Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
2.
In Vitro Cell Dev Biol Anim ; 59(10): 811-820, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38032403

RESUMO

The synovial intimal lining is mainly governed by fibroblast-like synoviocytes (FLS), which portray a transformed tumor-like phenotype in rheumatoid arthritis (RA). Among the diverse cytokines that engender FLS, interleukin-21 (IL-21) was reported to stimulate hyperproliferation and perpetuate inflammation. Recently, choline kinase (ChoKα) has been reported to be an essential enzyme aiding RA-FLS hyperproliferation by altering phosphatidylcholine biosynthesis. The current study aimed to elucidate the therapeutic efficacy of myricetin, a flavonoid, in abating the IL-21-induced tumor-like phenotype of adjuvant-induced arthritis (AIA)-FLS via the ChoKα signaling cascade. Our results showed that myricetin suppressed IL-21 receptor expression and activation of the ChoKα signaling cascade (N-Ras, Ral-GDS, and PI3K) in IL-21-induced AIA-FLS. Consequently, myricetin treatment decreased ChoKα and PLD2 enzymatic activity and inhibited the proliferative, migratory, and invasive properties of AIA-FLSs. Our results demonstrated that myricetin could be a promising anti-arthritic compound by abating IL-21-induced hyperproliferation, migration, and invasive behavior of AIA-FLS by downregulating the ChoKα signaling cascade.


Assuntos
Artrite Experimental , Artrite Reumatoide , Neoplasias , Sinoviócitos , Animais , Sinoviócitos/metabolismo , Membrana Sinovial/metabolismo , Colina Quinase/metabolismo , Artrite Reumatoide/tratamento farmacológico , Flavonoides/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
3.
Sci Rep ; 13(1): 17620, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848481

RESUMO

Choline kinase (CK) is reportedly overexpressed in various malignancies. Among its isoforms, CKα overexpression is presumably related to oncogenic change. Choline positron emission tomography (PET) is reportedly useful for detecting and evaluating therapy outcomes in malignancies. In this study, we investigated the correlation between CKα expression and 11C-choline accumulation in breast cancer cells. We also compared the CKα expression level with other pathological findings for investigating tumour activity. Fifty-six patients with breast cancer (mean age: 51 years) who underwent their first medical examination between May 2007 and December 2008 were enrolled. All the patients underwent 11C-choline PET/computed tomography imaging prior to surgery. The maximum standardised uptake value was recorded for evaluating 11C-choline accumulation. The intensity of CKα expression was classified using immunostaining. A significant correlation was observed between CKα expression and 11C-choline accumulation (P < 0.0001). A comparison of breast cancer mortality demonstrated that strong CKα expression was associated with a shorter survival time (P < 0.0001). 11C-choline accumulation was also negatively correlated with survival time (P < 0.0001). Tumours with strong CKα expression are reportedly highly active in breast cancer. A correlation was observed between CKα expression and 11C-choline accumulation, suggesting their role as prognostic indicators of breast cancer.


Assuntos
Neoplasias da Mama , Colina Quinase , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Radioisótopos de Carbono , Colina , Colina Quinase/genética , Colina Quinase/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
4.
Neuromuscul Disord ; 33(7): 589-595, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37393748

RESUMO

Megaconial congenital muscular dystrophy (OMIM: 602,541) related to CHKB gene mutation is a newly defined rare autosomal recessive disorder, with multisystem involvement presenting from the neonatal period to adolescence. Choline kinase beta, lipid transport enzyme, catalyzes the biosynthesis of phosphatidylcholine and phosphatidylethanolamine, two major components of the mitochondrial membrane, on which respiratory enzyme activities are dependent. CHKB gene variants lead to loss-of-function of choline kinase b and lipid metabolism defects and mitochondrial structural changes. To date, many megaconial congenital muscular dystrophy cases due to CHKB gene variants have been reported worldwide. We describe thirteen Iranian megaconial congenital muscular dystrophy cases related to CHKB gene variants, including clinical presentations, laboratory and muscle biopsy findings, and novel CHKB gene variants. The most common symptoms and signs included intellectual disability, delayed gross-motor developmental milestones, language skills problems, muscle weakness, as well as autistic features, and behavioral problems. Muscle biopsy examination showed the striking finding of peripheral arrangements of large mitochondria in muscle fibers and central sarcoplasmic areas devoid of mitochondria. Eleven different CHKB gene variants including six novel variants were found in our patients. Despite the rarity of this disorder, recognition of the multisystem clinical presentations combined with characteristic findings of muscle histology can properly guide to genetic evaluation of CHKB gene.


