Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
1.
J Med Chem ; 67(7): 5866-5882, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38556760

RESUMO

MERTK and AXL are members of the TAM (TYRO3, AXL, MERTK) family of receptor tyrosine kinases that are aberrantly expressed and have been implicated as therapeutic targets in a wide variety of human tumors. Dual MERTK and AXL inhibition could provide antitumor action mediated by both direct tumor cell killing and modulation of the innate immune response in some tumors such as nonsmall cell lung cancer. We utilized our knowledge of MERTK inhibitors and a structure-based drug design approach to discover a novel class of macrocyclic dual MERTK/AXL inhibitors. The lead compound 43 had low-nanomolar activity against both MERTK and AXL and good selectivity over TYRO3 and FLT3. Its target engagement and selectivity were also confirmed by NanoBRET and cell-based MERTK and AXL phosphorylation assays. Compound 43 had excellent pharmacokinetic properties (large AUC and long half-life) and mediated antitumor activity against lung cancer cell lines, indicating its potential as a therapeutic agent.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral
2.
Sci Transl Med ; 16(741): eadj0133, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569018

RESUMO

Transforming growth factor-ß (TGFß) drives fibrosis and disease progression in a number of chronic disorders, but targeting this ubiquitously expressed cytokine may not yield a viable and safe antifibrotic therapy. Here, we sought to identify alternative ways to inhibit TGFß signaling using human hepatic stellate cells and macrophages from humans and mice in vitro, as well as mouse models of liver, kidney, and lung fibrosis. We identified Mer tyrosine kinase (MERTK) as a TGFß-inducible effector of fibrosis that was up-regulated during fibrosis in multiple organs in three mouse models. We confirmed these findings in liver biopsy samples from patients with metabolic dysfunction-associated fatty liver disease (MAFLD). MERTK also induced TGFß expression and drove TGFß signaling resulting in a positive feedback loop that promoted fibrosis in cultured cells. MERTK regulated both canonical and noncanonical TGFß signaling in both mouse and human cells in vitro. MERTK increased transcription of genes regulating fibrosis by modulating chromatin accessibility and RNA polymerase II activity. In each of the three mouse models, disrupting the fibrosis-promoting signaling loop by reducing MERTK expression reduced organ fibrosis. Pharmacological inhibition of MERTK reduced fibrosis in these mouse models either when initiated immediately after injury or when initiated after fibrosis was established. Together, these data suggest that MERTK plays a role in modulating organ fibrosis and may be a potential target for treating fibrotic diseases.


Assuntos
Fígado , Proteínas Tirosina Quinases , Animais , Humanos , Camundongos , c-Mer Tirosina Quinase/metabolismo , Modelos Animais de Doenças , Fibrose , Fígado/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Nat Commun ; 15(1): 2398, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493215

RESUMO

The TAM tyrosine kinases, Axl and MerTK, play an important role in rheumatoid arthritis (RA). Here, using a unique synovial tissue bioresource of patients with RA matched for disease stage and treatment exposure, we assessed how Axl and MerTK relate to synovial histopathology and disease activity, and their topographical expression and longitudinal modulation by targeted treatments. We show that in treatment-naive patients, high AXL levels are associated with pauci-immune histology and low disease activity and inversely correlate with the expression levels of pro-inflammatory genes. We define the location of Axl/MerTK in rheumatoid synovium using immunohistochemistry/fluorescence and digital spatial profiling and show that Axl is preferentially expressed in the lining layer. Moreover, its ectodomain, released in the synovial fluid, is associated with synovial histopathology. We also show that Toll-like-receptor 4-stimulated synovial fibroblasts from patients with RA modulate MerTK shedding by macrophages. Lastly, Axl/MerTK synovial expression is influenced by disease stage and therapeutic intervention, notably by IL-6 inhibition. These findings suggest that Axl/MerTK are a dynamic axis modulated by synovial cellular features, disease stage and treatment.


