Células HEK293 , Humanos , Cinética , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimologia , Polissacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Sialiltransferases/química , Sialiltransferases/genética , Especificidade por Substrato , beta-Galactosídeo alfa-2,3-Sialiltransferase
16.
Chembiochem ; 18(13): 1305-1316, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374933

RESUMO

The negatively charged nonulose sialic acid (Sia) is essential for murine development in vivo. In order to elucidate the impact of sialylation on differentiation processes in the absence of maternal influences, we generated mouse embryonic stem cell (mESC) lines that lack CMP-Sia synthetase (CMAS) and thereby the ability to activate Sia to CMP-Sia. Loss of CMAS activity resulted in an asialo cell surface accompanied by an increase in glycoconjugates with terminal galactosyl and oligo-LacNAc residues, as well as intracellular accumulation of free Sia. Remarkably, these changes did not impact intracellular metabolites or the morphology and transcriptome of pluripotent mESC lines. Moreover, the capacity of Cmas-/- mESCs for undirected differentiation into embryoid bodies, germ layer formation and even the generation of beating cardiomyocytes provides first and conclusive evidence that pluripotency and differentiation of mESC in vitro can proceed in the absence of (poly)sialoglycans.


Assuntos
Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , N-Acilneuraminato Citidililtransferase/deficiência , Células-Tronco Pluripotentes/metabolismo , Ácidos Siálicos/metabolismo , Amino Açúcares/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Embrião de Mamíferos , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Efeito Fundador , Galactose/metabolismo , Expressão Gênica , Camadas Germinativas/citologia , Glicoconjugados/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , N-Acilneuraminato Citidililtransferase/genética , Células-Tronco Pluripotentes/citologia , Transcriptoma
17.
Glycobiology ; 27(4): 329-341, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986833

RESUMO

The occurrence and biological importance of sialic acid (Sia) and its metabolic enzymes in insects have been studied using Drosophila melanogaster. The most prominent feature of D. melanogaster CMP-Sia synthetase (DmCSS) is its Golgi-localization, contrasted with nuclear localization of vertebrate CSSs. However, it remains unclear if the Golgi-localization is common to other insect CSSs and why it happens. To answer these questions, Aedes aegypti (mosquito) CSS (AaCSS) and Tribolium castaneum (beetle) CSS (TcCSS) were cloned and characterized for their activity and subcellular localization. Our new findings show: (1) AaCSS and TcCSS share a common overall structure with DmCSS in terms of evolutionarily conserved motifs and the absence of the C-terminal domain typical to vertebrate CSSs; (2) when expressed in mammalian and insect cells, AaCSS and TcCSS showed in vivo and in vitro CSS activities, similar to DmCSS. In contrast, when expressed in bacteria, they lacked CSS activity because the N-terminal hydrophobic region appeared to induce protein aggregation; (3) when expressed in Drosophila S2 cells, AaCSS and TcCSS were predominantly localized in the ER, but not in the Golgi. Surprisingly, DmCSS was mainly secreted into the culture medium, although partially detected in Golgi. Consistent with these results, the N-terminal hydrophobic regions of AaCSS and TcCSS functioned as a signal peptide to render them soluble in the ER, while the N-terminus of DmCSS functioned as a membrane-spanning region of type II transmembrane proteins whose cytosolic KLK sequence functioned as an ER export signal. Accordingly, the differential subcellular localization of insect CSSs are distinctively more diverse than previously recognized.


Assuntos
Ácido N-Acetilneuramínico/genética , N-Acilneuraminato Citidililtransferase/química , N-Acilneuraminato Citidililtransferase/genética , Aedes/enzimologia , Motivos de Aminoácidos/genética , Animais , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Mutação , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/metabolismo , Conformação Proteica , Tribolium/enzimologia
18.
Glycobiology ; 26(11): 1151-1156, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27543325

RESUMO

Natural and synthetically modified cytidine monophosphate activated sialic acids (CMP-Sias) are essential research assets in the field of glycobiology: among other applications, they can be used to probe glycans, detect sialylation defects at the cell surface or carry out detailed studies of sialyltransferase activities. However, these chemical tools are notoriously unstable because of hydrolytic decomposition, and are very time-consuming and costly to obtain. They are nigh impossible to store with satisfactory purity, and their preparation requires multiple laborious purification steps that usually lead to heavy product loss. Using in situ time-resolved 31P phosphorus nuclear magnetic resonance (31P NMR), we precisely established the kinetics of formation and degradation of a number of CMP-Sias including CMP-Neu5Ac, CMP-Neu5Gc, CMP-SiaNAl and CMP-SiaNAz in several experimental conditions. 31P NMR can be carried out in undeuterated solvents and is a sensitive and nondestructive technique that allows for direct in situ monitoring and optimization of chemo-enzymatic syntheses that involve phosphorus-containing species. Thus, we showed that CMP-sialic acid derivatives can be robustly obtained in high yields using the readily available Neisseria meningitidis CMP-sialic acid synthase. This integrated workflow takes less than an hour, and the freshly prepared CMP-Sias can be directly transferred to sialylation biological assays without any purification step.


Assuntos
Monofosfato de Citidina/química , Sondas Moleculares/química , Polissacarídeos/análise , Ácidos Siálicos/química , Monofosfato de Citidina/biossíntese , Monofosfato de Citidina/síntese química , Sondas Moleculares/biossíntese , Sondas Moleculares/síntese química , N-Acilneuraminato Citidililtransferase/metabolismo , Neisseria meningitidis/enzimologia , Ácidos Siálicos/biossíntese , Ácidos Siálicos/síntese química
19.
Org Biomol Chem ; 14(36): 8586-97, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27548611

RESUMO

A facile one-pot two-enzyme chemoenzymatic approach has been established for the gram (Neu4,5Ac2α3Lac, 1.33 g) and preparative scale (Neu4,5Ac2α3LNnT) synthesis of monotreme milk oligosaccharides. Other O-acetyl-5-N-acetylneuraminic acid (Neu4,5Ac2)- or 4-O-acetyl-5-N-glycolylneuraminic acid (Neu4Ac5Gc) -containing α2-3-sialosides have also been synthesized in the preparative scale. Used as an effective probe, Neu4,5Ac2α3GalßpNP was found to be a suitable substrate by human influenza A viruses but not bacterial sialidases.


Assuntos
Leite/química , N-Acilneuraminato Citidililtransferase/metabolismo , Oligossacarídeos/biossíntese , Ácidos Siálicos/biossíntese , Sialiltransferases/metabolismo , Animais , Leite/metabolismo , Conformação Molecular , Oligossacarídeos/química , Ácidos Siálicos/química
20.
Mol Med Rep ; 14(2): 1501-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27357083

RESUMO

Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P­interacting proteins and determine the biological effect of the interaction. The current study identified CMP­N­acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two­hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a ß­galactosidase assay and growth studies with selective media. Furthermore, co­immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue­specific regulator of GM1 levels in SH­SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS.


Assuntos
Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , N-Acilneuraminato Citidililtransferase/metabolismo , Proteína do X Frágil de Retardo Mental/química , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Oligossacarídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...