Assuntos
Músculo Esquelético , Distrofias Musculares , Adolescente , Humanos , Recém-Nascido , Colina Quinase/genética , Irã (Geográfico) , Músculo Esquelético/patologia , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/patologia
5.
Parasitol Res ; 122(7): 1651-1661, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37202563

RESUMO

The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase ß differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.


Assuntos
Amebíase , Entamoeba histolytica , Humanos , Colina/metabolismo , Colina Quinase/metabolismo , Fosfatidiletanolaminas/metabolismo , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , Etanolaminas/metabolismo , Etanolamina , Citidina Difosfato Colina/metabolismo , Fosfatidilcolinas , Isoformas de Proteínas , Trifosfato de Adenosina , Cinética
6.
Mol Genet Genomic Med ; 11(7): e2162, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36896673

RESUMO

BACKGROUND: CHKB mutations have been described in 49 patients with megaconial congenital muscular dystrophy, which is a rare autosomal recessive disorder, of which 40 patients showed homozygosity. METHODS: Peripheral blood genomic DNA samples were extracted from patients and their parents and were tested by whole exome sequencing. Quantitative PCR was performed to detect deletion. Single nucleotide polymorphism analysis was performed to identify uniparental disomy. Quantitative PCR and western blot were used to measure the expression level of CHKB in patient 1-derived immortalized lymphocytes. Mitochondria were observed in lymphocytes by electron microscopy. RESULTS: Two unrelated cases born to non-consanguineous parents were diagnosed with megaconial congenital muscular dystrophy due to apparently homozygous mutations (patient 1: c.225-2A>T; patient 2: c.701C>T) in the CHKB gene using whole exome sequencing. Quantitative PCR revealed that patient 1 had a large deletion encompassing the CHKB gene, inherited from the mother. Single nucleotide polymorphism analysis revealed patient 2 had paternal uniparental isodisomy containing the CHKB gene. In the immortalized lymphocytes from patient 1, decreased expression of CHKB was revealed by quantitative PCR and western blot, and giant mitochondria were observed using electron microscopy. CONCLUSION: We provide a possibility to detect giant mitochondria in other cells when muscle was not available. Moreover, clinicians should be aware that homozygous variants can be masqueraded by uniparental disomy or large deletions in offspring of non-consanguineous parents, and excessive homozygosity may be misdiagnosed.


Assuntos
Distrofias Musculares , Dissomia Uniparental , Humanos , Dissomia Uniparental/genética , Distrofias Musculares/genética , Homozigoto , Heterozigoto , Colina Quinase/genética
7.
NMR Biomed ; 36(3): e4855, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269130