Assuntos
Artrite Reumatoide , Receptores Proteína Tirosina Quinases , Humanos , Receptor Tirosina Quinase Axl , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Membrana Sinovial/metabolismo
4.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474590

RESUMO

Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , c-Mer Tirosina Quinase , Microambiente Tumoral , Neoplasias/tratamento farmacológico
5.
J Exp Clin Cancer Res ; 43(1): 70, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443968

RESUMO

BACKGROUND: The combination of radiotherapy and immunotherapy (immunoradiotherapy) has been increasingly used for treating a wide range of cancers. However, some tumors are resistant to immunoradiotherapy. We have previously shown that MER proto-oncogene tyrosine kinase (MerTK) expressed on macrophages mediates resistance to immunoradiotherapy. We therefore sought to develop therapeutics that can mitigate the negative impact of MerTK. We designed and developed a MerTK specific antisense oligonucleotide (ASO) and characterized its effects on eliciting an anti-tumor immune response in mice. METHODS: 344SQR cells were injected into the right legs on day 0 and the left legs on day 4 of 8-12 weeks old female 129sv/ev mice to establish primary and secondary tumors, respectively. Radiation at a dose of 12 Gy was given to the primary tumors on days 8, 9, and 10. Mice received either anti-PD-1, anti-CTLA-4 or/and MerTK ASO starting from day 1 post tumor implantation. The composition of the tumor microenvironment and the level of MerTK on macrophages in the tumor were evaluted by flow cytometry. The expression of immune-related genes was investigated with NanoString. Lastly, the impact of MerTK ASO on the structure of the eye was histologically evaluated. RESULTS: Remarkably, the addition of MerTK ASO to XRT+anti-PD1 and XRT+anti-CTLA4 profoundly slowed the growth of both primary and secondary tumors and significantly extended survival. The ASO significantly reduced the expression of MerTK in tumor-associated macrophages (TAMs), reprograming their phenotype from M2 to M1. In addition, MerTK ASO increased the percentage of Granzyme B+ CD8+ T cells in the secondary tumors when combined with XRT+anti-CTLA4. NanoString results demonstrated that the MerTK ASO favorably modulated immune-related genes for promoting antitumor immune response in secondary tumors. Importantly, histological analysis of eye tissues demonstrated that unlike small molecules, the MerTK ASO did not produce any detectable pathology in the eyes. CONCLUSIONS: The MerTK ASO can significantly downregulate the expression of MerTK on TAMs, thereby promoting antitumor immune response. The combination of MerTK ASO with immunoradiotherapy can safely and significantly slow tumor growth and improve survival.


Assuntos
Oligonucleotídeos Antissenso , Radioimunoterapia , Feminino , Animais , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Linfócitos T CD8-Positivos , c-Mer Tirosina Quinase/genética , Proto-Oncogenes , Resultado do Tratamento
6.
Arthritis Res Ther ; 26(1): 74, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509595

