Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
J Gene Med ; 25(7): e3501, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36942482

RESUMO

BACKGROUND: Hereditary spastic paraplegia 81 is a recently identified, rare autosomal recessive disease, caused by biallelic pathogenic variants in the SELENOI gene, with only two families reported to date. The features documented in the two previous affected families include sensorineural deafness, blindness, cleft palate, delayed motor development, regression of motor skills, impaired intellectual development, poor speech and language acquisition, spasticity, hyperreflexia, white matter abnormalities and cerebral and cerebellar atrophy. METHODS: In the present study, we performed exome sequencing analysis in a single family with two affected siblings to identify the genetic cause of complicated hereditary spastic paraplegia. The results were further confirmed by Sanger sequencing, cDNA analysis and 3D protein modelling. RESULTS: Exome sequencing identified a homozygous, synonymous variant in the SELENOI gene (NM_033505.4:c.126G>A:p.(Lys42Lys)) in both of the siblings. Sanger sequencing confirmed the heterozygous status in both parents consistent with the autosomal recessive inheritance. This variant has been found to disrupt normal splicing and lead to skipping of exon 2, causing in-frame deletion of SELENOI N-terminal 23 amino acids [NM_033505.4:c.57_126del:p.(Tyr20_Lys42del)] and further leading to structural changes in the protein. CONCLUSIONS: We report a novel homozygous synonymous variant in the SELENOI gene causing abnormal splicing in two patients affected with hereditary spastic paraplegia 81. This report further expands the phenotypic and genotypic spectrum of hereditary spastic paraplegia 81.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Etanolaminofosfotransferase/genética , Testes Genéticos , Mutação , Paraplegia/genética , Linhagem , Proteínas/genética , Paraplegia Espástica Hereditária/genética
2.
J Glob Antimicrob Resist ; 33: 101-108, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906175

RESUMO

OBJECTIVES: Colistin-resistant Gram-negative pathogens have become a serious worldwide medical problem. This study was designed to reveal the effects of an intrinsic phosphoethanolamine transferase from Acinetobacter modestus on Enterobacterales. METHODS: A strain of colistin-resistant A. modestus was isolated from a sample of nasal secretions taken in 2019 from a hospitalised pet cat in Japan. The whole genome was sequenced by next generation sequencing, and transformants of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae harbouring the phosphoethanolamine transferase-encoding gene from A. modestus were constructed. Lipid A modification in E. coli transformants was analysed using electrospray ionization mass spectrometry. RESULTS: Sequencing of the entire genome revealed that the isolate harboured a phosphoethanolamine transferase-encoding gene, eptA_AM, on its chromosome. Transformants of E. coli, K. pneumoniae, and E. cloacae harbouring both the promoter and eptA_AM gene from A. modestus had 32-fold, 8-fold, and 4-fold higher minimum inhibitory concentrations (MICs) for colistin, respectively, than transformants harbouring a control vector. The genetic environment surrounding eptA_AM in A. modestus was similar to that surrounding eptA_AM in Acinetobacter junii and Acinetobacter venetianus. Electrospray ionization mass spectrometry analysis revealed that EptA_AM modified lipid A in Enterobacterales. CONCLUSION: This is the first report to describe the isolation of an A. modestus strain in Japan and show that its intrinsic phosphoethanolamine transferase, EptA_AM, contributes to colistin resistance in Enterobacterales and A. modestus.


Assuntos
Colistina , Escherichia coli , Animais , Gatos , Colistina/farmacologia , Escherichia coli/genética , Lipídeo A/farmacologia , Etanolaminofosfotransferase/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Klebsiella pneumoniae
3.
J Antimicrob Chemother ; 77(9): 2441-2447, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35770844