RESUMO

Changes in glioblastoma (GBM) metabolism was investigated in response to JAS239, a choline kinase inhibitor, using MRS. In addition to the inhibition of phosphocholine synthesis, we investigated changes in other key metabolic pathways associated with GBM progression and treatment response. Three syngeneic rodent models of GBM were used: F98 (N = 12) and 9L (N = 8) models in rats and GL261 (N = 10) in mice. Rodents were intracranially injected with GBM cells in the right cortex and tumor growth was monitored using T2 -weighted images. Animals were treated once daily with intraperitoneal injections of 4 mg/kg JAS239 (F98 rats, n = 6; 9L rats, n = 6; GL261 mice, n = 5) or saline (control group, F98 rats, n = 6; 9L rats, n = 2; GL261 mice, n = 5) for five consecutive days. Single voxel spectra were acquired on Days 0 (T0, baseline) and 6 (T6, end of treatment) from the tumor as well as the contralateral normal brain using a PRESS sequence. Changes in metabolite ratios (tCho/tCr, tCho/NAA, mI/tCr, Glx/tCr and (Lip + Lac)/Cr) were used to assess metabolic pathway alterations in response to JAS239. Tumor growth arrest was noted in all models in response to JAS239 treatment compared with saline-treated animals, with a significant reduction (p < 0.05) in the F98 model. A reduction in tCho/tCr was observed with JAS239 treatment in all GBM models, indicating reduced phospholipid metabolism, with the highest reduction in 9L followed by GL261 and F98 tumors. A significant reduction (p < 0.05) in the tCho/NAA ratio was observed in the 9L model. A significant reduction in mI/tCr (p < 0.05) was found in JAS239-treated F98 tumors compared with the saline-treated animals. A non-significant trend of reduction in Glx/tCr was observed only in F98 and 9L tumors. JAS239-treated F98 tumors also showed a significant increase in Lip + Lac (p < 0.05), indicating increased cell death. This study demonstrated the utility of MRS in assessing metabolic changes in GBM in response to choline kinase inhibition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Camundongos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Roedores/metabolismo , Colina Quinase , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Receptores de Antígenos de Linfócitos T , Colina/metabolismo
8.
Mol Cell Biochem ; 478(4): 939-948, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36136285

RESUMO

Twist (TWIST1) is a gene required for cell fate specification in embryos and its expression in mammary epithelium can initiate tumorigenesis through the epithelial-mesenchymal transition. To identify downstream target genes of Twist in breast cancer, we performed microarray analysis on the transgenic breast cancer cell line, MCF-7/Twist. One of the targets identified was choline kinase whose upregulation resulted in increased cellular phosphocholine and total choline containing compounds-a characteristic observed in highly aggressive metastatic cancers. To study the interactions between Twist, choline kinase, and their effect on the microenvironment, we used 1H magnetic resonance spectroscopy and found significantly higher phosphocholine and total choline, as well as increased phosphocholine/glycerophosphocholine ratio in MCF-7/Twist cells. We also observed significant increases in extracellular glucose, lactate, and [H +] ion concentrations in the MCF-7/Twist cells. Magnetic resonance imaging of MCF-7/Twist orthotopic breast tumors showed a significant increase in vascular volume and permeability surface area product compared to control tumors. In addition, by reverse transcription-quantitative polymerase chain reaction, we discovered that Twist upregulated choline kinase expression in estrogen receptor negative breast cancer cell lines through FOXA1 downregulation. Moreover, using The Cancer Genome Atlas database, we observed a significant inverse relationship between FOXA1 and choline kinase expression and propose that it could act as a modulator of the Twist/choline kinase axis. The data presented indicate that Twist is a driver of choline kinase expression in breast cancer cells via FOXA1 resulting in the generation of an aggressive breast cancer phenotype.


Assuntos
Colina Quinase , Fosforilcolina , Linhagem Celular Tumoral , Colina/metabolismo , Colina Quinase/genética , Colina Quinase/metabolismo , Fenótipo , Fosforilcolina/metabolismo , Microambiente Tumoral , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
9.
Eur J Med Chem ; 246: 115003, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36493617