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterized by vasculopathy and progressive fibrosis of skin and several internal organs, including lungs. Macrophages are the main cells involved in the immune-inflammatory damage of skin and lungs, and alternatively activated (M2) macrophages seem to have a profibrotic role through the release of profibrotic cytokines (IL10) and growth factors (TGFß1). Nintedanib is a tyrosine kinase inhibitor targeting several fibrotic mediators and it is approved for the treatment of SSc-related interstitial lung disease (ILD). The study aimed to evaluate the effect of nintedanib in downregulating the profibrotic M2 phenotype in cultured monocyte-derived macrophages (MDMs) obtained from SSc-ILD patients. METHODS: Fourteen SSc patients, fulfilling the 2013 ACR/EULAR criteria for SSc, 10 SSc patients affected by ILD (SSc-ILD pts), 4 SSc patients non affected by ILD (SSc pts no-ILD), and 5 voluntary healthy subjects (HSs), were recruited at the Division of Clinical Rheumatology-University of Genova, after obtaining Ethical Committee approval and patients' informed consent. Monocytes were isolated from peripheral blood, differentiated into MDMs, and then maintained in growth medium without any treatment (untreated cells), or treated with nintedanib (0.1 and 1µM) for 3, 16, and 24 h. Gene expression of macrophage scavenger receptors (CD204, CD163), mannose receptor-1 (CD206), Mer tyrosine kinase (MerTK), identifying M2 macrophages, together with TGFß1 and IL10, were evaluated by quantitative real-time polymerase chain reaction. Protein synthesis was investigated by Western blotting and the level of active TGFß1 was evaluated by ELISA. Statistical analysis was carried out using non-parametric Wilcoxon test. RESULTS: Cultured untreated SSc-ILD MDMs showed a significant increased protein synthesis of CD206 (p < 0.05), CD204, and MerTK (p < 0.01), together with a significant upregulation of the gene expression of MerTK and TGFß1 (p < 0.05; p < 0.01) compared to HS-MDMs. Moreover, the protein synthesis of CD206 and MerTK and the gene expression of TGFß1 were significantly higher in cultured untreated MDMs from SSc-ILD pts compared to MDMs without ILD (p < 0.05; p < 0.01). In cultured SSc-ILD MDMs, nintedanib 0.1 and 1µM significantly downregulated the gene expression and protein synthesis of CD204, CD206, CD163 (p < 0.05), and MerTK (p < 0.01) compared to untreated cells after 24 h of treatment. Limited to MerTK and IL10, both nintedanib concentrations significantly downregulated their gene expression already after 16 h of treatment (p < 0.05). In cultured SSc-ILD MDMs, nintedanib 0.1 and 1µM significantly reduced the release of active TGFß1 after 24 h of treatment (p < 0.05 vs. untreated cells). CONCLUSIONS: In cultured MDMs from SSc-ILD pts, nintedanib seems to downregulate the profibrotic M2 phenotype through the significant reduction of gene expression and protein synthesis of M2 cell surface markers, together with the significant reduction of TGFß1 release, and notably MerTK, a tyrosine kinase receptor involved in lung fibrosis.


Assuntos
Indóis , Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Interleucina-10/metabolismo , c-Mer Tirosina Quinase/metabolismo , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/patologia , Macrófagos/metabolismo , Pulmão , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Fibrose , Fenótipo , Proteínas Tirosina Quinases
7.
Immunohorizons ; 8(3): 269-280, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517345

RESUMO

Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVß5, CD36, and TIM-3, whereas TIM-1, αVß3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.


Assuntos
Antraz , Bacillus anthracis , Humanos , c-Mer Tirosina Quinase/metabolismo , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , Antraz/metabolismo , Antraz/patologia , 60574 , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Macrófagos/metabolismo , Parede Celular/metabolismo , Parede Celular/patologia
8.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542343

RESUMO

The TAMs are a subfamily of receptor tyrosine kinases (RTKs) comprised of three members, Tyro3, Axl and Mer. Evidence in support of the existence of this subfamily emerged from a screen for novel RTKs performed in the laboratory of Dr. Greg Lemke in 1991. A PCR-based approach to selectively amplify tyrosine kinase-specific genes yielded 27 different tyrosine kinase genes, of which 13 were novel (the "Tyros"). Of these, Tyro3, 7 and 12 were more closely related to each other than to any other kinases and it was proposed that they constituted a novel subfamily of RTKs. Additional support for this hypothesis required determining the complete sequences for these receptor tyrosine kinases. By the end of 1991, full-length sequences for Tyro7 (Axl) revealed a unique extracellular domain organization that included two immunoglobulin-like domains and two fibronectin type III repeats. In 1994, the complete sequences for Tyro12 (Mer) and Tyro3 were shown to have an extracellular region domain structure similar to that of Axl. In 1995, Gas6 and Pros1 were reported as ligands for Tyro3 and Axl, setting the stage for functional studies. The Lemke lab and its many trainees have since played leading roles in elucidating the physiological relevance of the TAMs.


