Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.256
Filtrar
1.
Biotechnol J ; 19(4): e2400026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622795

RESUMO

Single-stranded DNA (ssDNA) is the foundation of modern biology, with wide applications in gene editing, sequencing, DNA information storage, and materials science. However, synthesizing ssDNA with high efficiency, high throughput, and low error rate in vitro remains a major challenge. Various methods have been developed for ssDNA synthesis, and some significant results have been achieved. In this review, six main methods were introduced, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. The advantages and limitations of each method were compared, as well as illustrate their representative achievements and applications. Especially, rolling circle amplification has received significant attention, including ssDNA synthesis, assembly, and application based on recent work. Finally, the future challenges and opportunities of ssDNA synthesis were summarized and discussed. Envisioning the development of new methods and significant progress will be made in the near future with the efforts of scientists around the world.


Assuntos
DNA de Cadeia Simples , DNA , DNA de Cadeia Simples/genética , Reação em Cadeia da Polimerase/métodos , DNA Polimerase Dirigida por DNA , Oligonucleotídeos , Técnicas de Amplificação de Ácido Nucleico/métodos
2.
BMC Biotechnol ; 24(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566117

RESUMO

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.


Assuntos
DNA Polimerase Dirigida por DNA , Uracila , Reação em Cadeia da Polimerase , DNA Polimerase Dirigida por DNA/genética , Uracila/metabolismo , Plasmídeos , DNA
3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612916

RESUMO

Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G.


Assuntos
Adenina , Proteínas de Saccharomyces cerevisiae , Humanos , Cisplatino , Dano ao DNA , Replicação do DNA , Nucleotidiltransferases/genética , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae/genética
4.
Nat Commun ; 15(1): 2862, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580648

RESUMO

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.


Assuntos
Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/genética , Proteína BRCA2/genética , DNA/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos
5.
Nat Commun ; 15(1): 3054, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594306

RESUMO

Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.


Assuntos
DNA Polimerase Dirigida por DNA , RNA , RNA/genética , RNA/química , DNA Polimerase Dirigida por DNA/genética , Nucleotídeos/química , RNA Mensageiro/genética
6.
J Transl Med ; 22(1): 272, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475878

RESUMO

BACKGROUND: In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8+ T cell exhaustion in HBV-related HCC remains unclear. METHODS: We constructed a Huh7 cell line stably expressing HA-HBV-DNA-Pol and applied co-culture systems to clarify its effect on immune cell function. We also examined how HBV-DNA-Pol modulated PD-L1 expression in HCC cells. In addition, HBV-DNA-Pol transgenic mice were used to elucidate the underlying mechanism of HBV-DNA-Pol/PD-L1 axis-induced T cell exhaustion. RESULTS: Biochemical analysis showed that Huh7 cells overexpressing HBV-DNA-Pol inhibited the proliferation, activation, and cytokine secretion of Jurkat cells and that this effect was dependent on their direct contact. A similar inhibitory effect was observed in an HCC mouse model. PD-L1 was brought to our attention during screening. Our results showed that the overexpression of HBV-DNA-Pol upregulated PD-L1 mRNA and protein expression. PD-L1 antibody blockade reversed the inhibitory effect of Huh7 cells overexpressing HBV-DNA-Pol on Jurkat cells. Mechanistically, HBV-DNA-Pol interacts with PARP1, thereby inhibiting the nuclear translocation of PARP1 and further upregulating PD-L1 expression. CONCLUSIONS: Our findings suggest that HBV-DNA-Pol can act as a regulator of PD-L1 in HCC, thereby directing anti-cancer immune evasion, which further provides a new idea for the clinical treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Vírus da Hepatite B/genética , DNA Viral , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , DNA Polimerase Dirigida por DNA/metabolismo
7.
Biochemistry (Mosc) ; 89(1): 53-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467545

RESUMO

Isothermal nucleic acids amplification that requires DNA polymerases with strand-displacement activity gained more attention in the last two decades. Among the DNA polymerases with strand-displacement activity, Bst exo- is the most widely used. However, it tends to carry out nonspecific DNA synthesis through multimerization. In this study, the effect of nucleotide sequence on the Bst exo- binding with DNA and on the efficiency of multimerization initiation, are reported. Preference for binding of the "closed" form of Bst exo- to the purine-rich DNA sequences, especially those containing dG at the 3'-end of the growing chain was revealed using molecular docking of the single-stranded trinucleotides (sst) and trinucleotide duplexes (dst). The data obtained in silico were confirmed in the experiments using oligonucleotide templates that differ in the structure of the 3'- and 5'-terminal motifs. It has been shown that templates with the oligopurine 3'-terminal fragment and oligopyrimidine 5'-terminal part contribute to the earlier start of multimerization. The results can be used for design of nucleotide sequences suitable for reliable isothermal amplification. To avoid multimerization, DNA templates and primers containing terminal dA and/or dG nucleotides should be excluded.