RESUMO

Since the identification of human choline kinase as a protein target against cancer progression, many compounds have been designed to inhibit its function and reduce the biosynthesis of phosphatidylcholine. Herein, we propose a series of bioisosteric inhibitors that are based on the introduction of sulphur and feature improved activity and lipophilic/hydrophilic balance. The evaluation of the inhibitory and of the antiproliferative properties of the PL (dithioethane) and FP (disulphide) libraries led to the identification of PL 48, PL 55 and PL 69 as the most active compounds of the series. Docking analysis using FLAP suggests that for hits to leads, binding mostly involves an interaction with the Mg2+ cofactor, or its destabilization. The most active compounds of the two series are capable of inducing apoptosis following the mitochondrial pathway and to significantly reduce the expression of anti-apoptotic proteins such as the Mcl-1. The fluorescence properties of the compounds of the PL library allowed the tracking of their mode of action, while PAINS (Pan Assays Interference Structures) filtration databases suggest the lack of any unspecific biological response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Colina/metabolismo , Colina/farmacologia , Colina Quinase , Proliferação de Células , Antineoplásicos/química , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia
10.
Trop Biomed ; 40(4): 430-438, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38308830

RESUMO

Entamoeba histolytica is the parasite responsible for amoebiasis, which can result in amoebic colitis or amoebic liver abscess. Metronidazole has been the conventional treatment for intestinal amoebiasis, but concerns regarding resistance have emerged due to the identification of resistance pathways in E. histolytica. This study investigates a novel anti-amoebic approach targeting the CDP-choline pathway. Inhibition studies were conducted using potential choline kinase (CK) inhibitors to inhibit the EhCK enzyme, and RNA interference was employed to knock down the EhCK gene. Km and Vmax of purified EhCK and hCKa2 proteins were determined by pyruvate kinase-lactate dehydrogenase (PK-LDH) coupled assay. The IC50 values for EhCK and hCKa2 were determined with several commercial CK inhibitors. Selected inhibitors were incubated with E. histolytica trophozoites for 48 hours to determine the EC50 for each inhibitor. Silencing of gene encoding EhCK was carried out using duplex siRNA and the gene expression level was measured by real-time qPCR. Based on the IC50 values, three of the inhibitors, namely CK37, flavopiridol and H-89 were more potent against EhCK than hCKa2. Trophozoites growth inhibition showed that only HDTAB, H-89 and control drug metronidazole could penetrate and induce cell death after 48-hour incubation. siRNA concentration of 10 µg/mL was used for the transfection of positive control GAPDH, EhCK, and non-targeting GFP siRNAs. RNAi experiment concluded with positive control GAPDH downregulated by 99% while the level of EhCK mRNA was downregulated by 47%. In this study, potential inhibitors of EhCK and siRNA have been identified, paving the way for further refinement and testing to enhance their potency against EhCK while sparing hCK. The utilization of these specific inhibitors and siRNA targeting EhCK represents a novel approach to impede the growth of E. histolytica by disrupting its phospholipid synthesis pathway.


Assuntos
Amebíase , Entamoeba histolytica , Entamebíase , Isoquinolinas , Sulfonamidas , Humanos , Entamebíase/tratamento farmacológico , Metronidazol/farmacologia , Colina Quinase/metabolismo , Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , RNA Interferente Pequeno/metabolismo
11.
Life Sci ; 309: 121031, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206833

RESUMO

Choline kinase (ChoK) has been well documented as a major enzyme involved in the anomalous cellular lipid metabolic profile of chronic inflammatory disorders. However, new research has now been unveiled that helps us to better understand how changes in lipid metabolism influence the transformational phenotype, drug resistance, and antiapoptotic characteristics of invasive cells, leading to rheumatoid arthritis (RA) disease progression. It is still unknown how ChoK modulates the lipid metabolic aberrations that may promote altered cell phenotype and functionality in RA. Herein, we review the current understanding of ChoK's role in altered metabolism in diverse cell types involved in RA progression, and for the first time, we take a step forward to complete the puzzle and summarise striking facts that link choline metabolism to its transformed phenotype, in order to postulate ChoK as a robust therapeutic target in RA. This review forms a foundation on which ChoK can be tackled as a potential biomarker, opening doors for RA diagnosis and prognosis. It frameworks several ChoK inhibitors that rewire the lipid metabolic profile in the inflammatory disease landscape and envisages its being translated to clinics.