Assuntos
Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas , c-Mer Tirosina Quinase/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/química , Tamoxifeno , Tirosina
9.
Redox Biol ; 70: 103061, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341954

RESUMO

RATIONALE: MER proto-oncogene tyrosine kinase (MerTK) is a key receptor for the clearance of apoptotic cells (efferocytosis) and plays important roles in redox-related human diseases. We will explore MerTK biology in human cells, tissues, and diseases based on big data analytics. METHODS: The human RNA-seq and scRNA-seq data about 42,700 samples were from NCBI Gene Expression Omnibus and analyzed by QIAGEN Ingenuity Pathway Analysis (IPA) with about 170,000 crossover analysis. MerTK expression was quantified as Log2 (FPKM + 0.1). RESULTS: We found that, in human cells, MerTK is highly expressed in macrophages, monocytes, progenitor cells, alpha-beta T cells, plasma B cells, myeloid cells, and endothelial cells (ECs). In human tissues, MerTK has higher expression in plaque, blood vessels, heart, liver, sensory system, artificial tissue, bone, adrenal gland, central nervous system (CNS), and connective tissue. Compared to normal conditions, MerTK expression in related tissues is altered in many human diseases, including cardiovascular diseases, cancer, and brain disorders. Interestingly, MerTK expression also shows sex differences in many tissues, indicating that MerTK may have different impact on male and female. Finally, based on our proteomics from primary human aortic ECs, we validated the functions of MerTK in several human diseases, such as cancer, aging, kidney failure and heart failure. CONCLUSIONS: Our big data analytics suggest that MerTK may be a promising therapeutic target, but how it should be modulated depends on the disease types and sex differences. For example, MerTK inhibition emerges as a new strategy for cancer therapy due to it counteracts effect on anti-tumor immunity, while MerTK restoration represents a promising treatment for atherosclerosis and myocardial infarction as MerTK is cleaved in these disease conditions.


Assuntos
Receptores Proteína Tirosina Quinases , c-Mer Tirosina Quinase , Feminino , Humanos , Masculino , Apoptose/genética , c-Mer Tirosina Quinase/genética , Ciência de Dados , Células Endoteliais/metabolismo , Genômica , Neoplasias/metabolismo , Fagocitose , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Encefalopatias/metabolismo
10.
Nat Commun ; 15(1): 1394, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374174

RESUMO

Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases.


Assuntos
Bursite , Humanos , c-Mer Tirosina Quinase/metabolismo , Inflamação/metabolismo , Membrana Sinovial/metabolismo , Fibrose
11.
Cell Rep Med ; 5(2): 101415, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382467

RESUMO

Immune checkpoint inhibitors, particularly PD-1/PD-L1 blockades, have been approved for unresectable hepatocellular carcinoma (HCC). However, high resistance rates still limit their efficacy, highlighting the urgent need to understand the underlying mechanisms and develop strategies for overcoming the resistance. In this study, we demonstrate that HCC with high MER proto-oncogene tyrosine kinase (MerTK) expression exhibits anti-PD-1/PD-L1 resistance in two syngeneic mouse models and in patients who received anti-PD-1/PD-L1 therapy. Mechanistically, MerTK renders HCC resistant to anti-PD-1/PD-L1 by limiting ferroptosis with the upregulation of SLC7A11 via the ERK/SP1 pathway and facilitating the development of an immunosuppressive tumor microenvironment (TME) with the recruitment of myeloid-derived suppressor cells (MDSCs). Sitravatinib, an inhibitor of MerTK, sensitizes resistant HCC to anti-PD-L1 therapy by promoting tumor ferroptosis and decreasing MDSC infiltration into the TME. In conclusion, we find that MerTK could serve as a predictive biomarker for patient stratification and as a promising target to overcome anti-PD-1/PD-L1 resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antígeno B7-H1 , c-Mer Tirosina Quinase/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Imunidade , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Microambiente Tumoral
12.
In Vivo ; 38(2): 606-610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418160

