Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.735
Filtrar
1.
Nihon Yakurigaku Zasshi ; 159(2): 118-122, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38432920

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential for brain development and function, and an imbalance of brain PUFAs is linked to mental disorders like autism and schizophrenia. However, the cellular and molecular mechanisms underlying the effects of PUFAs on the brain remain largely unknown. Since they are insoluble in water, specific transporters like fatty acid binding proteins (FABPs), are required for transport and function of PUFAs within cells. We focused on the relationship between FABP-mediated homeostasis of brain PUFAs and neural plasticity. We found that FABP3, with a high affinity for n-6 PUFAs, is predominantly expressed in the GABAergic inhibitory interneurons of the anterior cingulate cortex (ACC) in the adult mouse brain. FABP3 knockout (KO) mice show increased GABA synthesis and inhibitory synaptic transmission in the ACC. We also found that FABP7 controls lipid raft function in astrocytes, and astrocytes lacking FABP7 exhibit changes in response to external stimuli. Furthermore, in FABP7 KO mice, dendritic protrusion formation in pyramidal neurons becomes abnormal, and we have reported a decrease in spine density and excitatory synaptic transmission. Here, we introduced recent advances in the understanding of the functions of PUFAs and FABPs in the brain, focusing especially on FABP3 and FABP7, in relation to human mental disorders.


Assuntos
Proteínas de Ligação a Ácido Graxo , Transtornos Mentais , Adulto , Animais , Camundongos , Humanos , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos Insaturados , Encéfalo , Astrócitos , Camundongos Knockout
2.
Methods Mol Biol ; 2761: 209-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427239

RESUMO

Omega-3 fatty acids play a seminal role in maintaining the structural and functional integrity of the nervous system. These specialized molecules function as precursors for many lipid-based biological messengers. Also, studies suggest the role of these fatty acids in regulating healthy sleep cycles, cognitive ability, brain development, etc. Dietary intake of essential poly unsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are foundational to the optimal working of the nervous system. Besides regulating health, these biomolecules have great therapeutic value in treating several diseases, particularly nervous system diseases and disorders. Many recent studies conclusively demonstrated the beneficial effects of Omega-3 fatty acids in treating depression, neuropsychiatric disorders, neurodegenerative disorders, neurochemical disorders, and many other illnesses associated with the nervous system. This chapter summates the multifaceted role of poly unsaturated fatty acids, especially Omega-3 fatty acids (EPA and DHA), in the neuronal health and functioning. The importance of dietary intake of these essential fatty acids, their recommended dosages, bioavailability, the mechanism of their action, and therapeutic values are extensively discussed.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-3/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Insaturados , Ácidos Graxos , Encéfalo
3.
Molecules ; 29(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474637

RESUMO

Based on the reported research, hydroxyl radicals can be rapidly transformed into carbonate radicals in the carbonate-bicarbonate buffering system in vivo. Many of the processes considered to be initiated by hydroxyl radicals may be caused by carbonate radicals, which indicates that lipid peroxidation initiated by hydroxyl radicals can also be caused by carbonate radicals. To date, theoretical research on reactions of hydrogen abstraction from and radical addition to polyunsaturated fatty acids (PUFAs) of carbonate radicals has not been carried out systematically. This paper employs (3Z,6Z)-nona-3,6-diene (NDE) as a model for polyunsaturated fatty acids (PUFAs). Density functional theory (DFT) with the CAM-B3LYP method at the 6-311+g(d,p) level was used to calculate the differences in reactivity of carbonate radicals abstracting hydrogen from different positions of NDE and their addition to the double bonds of NDE under lipid solvent conditions with a dielectric constant of 4.0 (CPCM model). Grimme's empirical dispersion correction was taken into account through the D3 scheme. The energy barrier, reaction rate constants, internal energy, enthalpy and Gibbs free energy changes in these reactions were calculated With zero-point vibrational energy (ZPVE) corrections. The results indicated that carbonate radicals initiate lipid peroxidation primarily through hydrogen abstraction from diallyl carbon atoms. The reaction of hydrogen abstraction from diallyl carbon atoms exhibits the highest reaction rate, with a reaction rate constant approximately 43-fold greater than the second-ranked hydrogen abstraction from allyl carbon atoms. This process has the lowest energy barrier, internal energy, enthalpy, and Gibbs free energy changes, indicating that it is also the most spontaneous process.