Assuntos
Artrite Reumatoide , Colina Quinase , Humanos , Colina Quinase/genética , Colina Quinase/metabolismo , Artrite Reumatoide/tratamento farmacológico , Colina/metabolismo , Apoptose , Lipídeos , Membrana Sinovial/metabolismo
12.
Cell Death Dis ; 13(10): 845, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192391

RESUMO

The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.


Assuntos
Colina Quinase , Neoplasias Ovarianas , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Colina/metabolismo , Colina Quinase/genética , Colina Quinase/metabolismo , Regulação para Baixo , Feminino , Glicerilfosforilcolina/metabolismo , Humanos , NAD/metabolismo , NADP/metabolismo , Neoplasias Ovarianas/genética , Oxirredutases/genética , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Skelet Muscle ; 12(1): 23, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175989

RESUMO

BACKGROUND: Choline kinase beta (CHKB) catalyzes the first step in the de novo biosynthesis of phosphatidyl choline and phosphatidylethanolamine via the Kennedy pathway. Derangement of this pathway might also influence the homeostasis of mitochondrial membranes. Autosomal recessive CHKB mutations cause a rare form of congenital muscular dystrophy known as megaconial congenital muscular dystrophy (MCMD). CASE PRESENTATION: We describe a novel proband presenting MCMD due to unpublished CHKB mutations. The patient is a 6-year-old boy who came to our attention for cognitive impairment and slowly progressive muscular weakness. He was the first son of non-consanguineous healthy parents from Sri Lanka. Neurological examination showed proximal weakness at four limbs, weak osteotendinous reflexes, Gowers' maneuver, and waddling gate. Creatine kinase levels were mildly increased. EMG and brain MRI were normal. Left quadriceps skeletal muscle biopsy showed a myopathic pattern with nuclear centralizations and connective tissue increase. Histological and histochemical staining suggested subsarcolemmal localization and dimensional increase of mitochondria. Ultrastructural analysis confirmed the presence of enlarged ("megaconial") mitochondria. Direct sequencing of CHKB identified two novel defects: the c.1060G > C (p.Gly354Arg) substitution and the c.448-56_29del intronic deletion, segregating from father and mother, respectively. Subcloning of RT-PCR amplicons from patient's muscle RNA showed that c.448-56_29del results in the partial retention (14 nucleotides) of intron 3, altering physiological splicing and transcript stability. Biochemical studies showed reduced levels of the mitochondrial fission factor DRP1 and the severe impairment of mitochondrial respiratory chain activity in patient's muscle compared to controls. CONCLUSIONS: This report expands the molecular findings associated with MCMD and confirms the importance of considering CHKB variants in the differential diagnosis of patients presenting with muscular dystrophy and mental retardation. The clinical outcome of MCMD patients seems to be influenced by CHKB molecular defects. Histological and ultrastructural examination of muscle biopsy directed molecular studies and allowed the identification and characterization of an intronic mutation, usually escaping standard molecular testing.


Assuntos
Colina Quinase , Distrofias Musculares , Criança , Colina Quinase/genética , Colina Quinase/metabolismo , Creatina Quinase , Humanos , Masculino , Músculo Esquelético/metabolismo , Distrofias Musculares/congênito , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Mutação , Nucleotídeos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , RNA/metabolismo
14.
Plant Biol (Stuttg) ; 24(6): 998-1009, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35880492