RESUMO

OBJECTIVES: Neisseria gonorrhoeae is an exclusively human pathogen that commonly infects the urogenital tract resulting in gonorrhoea. Empirical treatment of gonorrhoea with antibiotics has led to multidrug resistance and the need for new therapeutics. Inactivation of lipooligosaccharide phosphoethanolamine transferase A (EptA), which attaches phosphoethanolamine to lipid A, results in attenuation of the pathogen in infection models. Small molecules that inhibit EptA are predicted to enhance natural clearance of gonococci via the human innate immune response. METHODS: A library of small-fragment compounds was tested for the ability to enhance susceptibility of the reference strain N. gonorrhoeae FA1090 to polymyxin B. The effect of these compounds on lipid A synthesis and viability in models of infection were tested. RESULTS: Three compounds, 135, 136 and 137, enhanced susceptibility of strain FA1090 to polymyxin B by 4-fold. Pre-treatment of bacterial cells with all three compounds resulted in enhanced killing by macrophages. Only lipid A from bacterial cells exposed to compound 137 showed a 17% reduction in the level of decoration of lipid A with phosphoethanolamine by MALDI-TOF MS analysis and reduced stimulation of cytokine responses in THP-1 cells. Binding of 137 occurred with higher affinity to purified EptA than the starting material, as determined by 1D saturation transfer difference NMR. Treatment of eight MDR strains with 137 increased susceptibility to polymyxin B in all cases. CONCLUSIONS: Small molecules have been designed that bind to EptA, inhibit addition of phosphoethanolamine to lipid A and can sensitize N. gonorrhoeae to killing by macrophages.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Farmacorresistência Bacteriana , Etanolaminofosfotransferase/metabolismo , Etanolaminas , Gonorreia/tratamento farmacológico , Humanos , Lipídeo A/química , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia
4.
Int J Antimicrob Agents ; 59(4): 106544, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35134503

RESUMO

OBJECTIVES: This study aimed to describe a clinical isolate of Aeromonas jandaei (A. jandaei) in Nepal that harboured four types of genes encoding phosphoethanolamine transferases. METHODS: An isolate of colistin-resistant A. jandaei was obtained from a blood sample of an inpatient in a hospital in Nepal, and its complete genome sequence was determined. Escherichia coli (E. coli) and Aeromonas hydrophila (A. hydrophila) transformants expressing genes encoding novel phosphoethanolamine transferase variants were constructed and colistin-susceptibility profiles were determined. RESULTS: The isolate harboured four genes encoding phosphoethanolamine transferases on the chromosome, which were designated eptAv3.2, eptAv3.3, eptAv3.4 and eptAv7.2. The amino acid sequences of EptAv3.2, 3.3 and 3.4 were > 80% identical to MCR-3.1, and that of EptAv7.2 was > 79% identical to MCR-7.1. E. coli expressing eptAv3.2, 3.3 and 3.4 showed reduced susceptibility to colistin, whereas E. coli expressing eptAv7.2 did not. In contrast, A. hydrophila expressing eptAv7.2 showed reduced susceptibility to colistin, whereas A. hydrophila expressing eptAv3.2, 3.3 and 3.4 did not; eptAv3.3 and 3.4 formed a tandem structure. The genomic environments surrounding eptAv3.2, 3.3 and 3.4 were similar to Aeromonas veronii obtained from the effluent of a treatment plant in Japan in 2018. The genomic environment surrounding eptAv7.2 was similar to that of A. jandaei obtained from a chicken in the USA in 2019. CONCLUSIONS: The highly colistin-resistant A. jandaei clinical isolate harboured four chromosomal genes encoding phosphoethanolamine transferases, suggesting that Aeromonas spp. harbouring eptAv genes with strong similarities to mcr-3 and mcr-7 are emerging in medical settings as well as environments.


Assuntos
Aeromonas , Proteínas de Escherichia coli , Aeromonas/genética , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Etanolaminas , Testes de Sensibilidade Microbiana , Nepal , Plasmídeos
5.
J Bacteriol ; 204(2): e0049821, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843376