RESUMO

BACKGROUND/AIM: Acute lung injury (ALI) is associated with a high mortality rate and cancer patients who receive chemotherapy are at high risk of ALI during neutropenia recovery. Galantamine is a cholinesterase inhibitor used for Alzheimer's disease treatment. Previous studies have shown that galantamine reduced inflammatory response in lipopolysaccharide (LPS)-induced ALI in rats. Mer protein was negatively associated with inflammatory response. The aim of the study was to investigate whether galantamine is effective in LPS-induced ALI during neutropenia recovery and its effect on Mer tyrosine kinase (MerTK) expression in mice. MATERIALS AND METHODS: Intraperitoneal cyclophosphamide was given to mice to induce neutropenia. After 7 days, LPS was administered by intratracheal instillation. Intraperitoneal galantamine was given once before LPS administration and in another group, galantamine was given twice before LPS administration. RESULTS: Galantamine attenuated LPS-induced ALI in histopathological analysis. The neutrophil percentage was lower in the group where galantamine was injected once, compared to the LPS group (p=0.007). MerTK expression was also higher in the group where galantamine was injected once but did not reach statistical significance (p=0.101). CONCLUSION: Galantamine attenuated inflammation in LPS-induced ALI during neutropenia recovery.


Assuntos
Lesão Pulmonar Aguda , Neutropenia , Humanos , Camundongos , Ratos , Animais , Galantamina/efeitos adversos , Galantamina/metabolismo , Lipopolissacarídeos/efeitos adversos , c-Mer Tirosina Quinase/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Neutropenia/induzido quimicamente , Neutropenia/tratamento farmacológico , Proteínas Tirosina Quinases/metabolismo , Pulmão/patologia
13.
Genome Med ; 16(1): 7, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184646

RESUMO

BACKGROUND: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Doenças Retinianas , Humanos , Regiões 5' não Traduzidas , c-Mer Tirosina Quinase , Retina , Doenças Retinianas/genética , Isoformas de Proteínas , Oxirredutases do Álcool
14.
AAPS J ; 26(1): 11, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167740

RESUMO

Inhibiting MerTK on macrophages is a promising therapeutic strategy for augmenting anti-tumor immunity. However, blocking MerTK on retinal pigment epithelial cells (RPEs) results in retinal toxicity. Bispecific antibodies (bsAbs) containing an anti-MerTK therapeutic and anti-PD-L1 targeting arm were developed to reduce drug binding to MerTK on RPEs, since PD-L1 is overexpressed on macrophages but not RPEs. In this study, we present a modeling framework using in vitro receptor occupancy (RO) and pharmacokinetics (PK) data to predict efficacy, toxicity, and therapeutic index (TI) of anti-MerTK bsAbs. We first used simulations and in vitro RO data of anti-MerTK monospecific antibody (msAb) to estimate the required MerTK RO for in vivo efficacy and toxicity. Using these estimated RO thresholds, we employed our model to predict the efficacious and toxic doses for anti-MerTK bsAbs with varying affinities for MerTK. Our model predicted the highest TI for the anti-MerTK/PD-L1 bsAb with an attenuated MerTK binding arm, which was consistent with in vivo efficacy and toxicity observations. Subsequently, we used the model, in combination with sensitivity analysis and parameter scans, to suggest an optimal molecular design of anti-MerTK bsAb with the highest predicted TI in humans. Our prediction revealed that this optimized anti-MerTK bsAb should contain a MerTK therapeutic arm with relatively low affinity, along with a high affinity targeting arm that can bind to a low abundance target with slow turnover rate. Overall, these results demonstrated that our modeling framework can guide the rational design of bsAbs.


Assuntos
Anticorpos Biespecíficos , Humanos , Antígeno B7-H1 , c-Mer Tirosina Quinase
15.
Brain ; 147(2): 427-443, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671615

RESUMO

Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1ß secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , c-Mer Tirosina Quinase/metabolismo , Doença por Corpos de Lewy/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Proteínas Tirosina Quinases , Sinucleinopatias/metabolismo
16.
Neurol Neuroimmunol Neuroinflamm ; 11(2): e200190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150649