RESUMO

Numerous compounds in pollen can affect the foraging decision-making of bees. Clarification of phytochemical components and identification of key substances for bee foraging preference in pollen are essential steps for apiculture and developing a conservation strategy. Senna bicapsularis, a heterantherous plant that possesses three different stamen types in the same flower, among which bees forage selectively, provides us with an ideal research model for identification of potential substances of bee foraging preference. The lipid and protein compositions of pollen from the anthers of different stamens of S. bicapsularis were investigated and compared. The polyunsaturated fatty acids (PUFAs) and monounsaturated FAs (MUFAs) were highest among lipid molecules in pollen from short (S) stamens than from long (L) and medium (M) stamens. This result is consistent with the FA content measurement, showing the highest FAs and UFAs content in S pollen, especially α-linolenic acid. We inferred that α-linolenic acid might be one of the key substances for bee foraging preference in pollen. Moreover, proteomic analysis showed that several differentially expressed proteins involved in lipid biosynthesis were highly accumulated in S pollen, such as choline kinase 2, 3-oxoacyl-ACP synthase-like protein and choline/ethanolamine phosphotransferase 1, in line with the highest FA content of S pollen. Additionally, DEPs involved in 'starch and sucrose metabolism', 'phenylpropanoid biosynthesis' and 'cyanoamino acid metabolism' were more represented in S compared with L and M pollen. The study suggests that differences in proteomic and lipidomic profiling among the three different stamen types might affect foraging decision-making of bumblebees.


Assuntos
Lipidômica , Senna (Planta) , Animais , Abelhas , Colina/análise , Colina Quinase/análise , Etanolaminas/análise , Flores , Pólen/química , Proteoma , Proteômica , Amido/análise , Sacarose/análise , Ácido alfa-Linolênico/análise
16.
Nat Commun ; 13(1): 1559, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322809

RESUMO

CHKB encodes one of two mammalian choline kinase enzymes that catalyze the first step in the synthesis of the membrane phospholipid phosphatidylcholine. In humans and mice, inactivation of the CHKB gene (Chkb in mice) causes a recessive rostral-to-caudal muscular dystrophy. Using Chkb knockout mice, we reveal that at no stage of the disease is phosphatidylcholine level significantly altered. We observe that in affected muscle a temporal change in lipid metabolism occurs with an initial inability to utilize fatty acids for energy via mitochondrial ß-oxidation resulting in shunting of fatty acids into triacyglycerol as the disease progresses. There is a decrease in peroxisome proliferator-activated receptors and target gene expression specific to Chkb-/- affected muscle. Treatment of Chkb-/- myocytes with peroxisome proliferator-activated receptor agonists enables fatty acids to be used for ß-oxidation and prevents triacyglyerol accumulation, while simultaneously increasing expression of the compensatory choline kinase alpha (Chka) isoform, preventing muscle cell injury.


Assuntos
Doenças Musculares , Distrofias Musculares , Animais , Colina Quinase/genética , Colina Quinase/metabolismo , Ácidos Graxos , Metabolismo dos Lipídeos/genética , Mamíferos/metabolismo , Camundongos , Distrofias Musculares/genética , Distrofias Musculares/terapia , Fosfatidilcolinas/metabolismo
17.
Brain ; 145(6): 1916-1923, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35202461

RESUMO

The Kennedy pathways catalyse the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus because four of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A) and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders and microcephaly. Using structural molecular modelling and functional testing of the variants in a cell-based Saccharomyces cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly.


Assuntos
Colina Quinase , Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Alelos , Colina Quinase/genética , Epilepsia/genética , Humanos , Microcefalia/complicações , Microcefalia/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética
18.
J Biol Chem ; 298(3): 101716, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151687

RESUMO

The CHKB gene encodes choline kinase ß, which catalyzes the first step in the biosynthetic pathway for the major phospholipid phosphatidylcholine. Homozygous loss-of-function variants in human CHKB are associated with a congenital muscular dystrophy. Dilated cardiomyopathy is present in some CHKB patients and can cause heart failure and death. Mechanisms underlying a cardiac phenotype due to decreased CHKB levels are not well characterized. We determined that there is cardiac hypertrophy in Chkb-/- mice along with a decrease in left ventricle size, internal diameter, and stroke volume compared with wildtype and Chkb+/- mice. Unlike wildtype mice, 60% of the Chkb+/- and all Chkb-/- mice tested displayed arrhythmic events when challenged with isoproterenol. Lipidomic analysis revealed that the major change in lipid level in Chkb+/- and Chkb-/- hearts was an increase in the arrhythmogenic lipid acylcarnitine. An increase in acylcarnitine level is also associated with a defect in the ability of mitochondria to use fatty acids for energy and we observed that mitochondria from Chkb-/- hearts had abnormal cristae and inefficient electron transport chain activity. Atrial natriuretic peptide (ANP) is a hormone produced by the heart that protects against the development of heart failure including ventricular conduction defects. We determined that there was a decrease in expression of ANP, its receptor NPRA, as well as ventricular conduction system markers in Chkb+/- and Chkb-/- mice.