RESUMO

Gram-negative bacteria utilize glycerophospholipids (GPLs) as phospho-form donors to modify various surface structures. These modifications play important roles in bacterial fitness in diverse environments influencing cell motility, recognition by the host during infection, and antimicrobial resistance. A well-known example is the modification of the lipid A component of lipopolysaccharide by the phosphoethanolamine (pEtN) transferase EptA that utilizes phosphatidyethanoalmine (PE) as the phospho-form donor. Addition of pEtN to lipid A promotes resistance to cationic antimicrobial peptides (CAMPs), including the polymyxin antibiotics like colistin. A consequence of pEtN modification is the production of diacylglycerol (DAG) that must be recycled back into GPL synthesis via the diacylglycerol kinase A (DgkA). DgkA phosphorylates DAG forming phosphatidic acid, the precursor for GPL synthesis. Here we report that deletion of dgkA in polymyxin-resistant E. coli results in a severe reduction of pEtN modification and loss of antibiotic resistance. We demonstrate that inhibition of EptA is regulated posttranscriptionally and is not due to EptA degradation during DAG accumulation. We also show that the inhibition of lipid A modification by DAG is a conserved feature of different Gram-negative pEtN transferases. Altogether, our data suggests that inhibition of EptA activity during DAG accumulation likely prevents disruption of GPL synthesis helping to maintain cell envelope homeostasis. IMPORTANCE For Gram-negative bacteria, modification of a key surface structure known as lipopolysaccharide (LPS) is critical for resistance to cationic antimicrobial peptides, including the last-resort antibiotic polymyxin. One key enzyme that is critical for resistance is EptA that adds a positively charged residue to LPS, preventing polymyxin binding. Here we show that EptA can be posttranscriptionally regulated by a key cell envelope lipid leading to changes in antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Diacilglicerol Quinase/genética , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Etanolaminofosfotransferase/metabolismo , Lipídeo A/metabolismo , Polimixinas/farmacologia , Diacilglicerol Quinase/metabolismo , Escherichia coli/enzimologia
6.
J Phys Chem Lett ; 12(48): 11629-11635, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34817187

RESUMO

Expression of mobile colistin resistance gene mcr-1 results in the addition of phosphoethanolamine (pEtN) to the lipid A headgroup in the bacterial outer membrane (OM) of Gram-negative bacteria, increasing the resistance to the last-line polymyxins. However, the potential biological consequences of such modification remain unclear. Using coarse-grained molecular simulations with quantitative lipidomics models, we discovered pEtN modification of the lipid A headgroup caused substantial changes to the morphology and physicochemical properties of the OM. Single-lipid level structural and energetic analyses revealed that this modification resulted in lipid A-pEtN adopting an abnormally twisted and slanted conformation with a closer packing state because of strengthened inter-lipid attraction. The consequent accumulation of lipid A-pEtN produced a negative curvature of the OM and altered the membrane's tension, fluidity, and rigidity. Our results provide a key mechanistic connection between mcr-1 expression and biophysical changes in the bacterial OM.


Assuntos
Antibacterianos/farmacologia , Membrana Externa Bacteriana/metabolismo , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lipídeo A/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Etanolaminofosfotransferase/genética , Etanolaminas/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Simulação de Dinâmica Molecular
7.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681834

RESUMO

The selenoprotein family includes 25 members, many of which are antioxidant or redox regulating enzymes. A unique member of this family is Selenoprotein I (SELENOI), which does not catalyze redox reactions, but instead is an ethanolamine phosphotransferase (Ept). In fact, the characteristic selenocysteine residue that defines selenoproteins lies far outside of the catalytic domain of SELENOI. Furthermore, data using recombinant SELENOI lacking the selenocysteine residue have suggested that the selenocysteine amino acid is not directly involved in the Ept reaction. SELENOI is involved in two different pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, which are constituents of cellular membranes. Ethanolamine phospholipid synthesis has emerged as an important process for metabolic reprogramming that occurs in pluripotent stem cells and proliferating tumor cells, and this review discusses roles for upregulation of SELENOI during T cell activation, proliferation, and differentiation. SELENOI deficiency lowers but does not completely diminish de novo synthesis of PE and plasmenyl PE during T cell activation. Interestingly, metabolic reprogramming in activated SELENOI deficient T cells is impaired and this reduces proliferative capacity while favoring tolerogenic to pathogenic phenotypes that arise from differentiation. The implications of these findings are discussed related to vaccine responses, autoimmunity, and cell-based therapeutic approaches.