RESUMO

BACKGROUND AND OBJECTIVES: HLA-DRB1*15:01 (DR15) and MERTK are 2 risk genes for multiple sclerosis (MS). The variant rs7422195 is an expression quantitative trait locus for MERTK in CD14+ monocytes; cells with phagocytic and immunomodulatory potential. We aimed to understand how drivers of disease risk and pathogenesis vary with HLA and MERTK genotype and disease activity. METHODS: We investigated how proportions of monocytes vary with HLA and MERTK genotype and disease activity in MS. CD14+ monocytes were isolated from patients with MS at relapse (n = 40) and 3 months later (n = 23). Healthy controls (HCs) underwent 2 blood collections 3 months apart. Immunophenotypic profiling of monocytes was performed by flow cytometry. Methylation of 35 CpG sites within and near the MERTK gene was assessed in whole blood samples of individuals experiencing their first episode of clinical CNS demyelination (n = 204) and matched HCs (n = 345) using an Illumina EPIC array. RESULTS: DR15-positive patients had lower proportions of CD14+ MERTK+ monocytes than DR15-negative patients, independent of genotype at the MERTK SNP rs7422195. Proportions of CD14+ MERTK+ monocytes were further reduced during relapse in DR15-positive but not DR15-negative patients. Patients homozygous for the major G allele at rs7422195 exhibited higher proportions of CD14+ MERTK+ monocytes at both relapse and remission compared with controls. We observed that increased methylation of the MERTK gene was significantly associated with the presence of DR15. DISCUSSION: DR15 and MERTK genotype independently influence proportions of CD14+ MERTK+ monocytes in MS. We confirmed previous observations that the MERTK risk SNP rs7422195 is associated with altered MERTK expression in monocytes. We identified that expression of MERTK is stratified by disease in people homozygous for the major G allele of rs7422195. The finding that the proportion of CD14+ MERTK+ monocytes is reduced in DR15-positive individuals supports prior data identifying genetic links between these 2 loci in influencing MS risk. DR15 genotype-dependent alterations in methylation of the MERTK gene provides a molecular link between these loci and identifies a potential mechanism by which MERTK expression is influenced by DR15. This links DR15 haplotype to MS susceptibility beyond direct influence on antigen presentation and suggests the need for HLA-based stratification of approaches to MERTK as a therapeutic target.


Assuntos
Monócitos , Esclerose Múltipla , Humanos , Cadeias HLA-DRB1/genética , c-Mer Tirosina Quinase/genética , Recidiva
17.
J Control Release ; 366: 128-141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104775

RESUMO

Tumor-associated macrophages play pivotal roles in tumor progression and metastasis. Macrophage-mediated clearance of apoptotic cells (efferocytosis) supports inflammation resolution, contributing to immune evasion in colorectal cancers. To reverse this immunosuppressive process, we propose a readily translatable RNA therapy to selectively inhibit macrophage-mediated efferocytosis in tumor microenvironment. A clinically approved lipid nanoparticle platform (LNP) is employed to encapsulate siRNA for the phagocytic receptor MerTK (siMerTK), enabling selective MerTK inhibition in the diseased organ. Decreased MerTK expression in tumor-associated macrophages results in apoptotic cell accumulation and immune activation in tumor microenvironment, leading to suppressed tumor growth and better survival in both liver and peritoneal metastasis models of colorectal cancers. siMerTK delivery combined with PD-1 blockade further produces enhanced antimetastatic efficacy with reactivated intratumoral immune milieu. Collectively, LNP-based siMerTK delivery combined with immune checkpoint therapy may present a feasible modality for metastatic colorectal cancer therapy.


Assuntos
Neoplasias do Colo , 60574 , Humanos , c-Mer Tirosina Quinase , Macrófagos , RNA Interferente Pequeno , Microambiente Tumoral
18.
J Transl Med ; 21(1): 890, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066599