Assuntos
Arritmias Cardíacas , Colina Quinase , Insuficiência Cardíaca , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Fator Natriurético Atrial/genética , Colina Quinase/deficiência , Colina Quinase/genética , Colina Quinase/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Humanos , Camundongos , Fosfatidilcolinas/metabolismo
19.
Mini Rev Med Chem ; 22(9): 1281-1288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34961459

RESUMO

BACKGROUND: Pseudomonas aeruginosa is one of the most prevalent opportunistic pathogens in humans that has thrived and proved to be difficult to control in this "post-antibiotic era." Antibiotic alternatives are necessary for fighting against this resilient bacterium. Even though phages might not be "the wonder drug" that solves everything, they still provide a viable option to combat P. aeruginosa and curb the threat it imposes. MAIN FINDINGS: The combination of antibiotics with phages, however, poses a propitious treatment option for P. aeruginosa. Choline kinase (ChoK) is the enzyme that synthesizes phosphorylcholine subsequently incorporated into lipopolysaccharide located at the outer membrane of gram-negative bacteria. Recently, inhibition of ChoKs has been proposed as a promising antibacterial strategy. Successful docking of Hemicholinium-3, a choline kinase inhibitor, to the model structure of P. aeruginosa ChoK also supports the use of this inhibitor or its derivatives to inhibit the growth of this microorganism. CONCLUSION: Therefore, the combination of the novel antimicrobial "choline kinase inhibitors (ChoKIs)" with a phage cocktail or synthetic phages as a potential treatment for P. aeruginosa infection has been proposed.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Colina , Colina Quinase , Humanos , Pseudomonas aeruginosa
20.
Cancer Res ; 81(23): 5849-5861, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34649947

RESUMO

Multiple noncoding natural antisense transcripts (ncNAT) are known to modulate key biological events such as cell growth or differentiation. However, the actual impact of ncNATs on cancer progression remains largely unknown. In this study, we identified a complete list of differentially expressed ncNATs in hepatocellular carcinoma. Among them, a previously undescribed ncNAT HNF4A-AS1L suppressed cancer cell growth by regulating its sense gene HNF4A, a well-known cancer driver, through a promoter-specific mechanism. HNF4A-AS1L selectively activated the HNF4A P1 promoter via HNF1A, which upregulated expression of tumor suppressor P1-driven isoforms, while having no effect on the oncogenic P2 promoter. RNA-seq data from 23 tissue and cancer types identified approximately 100 ncNATs whose expression correlated specifically with the activity of one promoter of their associated sense gene. Silencing of two of these ncNATs ENSG00000259357 and ENSG00000255031 (antisense to CERS2 and CHKA, respectively) altered the promoter usage of CERS2 and CHKA. Altogether, these results demonstrate that promoter-specific regulation is a mechanism used by ncNATs for context-specific control of alternative isoform expression of their counterpart sense genes. SIGNIFICANCE: This study characterizes a previously unexplored role of ncNATs in regulation of isoform expression of associated sense genes, highlighting a mechanism of alternative promoter usage in cancer.


Assuntos
Carcinoma Hepatocelular/patologia , Colina Quinase/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , RNA Antissenso/genética , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Colina Quinase/antagonistas & inibidores , Colina Quinase/genética , Regulação Neoplásica da Expressão Gênica , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Fator 4 Nuclear de Hepatócito/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Prognóstico , Esfingosina N-Aciltransferase/antagonistas & inibidores , Esfingosina N-Aciltransferase/genética , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...