Assuntos
Etanolamina/metabolismo , Etanolaminofosfotransferase/fisiologia , Ativação Linfocitária , Fosfolipídeos/metabolismo , Selenoproteínas/fisiologia , Linfócitos T/fisiologia , Reprogramação Celular , Humanos , Fosfatidiletanolaminas/metabolismo , Selênio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/química , Regulação para Cima
8.
Eur J Clin Microbiol Infect Dis ; 40(12): 2585-2592, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34351529

RESUMO

This study aims to describe trends of mcr-positive Enterobacterales in humans based on laboratory surveillance with a defined catchment population. The data source is the Micro-RER surveillance system, established in Emilia-Romagna region (Italy), to monitor the trend of mcr resistance. Enterobacterales isolates from human clinical samples with minimum inhibitory concentration (MIC) ≥ 2 mg/L for colistin were sent to the study reference laboratory for the detection of mcr genes. Isolates prospectively collected in the period 2018-2020 were considered for the assessment of population rates and trends; further analyses were carried out for the evaluation of clonality and horizontal mcr gene transfer. Previous isolates from local laboratory collection were also described. In the period 2018-2020, 1164 isolates were sent to the reference laboratory, and 51 (4.4%) were confirmed as mcr-positive: 50 mcr-1 (42 Escherichia coli, 6 Klebsiella pneumoniae, 2 Salmonella enterica) and 1 mcr-4 (Enterobacter cloacae). The number of mcr-positive isolates dropped from 24 in the first half of 2018 to 3 in the whole of 2020 (trend p value < 0.001). Genomic analyses showed the predominant role of the horizontal transfer of mcr genes through plasmids or dissemination of transposable elements compared to clonal dissemination of mcr-positive microorganisms. The study results demonstrate a substantial decrease in the circulation of mcr-1 plasmid genes in Emilia-Romagna Region.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/enzimologia , Etanolaminofosfotransferase/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/epidemiologia , Etanolaminofosfotransferase/genética , Humanos , Itália/epidemiologia , Testes de Sensibilidade Microbiana , Filogenia , Estudos Retrospectivos
9.
Int J Antimicrob Agents ; 57(5): 106332, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33798705

RESUMO

Among the 10 reported mcr genes, mcr-9 was first identified in Salmonella enterica serotype Typhimurium, which is a leading cause of foodborne illness worldwide. However, information about the prevalence and genetic features of mcr-9 is still lacking, especially among food samples. This study reports the presence of mcr-9 in raw milk samples from China; the prevalence rate was low (0.83%, 1/120). mcr-9 was located on a transferable plasmid, and was stable in wild-type S. enterica. However, it had a biological fitness cost when transferred to an Escherichia coli recipient. Whole-genome sequencing revealed that mcr-9 was located on the IncHI2A-type plasmid, and was surrounded by IS903B and IS26 in its flanking regions. The mcr-9-carrying S. enterica 19SE belonged to ST26 and had a multi-drug-resistant phenotype. It was confirmed that mcr-9 did not mediate colistin resistance in this study, indicating that its transfer may not facilitate the dissemination of colistin resistance.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Etanolaminofosfotransferase/genética , Leite/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Animais , China , Farmacorresistência Bacteriana Múltipla , Etanolaminofosfotransferase/metabolismo , Microbiologia de Alimentos , Genes Bacterianos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/metabolismo , Sequenciamento Completo do Genoma
10.
Crit Rev Microbiol ; 46(5): 565-577, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33044874

RESUMO

Polymyxins, especially polymyxin B and polymyxin E (colistin), are considered to be the last line of defence against infections caused by multi-drug-resistant (MDR) gram-negative bacteria such as carbapenem-resistant Enterobacteriaceae (CRE). However, the recent emergence and dissemination of the plasmid-mediated colistin resistance gene mcr-1 and its variants pose a serious challenge to public health and the livestock industry. This review describes the prevalence and dissemination of mcr-1-positive isolates from different sources, including animals (food animals, pet animals and wildlife), humans (healthy populations and patients) and the environment (farms, urban and rural communities and natural environments) based on existing epidemiological studies of mcr-1 and MCR-1-producing Enterobacteriaceae bacteria around the world. The major mechanisms of mcr-1 transmission across humans, animals and the environment are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Enterobacteriaceae/enzimologia , Etanolaminofosfotransferase/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Etanolaminofosfotransferase/genética , Humanos , Plasmídeos/metabolismo
11.
J Lipid Res ; 61(8): 1221-1231, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32576654