Assuntos
DNA , Nucleotídeos , Simulação de Acoplamento Molecular , DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos
8.
Methods Mol Biol ; 2760: 133-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468086

RESUMO

Efficient preparation of DNA oligonucleotides containing unnatural nucleobases (UBs) that can pair with their cognates to form unnatural base pairs (UBPs) is an essential prerequisite for the application of UBPs in vitro and in vivo. Traditional preparation of oligonucleotides containing unnatural nucleobases largely relies on solid-phase synthesis, which needs to use unstable nucleoside phosphoramidites and a DNA synthesizer, and is environmentally unfriendly and limited in product length. To overcome these limitations of solid-phase synthesis, we developed enzymatic methods for daily laboratory preparation of DNA oligonucleotides containing unnatural nucleobase dNaM, dTPT3, or one of the functionalized dTPT3 derivatives, which can be used for orthogonal DNA labeling or the preparation of DNAs containing UBP dNaM-dTPT3, one of the most successful UBPs to date, based on the template-independent polymerase terminal deoxynucleotidyl transferase (TdT). Here, we first provide a detailed procedure for the TdT-based preparation of DNA oligonucleotides containing 3'-nucleotides of dNaM, dTPT3, or one of dTPT3 derivatives. We then present the procedures for enzyme-linked oligonucleotide assay (ELONA) and imaging of bacterial cells using DNA oligonucleotides containing 3'-nucleotides of dTPT3 derivatives with different functional groups. The procedure for enzymatic synthesis of DNAs containing an internal UBP dNaM-dTPT3 is also described. Hopefully, these methods will greatly facilitate the application of UBPs and the construction of semi-synthetic organisms with an expanded genetic alphabet.


Assuntos
DNA Nucleotidilexotransferase , Biologia Sintética , DNA Nucleotidilexotransferase/genética , Biologia Sintética/métodos , DNA/genética , DNA Polimerase Dirigida por DNA , Nucleotídeos/genética , Oligonucleotídeos/genética
9.
DNA Repair (Amst) ; 136: 103645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428373

RESUMO

DNA polymerases lambda (Polλ) and mu (Polµ) are X-Family polymerases that participate in DNA double-strand break (DSB) repair by the nonhomologous end-joining pathway (NHEJ). Both polymerases direct synthesis from one DSB end, using template derived from a second DSB end. In this way, they promote the NHEJ ligation step and minimize the sequence loss normally associated with this pathway. The two polymerases differ in cognate substrate, as Polλ is preferred when synthesis must be primed from a base-paired DSB end, while Polµ is required when synthesis must be primed from an unpaired DSB end. We generated a Polλ variant (PolλKGET) that retained canonical Polλ activity on a paired end-albeit with reduced incorporation fidelity. We recently discovered that the variant had unexpectedly acquired the activity previously unique to Polµ-synthesis from an unpaired primer terminus. Though the sidechains of the Loop1 region make no contact with the DNA substrate, PolλKGET Loop1 amino acid sequence is surprisingly essential for its unique activity during NHEJ. Taken together, these results underscore that the Loop1 region plays distinct roles in different Family X polymerases.


Assuntos
DNA Polimerase beta , DNA Polimerase Dirigida por DNA , DNA Polimerase Dirigida por DNA/metabolismo , Mutação com Ganho de Função , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA/metabolismo , Reparo do DNA por Junção de Extremidades
10.
PLoS One ; 19(3): e0299404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446776