RESUMO

BACKGROUND: Gout pain seriously affects the quality of patients' life. There is still no effective treatment. The inflammatory response is the main mechanism of gout. Here, we found that ozone can reduce the inflammatory reaction in the joints of gouty mice and relieve gout pain, and we further explore its protective mechanism. METHODS: MSU was used to establish the gouty mice model. Nociception was assessed by Von Frey hairs. Cell signaling assays were performed by western blotting and immunohistochemistry. The mouse leukemia cells of monocyte macrophage line RAW264.7 were cultured to investigate the effects of ozone administration on macrophage. RESULTS: Ozone reduced inflammation, relieved gout pain and improved the paw mean intensity and duty cycle of the gouty mice. Ozone increased the phosphorylation of AMP-activated protein kinase (AMPK), induced suppressor of cytokine signaling 3 (SOCS3) expression and inhibited metallopeptidase 9 (MMP9) expression. In vivo, ozone activated AMPK to induce Gas6 release, and upregulated MerTK/SOCS3 signaling pathway to reduce inflammation in mouse macrophage line RAW264.7. Inhibitors of AMPK and MerTK, respectively abolished the analgesic and anti-inflammatory effects of ozone in vivo and in vitro. Gas6 knockout cancelled the protectively effects of ozone on gout pain and the paw mean intensity and duty cycle of gouty mice. Additionally, the level of Gas6 and protein S in plasma of patients with hyperuricemia was significantly higher than that of healthy contrast group. CONCLUSION: Ozone reduces inflammation and alleviates gout pain by activating AMPK to up-regulate Gas6/MerTK/SOCS3 signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Artralgia , Gota , Ozônio , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , c-Mer Tirosina Quinase/metabolismo , Gota/terapia , Inflamação/complicações , Inflamação/terapia , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ozônio/uso terapêutico , Artralgia/terapia , Modelos Animais de Doenças
19.
Front Immunol ; 14: 1244170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936688

RESUMO

Immunotherapy is a promising therapeutic tool that promotes the elimination of cancerous cells by a patient's own immune system. However, in the clinical setting, the number of cancer patients benefitting from immunotherapy is limited. Identification and targeting of other immune subsets, such as tumor-associated macrophages, and alternative immune checkpoints, like Mer, may further limit tumor progression and therapy resistance. In this review, we highlight the key roles of macrophage Mer signaling in immune suppression. We also summarize the role of pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes in tumor onset and progression and how Mer structure and activation can be targeted therapeutically to alter activation state. Preclinical and clinical studies focusing on Mer kinase inhibition have demonstrated the potential of targeting this innate immune checkpoint, leading to improved anti-tumor responses and patient outcomes.


Assuntos
Macrófagos , Neoplasias , Humanos , c-Mer Tirosina Quinase/metabolismo , Neoplasias/terapia , Transdução de Sinais , Imunidade Inata
20.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958886

RESUMO

Many treatments for autoimmune diseases, caused by the loss of immune self-tolerance, are broadly immunosuppressive. Dendritic cells (DCs) can be induced to develop anti-inflammatory/tolerogenic properties to suppress aberrant self-directed immunity by promoting immune tolerance in an antigen-specific manner. Dexamethasone can generate tolerogenic DCs and upregulates MERTK expression. As MERTK can inhibit inflammation, we investigated whether dexamethasone's tolerogenic effects are mediated via MERTK, potentially providing a novel therapeutic approach. Monocyte-derived DCs were treated with dexamethasone, and with and without MERTK ligands or MERTK inhibitors. Flow cytometry was used to assess effects of MERTK modulation on co-stimulatory molecule expression, efferocytosis, cytokine secretion and T cell proliferation. The influence on expression of Rab17, which coordinates the diversion of efferocytosed material away from cell surface presentation, was assessed. Dexamethasone-treated DCs had upregulated MERTK expression, decreased expression of co-stimulatory molecules, maturation and proliferation of co-cultured T cells and increased uptake of myelin debris. MERTK ligands did not potentiate these properties, whilst specific MERTK inhibition only reversed dexamethasone's effect on myelin uptake. Cells undergoing efferocytosis had higher Rab17 expression. Dexamethasone-enhanced efferocytosis in DCs is MERTK-dependent and could exert its tolerogenic effects by increasing Rab17 expression to prevent the presentation of efferocytosed material on the cell surface to activate adaptive immune responses.


Assuntos
Células Dendríticas , Linfócitos T , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Imunossupressores/farmacologia , Tolerância Imunológica , Dexametasona/farmacologia , Dexametasona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...