RESUMO

The final step of the CDP-ethanolamine pathway is catalyzed by ethanolamine phosphotransferase 1 (EPT1) and choline/EPT1 (CEPT1). These enzymes are likely involved in the transfer of ethanolamine phosphate from CDP-ethanolamine to lipid acceptors such as 1,2-diacylglycerol (DAG) for PE production and 1-alkyl-2-acyl-glycerol (AAG) for the generation of 1-alkyl-2-acyl-glycerophosphoethanolamine. Here, we investigated the intracellular location and contribution to ethanolamine phospholipid (EP) biosynthesis of EPT1 and CEPT1 in HEK293 cells. Immunohistochemical analyses revealed that EPT1 localizes to the Golgi apparatus and CEPT1 to the ER. We created EPT1-, CEPT1-, and EPTI-CEPT1-deficient cells, and labeling of these cells with radio- or deuterium-labeled ethanolamine disclosed that EPT1 is more important for the de novo biosynthesis of 1-alkenyl-2-acyl-glycerophosphoethanolamine than is CEPT1. EPT1 also contributed to the synthesis of PE species containing the fatty acids 36:1, 36:4, 38:5, 38:4, 38:3, 40:6, 40:5, and 40:4. In contrast, CEPT1 was important for PE formation from shorter fatty acids such as 32:2, 32:1, 34:2, and 34:1. Brefeldin A treatment did not significantly affect the levels of the different PE species, indicating that the subcellular localization of the two enzymes is not responsible for their substrate preferences. In vitro enzymatic analysis revealed that EPT1 prefers AAG 16-20:4 > DAG 18:0-20:4 > DAG 16:0-18:1 = AAG 16-18:1 as lipid acceptors and that CEPT1 greatly prefers DAG 16:0-18:1 to other acceptors. These results suggest that EPT1 and CEPT1 differ in organelle location and are responsible for the biosynthesis of distinct EP species.


Assuntos
Etanolamina/química , Etanolamina/metabolismo , Etanolaminofosfotransferase/metabolismo , Fosfolipídeos/química , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Transporte Proteico
12.
Arch Biochem Biophys ; 689: 108444, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502470

RESUMO

Selenoprotein I (SELENOI) is an ethanolamine phosphotransferase that catalyzes the third reaction of the Kennedy pathway for the synthesis of phosphatidylethanolamine. Since the role of SELENOI in murine embryogenesis has not been investigated, SELENOI-/+ mating pairs were used to generate global KO offspring. Of 323 weanling pups, no homozygous KO genotypes were found. E6.5-E18.5 embryos (165 total) were genotyped, and only two E18.5 KO embryos were detected with no discernable anatomical defects. To screen embryos prior to uterine implantation that occurs ~ E6, blastocyst embryos (E3.5-E4.4) were flushed from uteruses of pregnant females and analyzed for morphology and genotype. KO embryos were detected in 5 of 6 pregnant females, and 7 of the 32 genotyped embryos were found to be SELENOI KO that exhibited no overt pathological features. Overall, these results demonstrate that, except for rare cases (2/490 = 0.4%), global SELENOI deletion leads to early embryonic lethality.


Assuntos
Blastocisto/patologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/embriologia , Animais , Animais Recém-Nascidos , Blastocisto/ultraestrutura , Implantação do Embrião , Perda do Embrião/genética , Perda do Embrião/patologia , Desenvolvimento Embrionário , Etanolaminofosfotransferase , Feminino , Deleção de Genes , Homozigoto , Masculino , Camundongos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
13.
J Mol Biol ; 432(18): 5184-5196, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32353363