RESUMO

Otariid gammaherpesvirus 1 (OtGHV1) is associated with high rates of urogenital carcinoma in free-ranging California sea lions (Zalophus californianus; CSL), and until recently was reported only in the Northern Hemisphere. The objective of this study was to survey free-ranging South American sea lions (Otaria byronia; SASL) and South American fur seals (Arctocephalus australis: SAFS) in Punta San Juan, Peru for OtGHV1 and to determine prevalence characteristics. Twenty-one percent (14/67) of urogenital swabs collected over three years (2011, 2014, 2015) from live pinnipeds of both species tested positive with a pan-herpesvirus conventional PCR. Sequencing of SAFS amplicons revealed 100% homology to OtGHV1 at the DNA polymerase, glycoprotein B, and viral bcl2-like genes. Sequencing of SASL amplicons revealed a novel related virus, herein called Otariid gammaherpesvirus 8 (OtGHV8). For comparison of sample sites, urogenital, conjunctival, and oropharyngeal swabs collected from 136 live pinnipeds of both species at Punta San Juan between 2011-2018 were then assayed using quantitative PCR for a segment of the OtGHV1/8 DNA polymerase gene using a qPCR assay now determined to cross-react between the two viruses. In total, across both species, 38.6% (51/132) of urogenital swabs, 5.6% (4/71) of conjunctival swabs, and 1.1% (1/90) of oropharyngeal swabs were positive for OtGHV1/8, with SASL only positive on urogenital swabs. Results from SASL were complicated by the finding of OtGHV8, necessitating further study to determine prevalence of OtGHV1 versus OtGHV8 using an alternate assay. Results from SAFS suggest a potential relationship between OtGHV1 in SAFS and CSL. Though necropsy surveillance in SAFS is very limited, geographic patterns of OtGHV1-associated urogenital carcinoma in CSL and the tendency of herpesviruses to cause more detrimental disease in aberrant hosts suggests that it is possible that SAFS may be the definitive host of OtGHV1, which gives further insight into the diversity and phyogeography of this clade of related gammaherpesviruses.


Assuntos
Caniformia , Carcinoma , Otárias , Gammaherpesvirinae , Herpesviridae , Leões-Marinhos , Animais , Humanos , Prevalência , Gammaherpesvirinae/genética , Peru/epidemiologia , DNA Polimerase Dirigida por DNA
11.
Talanta ; 273: 125846, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452594

RESUMO

Electrical detection of RNAs using transistor-based biosensors has attracted attention as a strategy for medical diagnosis and environmental monitoring. Herein, we demonstrated a proof-of-concept for specific, sensitive, and label-free RNA detection using a field-effect transistor (FET) biosensor with signal amplification by ternary initiation complexes (SATIC), which is an isothermal one-step nucleic acid amplification initiated by the combination of target RNA, circular DNA template and DNA primer. The SATIC system-applied FET biosensor specifically and quantitatively detected the target RNA with a single-nucleotide difference via the negative charges derived from the amplification products formed by a nucleic acid amplification reaction with φ29 DNA polymerase on the gate surface. In particular, the control of the amplification time allowed the detection of target RNA molecules over a wide concentration range, resulting in a detection limit of up to 6 copies/µL. Therefore, a transistor-based bioassay using the SATIC system could be useful for simple and sensitive nucleic acid analysis.


Assuntos
Técnicas Biossensoriais , RNA , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Polimerase Dirigida por DNA
12.
Virology ; 594: 110035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554655

RESUMO

The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , DNA Viral/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Replicação Viral , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA
13.
Viruses ; 16(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543771

RESUMO

The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis and, especially, the taxonomic description of bacteriophages are often difficult due to the peculiarities of the evolution of bacteriophages, which often includes the horizontal transfer of genes and genomic modules. The latter is particularly pronounced for temperate bacteriophages, which are capable of integration into the bacterial chromosome. Xanthomonas phage PBR31 is a temperate bacteriophage, which has been neither described nor classified previously, that infects the plant pathogen Xanthomonas campestris pv. campestris. Genomic analysis, including phylogenetic studies, indicated the separation of phage PBR31 from known classified bacteriophages, as well as its distant relationship with other temperate bacteriophages, including the Lederbervirus group. Bioinformatic analysis of proteins revealed distinctive features of PBR31, including the presence of a protein similar to the small subunit of D-family DNA polymerase and advanced lysis machinery. Taxonomic analysis showed the possibility of assigning phage PBR31 to a new taxon, although the complete taxonomic description of Xanthomonas phage PBR31 and other related bacteriophages is complicated by the complex evolutionary history of the formation of its genome. The general biological features of the PBR31 phage were analysed for the first time. Due to its presumably temperate lifestyle, there is doubt as to whether the PBR31 phage is appropriate for phage control purposes. Bioinformatics analysis, however, revealed the presence of cell wall-degrading enzymes that can be utilised for the treatment of bacterial infections.