RESUMO

A wide variety of antibiotics are targeted to the bacterial membrane due to its unique arrangement and composition relative to the host mammalian membranes. By modification of their membranes, some gram-negative pathogens resist the action of antibiotics. Lipid A phosphoethanolamine transferase (EptA) is an intramembrane enzyme that modifies the lipid A portion of lipopolysaccharide/lipooligosaccharide by the addition of phosphoethanolamine. This modification reduces the overall net-negative charge of the outer membrane of some gram-negative bacteria, conferring resistance to polymyxin. This resistance mechanism has resulted in a global public health issue due to the increased use of polymyxin as last-resort antibiotic treatments against multi-drug-resistant pathogens. Studies show that, without EptA, pathogenic bacteria become more sensitive to polymyxin and to clearance by the host immune system, suggesting the importance of this target enzyme for the development of novel therapeutic agents. In this review, EptA will be discussed comprehensively. Specifically, this review will cover the regulation of eptA expression by the two component systems PmrA/PmrB and PhoP/PhoQ, the site of modification on lipid A, the structure and catalytic mechanism of EptA in comparison to MCR-1 and Escherichia coli alkaline phosphatase, and the host immune system's response to lipid A modification by EptA. The overarching aim of this review is to provide a comprehensive overview of polymyxin resistance mediated by EptA.


Assuntos
Bactérias/enzimologia , Etanolaminofosfotransferase/química , Etanolaminofosfotransferase/metabolismo , Lipídeo A/metabolismo , Fosfatase Alcalina/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/imunologia , Farmacorresistência Bacteriana , Etanolaminofosfotransferase/genética , Humanos , Modelos Moleculares , Mutação , Polimixinas , Conformação Proteica
14.
J Biol Chem ; 295(18): 6225-6235, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152228

RESUMO

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.


Assuntos
Escherichia coli/enzimologia , Etanolaminofosfotransferase/metabolismo , Glucosiltransferases/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Dissulfetos/química , Etanolaminofosfotransferase/química , Glucosiltransferases/química , Modelos Moleculares , Conformação Proteica
15.
Int J Antimicrob Agents ; 55(1): 105856, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31770630

RESUMO

Two novel phosphoethanolamine transferase genes, eptAv7 and eptAv3, were identified in the chromosome of an Aeromonas jandaei isolate from retail fish. The variants showed 79.9% and 80.0% amino acid identity to MCR-7.1 and MCR-3.1, respectively, and increased colistin resistance 128- to 256-fold in Aeromonas salmonicida. The two variants with no mobile genetic element in the flanking regions were also observed in other Aeromonas species. This finding supports the view that Aeromonas is a reservoir for MCR-3 and MCR-7 mobile colistin resistance.


Assuntos
Aeromonas/enzimologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Etanolaminofosfotransferase/genética , Doenças dos Peixes/microbiologia , Aeromonas/efeitos dos fármacos , Aeromonas/genética , Animais , Aquicultura , Farmacorresistência Bacteriana , Etanolaminas/metabolismo , Peixes , Humanos , Filogenia , Sequenciamento Completo do Genoma
16.
mSphere ; 4(6)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694895

RESUMO

In the present study, we provide the results of a detailed genomic analysis and the growth characteristics of a colistin-resistant KPC-3-producing Klebsiella pneumoniae sequence type 512 (ST512) isolate (the colR-KPC3-KP isolate) with a mutated pmrB and isogenic isolates of colR-KPC3-KP with mcr-1.2 isolated from an immunocompromised patient. From 2014 to 2017, four colR-KPC3-KP isolates were detected in rectal swab samples collected from a pediatric hematology patient at the Azienda Ospedaliero-Universitaria Pisana in Pisa, Italy. Whole-genome sequencing was performed by MiSeq sequencing (Illumina). Growth experiments were performed using different concentrations of colistin. The growth lag phases both of an isolate harboring a deletion in pmrB and of clonal variants with mcr-1.2 were assessed by the use of real-time light-scattering measurements. In the first isolate (isolate 1000-pmrBΔ, recovered in September 2014), a 17-nucleotide deletion in pmrB was detected. In subsequent isolates, the mcr-1.2 gene associated with the plasmid pIncX4-AOUP was found, while pmrB was intact. Additionally, plasmid pIncQ-AOUP, harboring aminoglycoside resistance genes, was detected. The growth curves of the first three isolates were identical without colistin exposure; however, at higher concentrations of colistin, the growth curves of the isolate with a deletion in pmrB showed longer lag phases. We observed the replacement of mutated colR-KPC3-KP pmrB by isogenic isolates with multiple resistance plasmids, including mcr-1.2-carrying pIncX4, probably due to coselection under gentamicin treatment in a patient with prolonged colR-KPC3-KP carriage. The carriage of these isolates persisted in follow-up cultures. Coselection and the advantages in growth characteristics suggest that the plasmid-mediated resistance conferred by mcr has fewer fitness costs in colR-KPC3-KP than mutations in chromosomal pmrB, contributing to the success of this highly resistant hospital-adapted epidemiological lineage.IMPORTANCE Our study shows a successful prolonged human colonization by a colistin-resistant Klebsiella pneumoniae isolate harboring mcr-1.2 An intense antibiotic therapy contributed to the maintenance of this microorganism through the acquisition of new resistance genes. The isolates carrying mcr-1.2 showed fewer fitness costs than isogenic isolates with a pmrB mutation in the chromosome. Coselection and reduced fitness costs may explain the replacement of isolates with the pmrB mutation by other isolates and the ability of the microorganism to persist despite antibiotic treatment.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Farmacorresistência Bacteriana , Etanolaminofosfotransferase/metabolismo , Klebsiella pneumoniae/crescimento & desenvolvimento , Proteínas Mutantes/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Etanolaminofosfotransferase/genética , Aptidão Genética , Hospitais , Humanos , Itália , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Proteínas Mutantes/genética , Deleção de Sequência , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma , beta-Lactamases/metabolismo
17.
J Antimicrob Chemother ; 74(11): 3190-3198, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365098

RESUMO

OBJECTIVES: Until plasmid-mediated mcr-1 was discovered, it was believed that polymyxin resistance in Gram-negative bacteria was mainly mediated by the chromosomally-encoded EptA and ArnT, which modify lipid A with phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), respectively. This study aimed to construct a markerless mcr-1 deletion mutant in Klebsiella pneumoniae, validate a reliable reference gene for reverse transcription quantitative PCR (RT-qPCR) and investigate the interactions among mcr-1, arnT and eptA, in response to polymyxin treatments using pharmacokinetics/pharmacodynamics (PK/PD). METHODS: An isogenic markerless mcr-1 deletion mutant (II-503Δmcr-1) was generated from a clinical K. pneumoniae II-503 isolate. The efficacy of different polymyxin B dosage regimens was examined using an in vitro one-compartment PK/PD model and polymyxin resistance was assessed using population analysis profiles. The expression of mcr-1, eptA and arnT was examined using RT-qPCR with a reference gene pepQ, and lipid A was profiled using LC-MS. In vivo polymyxin B efficacy was investigated in a mouse thigh infection model. RESULTS: In K. pneumoniae II-503, mcr-1 was constitutively expressed, irrespective of polymyxin exposure. Against II-503Δmcr-1, an initial bactericidal effect was observed within 4 h with polymyxin B at average steady-state concentrations of 1 and 3 mg/L, mimicking patient PK. However, substantial regrowth and concomitantly increased expression of eptA and arnT were detected. Predominant l-Ara4N-modified lipid A species were detected in II-503Δmcr-1 following polymyxin B treatment. CONCLUSIONS: This is the first study demonstrating a unique markerless deletion of mcr-1 in a clinical polymyxin-resistant K. pneumoniae. The current polymyxin B dosage regimens are suboptimal against K. pneumoniae, regardless of mcr, and can lead to the emergence of resistance.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Etanolaminofosfotransferase/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Polimixina B/farmacologia , Animais , Antibacterianos/farmacocinética , Feminino , Deleção de Genes , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Camundongos , Testes de Sensibilidade Microbiana , Mutação , Polimixina B/farmacocinética
18.
Artigo em Inglês | MEDLINE | ID: mdl-31209009