Assuntos
Bacteriófagos , Xanthomonas , Bacteriófagos/genética , Xanthomonas/genética , Filogenia , DNA Polimerase Dirigida por DNA/genética
14.
Anal Chem ; 96(13): 5323-5330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501982

RESUMO

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Guanina/análogos & derivados , Humanos , DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Dano ao DNA , Biomarcadores , Reparo do DNA
15.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338670

RESUMO

In recent years, the loop-mediated isothermal amplification (LAMP) technique, designed for microbial pathogen detection, has acquired fundamental importance in the biomedical field, providing rapid and precise responses. However, it still has some drawbacks, mainly due to the need for a thermostatic block, necessary to reach 63 °C, which is the BstI DNA polymerase working temperature. Here, we report the identification and characterization of the DNA polymerase I Large Fragment from Deinococcus radiodurans (DraLF-PolI) that functions at room temperature and is resistant to various environmental stress conditions. We demonstrated that DraLF-PolI displays efficient catalytic activity over a wide range of temperatures and pH, maintains its activity even after storage under various stress conditions, including desiccation, and retains its strand-displacement activity required for isothermal amplification technology. All of these characteristics make DraLF-PolI an excellent candidate for a cutting-edge room-temperature LAMP that promises to be very useful for the rapid and simple detection of pathogens at the point of care.


Assuntos
DNA Polimerase I , Deinococcus , DNA Polimerase I/genética , Deinococcus/genética , Temperatura , DNA Polimerase Dirigida por DNA/genética , Técnicas de Amplificação de Ácido Nucleico , Replicação do DNA
16.
Pediatr Neurol ; 153: 1-10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306744

RESUMO

Moebius syndrome (MBS) is a congenital cranial dysinnervation disorder (CCDD) characterized by a bilateral palsy of abducens and facial cranial nerves, which may coexist with other cranial nerves palsies, mostly those found in the dorsal pons and medulla oblongata. MBS is considered a "rare" disease, occurring in only 1:50,000 to 1:500,000 live births, with no gender predominance. Three independent theories have been described to define its etiology: the vascular theory, which talks about a transient blood flow disruption; the genetic theory, which takes place due to mutations related to the facial motor nucleus neurodevelopment; and last, the teratogenic theory, associated with the consumption of agents such as misoprostol during the first trimester of pregnancy. Since the literature has suggested the existence of these theories independently, this review proposes establishing a theory by matching the MBS molecular bases. This review aims to associate the three etiopathogenic theories at a molecular level, thus submitting a combined postulation. MBS is most likely an underdiagnosed disease due to its low prevalence and challenging diagnosis. Researching other elements that may play a key role in the pathogenesis is essential. It is common to assume the difficulty that patients with MBS have in leading an everyday social life. Research by means of PubMed and Google Scholar databases was carried out, same in which 94 articles were collected by using keywords with the likes of "Moebius syndrome," "PLXND1 mutations," "REV3L mutations," "vascular disruption AND teratogens," and "congenital facial nerve palsy." No exclusion criteria were applied.


Assuntos
Paralisia Facial , Síndrome de Möbius , Humanos , Síndrome de Möbius/genética , Síndrome de Möbius/diagnóstico , Teratógenos/toxicidade , Nervo Facial , Mutação , DNA Polimerase Dirigida por DNA/genética , Proteínas de Ligação a DNA/genética
17.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298175

RESUMO

The ability of mutations to facilitate adaptation is central to evolution. To understand how mutations can lead to functional adaptation in a complex molecular machine, we created a defective version of the T4 clamp-loader complex, which is essential for DNA replication. This variant, which is ∼5,000-fold less active than the wild type, was made by replacing the catalytic domains with those from another phage. A directed-evolution experiment revealed that multiple substitutions to a single negatively charged residue in the chimeric clamp loader-Asp 86-restore fitness to within ∼20-fold of wild type. These mutations remove an adventitious electrostatic repulsive interaction between Asp 86 and the sliding clamp. Thus, the fitness decrease of the chimeric clamp loader is caused by a reduction in affinity between the clamp loader and the clamp. Deep mutagenesis shows that the reduced fitness of the chimeric clamp loader is also compensated for by lysine and arginine substitutions of several DNA-proximal residues in the clamp loader or the sliding clamp. Our results demonstrate that there is a latent capacity for increasing the affinity of the clamp loader for DNA and the sliding clamp, such that even single-point mutations can readily compensate for the loss of function due to suboptimal interactions elsewhere.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA , DNA
18.
Genes (Basel) ; 15(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397205