RESUMO

The plasmid-located mcr-9 gene, encoding a putative phosphoethanolamine transferase, was identified in a colistin-resistant human fecal Escherichia coli strain belonging to a very rare phylogroup, the D-ST69-O15:H6 clone. This MCR-9 protein shares 33% to 65% identity with the other plasmid-encoded MCR-type enzymes identified (MCR-1 to -8) that have been found as sources of acquired resistance to polymyxins in Enterobacteriaceae Analysis of the lipopolysaccharide of the MCR-9-producing isolate revealed a function similar to that of MCR-1 by adding a phosphoethanolamine group to lipid A and subsequently modifying the structure of the lipopolysaccharide. However, a minor impact on susceptibility to polymyxins was noticed once the mcr-9 gene was cloned and produced in an E. coli K-12-derived strain. Nevertheless, we showed here that subinhibitory concentrations of colistin induced the expression of the mcr-9 gene, leading to increased MIC levels. This inducible expression was mediated by a two-component regulatory system encoded by the qseC and qseB genes located downstream of mcr-9 Genetic analysis showed that the mcr-9 gene was carried by an IncHI2 plasmid. In silico analysis revealed that the plasmid-encoded MCR-9 shared significant amino acid identity (ca. 80%) with the chromosomally encoded MCR-like proteins from Buttiauxella spp. In particular, Buttiauxella gaviniae was found to harbor a gene encoding MCR-BG, sharing 84% identity with MCR-9. That gene was neither expressed nor inducible in its original host, which was fully susceptible to polymyxins. This work showed that mcr genes may circulate silently and remain undetected unless induced by colistin.


Assuntos
Escherichia coli/enzimologia , Etanolaminofosfotransferase/metabolismo , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Etanolaminofosfotransferase/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Polimixinas/farmacologia
19.
Biochem Biophys Res Commun ; 514(4): 1251-1256, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31109647

RESUMO

Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes. miR-16-5p has been reported to be involved in cell proliferation, apoptosis, differentiation and angiogenesis. However little is known about miR-16-5p functional role in 3T3-L1 adipocyte differentiation. In this study, we found that miRNA-16-5p was significantly upregulated during 3T3-L1 preadipocytes differentiation towards mature adipocytes. Over-expression of miRNA-16-5p promoted mature adipocytes specific genes expression and fat droplet accumulation in vitro and in vivo. Meanwhile we have identified EPT1 as the target gene of miRNA-16-5p. Taken together, our data provided evidence to support that miRNA-16-5p promotes adipocyte differentiation by suppressing EPT1.


Assuntos
Adipócitos/metabolismo , Etanolaminofosfotransferase/metabolismo , MicroRNAs/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Diferenciação Celular , Células Cultivadas , Etanolaminofosfotransferase/genética , Camundongos
20.
Int J Antimicrob Agents ; 54(1): 89-94, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31034936

RESUMO

The presence of mobilized colistin resistance (mcr) genes is a global concern. However, data concerning mcr in fresh vegetables, a reservoir for antibiotic resistance genes, are still rare. In this study, mcr genes were analysed in 528 vegetable samples from 53 supermarkets or farmer's markets in 23 cities of 9 provinces in China, and the mcr-positive Enterobacteriaceae were characterized. Nineteen (3.6%) samples carried one or more mcr-positive isolates, and the highest three detection rates were found in carrot, pak choi and green pepper. Twenty-four mcr-1-positive isolates (23 Escherichia coli and one Enterobacter cloacae) were obtained, and E. coli isolates showed high genetic diversity. Different multilocus sequence type (MLST) isolates were also observed within the same sample. All 24 isolates showed multidrug resistance, and 14 carried blaCTX-M genes. Most isolates harbored similarly conjugative IncX4-type (∼33 kb) or IncI2-type (∼60 kb) mcr-1-bearing plasmids. The sequenced prevalent IncX4 plasmid and IncI2 plasmid from tomato were similar to the relevant plasmids from animals and clinical isolates in various countries. mcr-1-bearing IncHI2/ST3 plasmid highly similar to that carrying 14 resistance genes from E. coli of chicken was also observed. In conclusion, a high prevalence of mcr-1 in fresh vegetables was found in China, and the dissemination of mcr-1 was mediated by similar IncX4 or IncI2 plasmids. The plasmids from vegetables showed high similarity to plasmids from clinical isolates, indicating MCR-1-producers in ready-to-eat vegetables may pose a huge threat to public health and measures need to be taken to ensure food safety.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Enterobacter cloacae/isolamento & purificação , Escherichia coli/isolamento & purificação , Etanolaminofosfotransferase/genética , Verduras/microbiologia , China , Cidades , Enterobacter cloacae/classificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...