RESUMO

Polymerase chain reaction (PCR) is a widely used technique in gene expression analysis, diagnostics, and various molecular biology applications. However, the accuracy and sensitivity of PCR can be compromised by primer-template mismatches, potentially leading to erroneous results. In this study, we strategically designed 111 primer-template combinations with varying numbers, types, and locations of mismatches to meticulously assess their impact on qPCR performance while two distinctly different types of DNA polymerases were used. Notably, when a single-nucleotide mismatch occurred at the 3' end of the primer, we observed significant decreases in the analytical sensitivity (0-4%) with Invitrogen™ Platinum™ Taq DNA Polymerase High Fidelity, while the analytical sensitivity remained unchanged with Takara Ex Taq Hot Start Version DNA Polymerase. Leveraging these findings, we designed a highly specific PCR to amplify Babesia while effectively avoiding the genetically close Theileria. Through elucidating the critical interplay between types of DNA polymerases and primer-template mismatches, this research provides valuable insights for improving PCR accuracy and performance. These findings have important implications for researchers aiming to achieve robust qPCR results in various molecular biology applications.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Reação em Cadeia da Polimerase/métodos , Primers do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos
19.
Biochemistry ; 63(6): 754-766, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38413007

RESUMO

Urea lesions in DNA arise from thymine glycol (Tg) or 8-oxo-dG; their genotoxicity is thought to arise in part due to their potential to accommodate the insertion of all four dNTPs during error-prone replication. Replication bypass with human DNA polymerase η (hPol η) confirmed that all four dNTPs were inserted opposite urea lesions but with purines exhibiting greater incorporation efficiency. X-ray crystal structures of ternary replication bypass complexes in the presence of Mg2+ ions with incoming dNTP analogs dAMPnPP, dCMPnPP, dGMPnPP, and dTMPnPP bound opposite urea lesions (hPol η·DNA·dNMPnPP complexes) revealed all were accommodated by hPol η. In each, the Watson-Crick face of the dNMPnPP was paired with the urea lesion, exploiting the ability of the amine and carbonyl groups of the urea to act as H-bond donors or acceptors, respectively. With incoming dAMPnPP or dGMPnPP, the distance between the imino nitrogen of urea and the N9 atoms of incoming dNMPnPP approximated the canonical distance of 9 Å in B-DNA. With incoming dCMPnPP or dTMPnPP, the corresponding distance of about 7 Å was less ideal. Improved base-stacking interactions were also observed with incoming purines vs pyrimidines. Nevertheless, in each instance, the α-phosphate of incoming dNMPnPPs was close to the 3'-hydroxyl group of the primer terminus, consistent with the catalysis of nucleotidyl transfer and the observation that all four nucleotides could be inserted opposite urea lesions. Preferential insertion of purines by hPol η may explain, in part, why the urea-directed spectrum of mutations arising from Tg vs 8-oxo-dG lesions differs.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA , Humanos , 8-Hidroxi-2'-Desoxiguanosina , DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , Replicação do DNA , Nucleotídeos , Adutos de DNA
20.
Angew Chem Int Ed Engl ; 63(13): e202317334, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323479

RESUMO

Xeno-nucleic acids (XNAs) are synthetic genetic polymers with improved biological stabilities and offer powerful molecular tools such as aptamers and catalysts. However, XNA application has been hindered by a very limited repertoire of tool enzymes, particularly those that enable de novo XNA synthesis. Here we report that terminal deoxynucleotide transferase (TdT) catalyzes untemplated threose nucleic acid (TNA) synthesis at the 3' terminus of DNA oligonucleotide, resulting in DNA-TNA chimera resistant to exonuclease digestion. Moreover, TdT-catalyzed TNA extension supports one-pot batch preparation of biostable chimeric oligonucleotides, which can be used directly as staple strands during self-assembly of DNA origami nanostructures (DONs). Such TNA-protected DONs show enhanced biological stability in the presence of exonuclease I, DNase I and fetal bovine serum. This work not only expands the available enzyme toolbox for XNA synthesis and manipulation, but also provides a promising approach to fabricate DONs with improved stability under the physiological condition.


Assuntos
Nanoestruturas , Naftalenossulfonatos , Ácidos Nucleicos , Tetroses , Ácidos Nucleicos/química , Oligonucleotídeos/química , DNA Polimerase Dirigida por DNA , DNA Nucleotidilexotransferase , Polímeros , DNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...