Assuntos
Ácidos Graxos Insaturados , Hidrogênio , Peroxidação de Lipídeos , Hidrogênio/química , Ácidos Graxos Insaturados/química , Carbonatos , Radical Hidroxila/química , Carbono , Radicais Livres/química
4.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474794

RESUMO

To investigate the prospective relationship between macronutrient intake and overweight/obesity, data were collected in the China Health and Nutrition Survey (CHNS) from 1991 to 2018. Adults who participated in at least two waves of the survey and were not obese at baseline were selected as the study subjects. A total of 14,531 subjects were finally included with complete data. Overweight/obesity was defined as a body mass index (BMI) ≥ 24.0 kg/m2. The generalized estimating equation (GEE) was used to analyze the relationship between the percentage of energy intake from macronutrients and BMI and overweight/obesity. The percentages of energy intake from protein and fat showed an increasing trend (p < 0.01), and the percentage of energy intake from carbohydrate showed a decreasing trend (p < 0.01) among Chinese adults between 1991 and 2018. Adjusting for covariates, the energy intake from fat was positively correlated with BMI, while the energy intake from carbohydrates was negatively correlated with BMI. The percentage of energy intake from non-high-quality protein and polyunsaturated fatty acids (PUFA) were positively correlated with overweight/obesity. In contrast, monounsaturated fatty acids (MUFA) and high-quality carbohydrates were negatively correlated with overweight/obesity. In short, fat, non-high-quality protein, saturated fatty acids (SFA), and PUFA were positively correlated with the risk of obesity, whereas higher carbohydrate, MUFA, and high-quality carbohydrate intake were associated with a lower risk of obesity. Obesity can be effectively prevented by appropriately adjusting the proportion of intake from the three major macronutrients.


Assuntos
Gorduras na Dieta , Sobrepeso , Adulto , Humanos , Estudos Prospectivos , Obesidade , Ingestão de Energia , Índice de Massa Corporal , Ácidos Graxos Insaturados , Nutrientes , Ácidos Graxos Monoinsaturados , Carboidratos da Dieta
5.
Pestic Biochem Physiol ; 199: 105761, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458672

RESUMO

Excessive acetochlor residues present ecological and food safety challenges. Here, broiler chicks were exposed to varied acetochlor doses to first assess its effects on the gut. Subsequent dietary supplementation with omega-3 was used to assess its anti-contamination effects. Pathologically, acetochlor induced notable ileal lesions including inflammation, barrier disruption, tight junction loss, and cellular anomalies. Mechanistically, acetochlor stimulated the TNFα/TNFR1 and TLR4/NF-κB/NLRP3 pathways, promoting RIPK1/RIPK3 complex formation, MLKL phosphorylation, NLRP3 inflammasome activation, Caspase-1 activation, and GSDMD shearing with inflammatory factor release. These mechanisms elucidate ileal cell death patterns essential for understanding chicken enteritis. Omega-3 supplementation showed promise in mitigating inflammation, though its precise counteractive role remains unclear. Our findings suggest early omega-3 intervention offered protective benefits against acetochlor's adverse intestinal effects, emphasizing its potential poultry health management role. Harnessing dietary interventions' therapeutic potential will be pivotal in ensuring sustainable poultry production and food safety despite persistent environmental contaminants.


Assuntos
Galinhas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Toluidinas , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Galinhas/metabolismo , NF-kappa B/metabolismo , Inflamação , Suplementos Nutricionais , Íleo/metabolismo , Ácidos Graxos Insaturados/uso terapêutico
6.
PLoS One ; 19(3): e0288953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489327

RESUMO

In this study, we intensively measured the longitudinal productivity and survival of 362 commercially managed honey bee colonies in Canada, over a two-year period. A full factorial experimental design was used, whereby two treatments were repeated across apiaries situated in three distinct geographic regions: Northern Alberta, Southern Alberta and Prince Edward Island, each having unique bee management strategies. In the protein supplemented treatment, colonies were continuously provided a commercial protein supplement containing 25% w/w pollen, in addition to any feed normally provided by beekeepers in that region. In the fumagillin treatment, colonies were treated with the label dose of Fumagilin-B® each year during the fall. Neither treatment provided consistent benefits across all sites and dates. Fumagillin was associated with a large increase in honey production only at the Northern Alberta site, while protein supplementation produced an early season increase in brood production only at the Southern Alberta site. The protein supplement provided no long-lasting benefit at any site and was also associated with an increased risk of death and decreased colony size later in the study. Differences in colony survival and productivity among regions, and among colonies within beekeeping operations, were far larger than the effects of either treatment, suggesting that returns from extra feed supplements and fumagillin were highly contextually dependent. We conclude that use of fumagillin is safe and sometimes beneficial, but that beekeepers should only consider excess protein supplementation when natural forage is limiting.


Assuntos
Cicloexanos , Ácidos Graxos Insaturados , Mel , Abelhas , Animais , Estações do Ano , Suplementos Nutricionais , Alberta , Sesquiterpenos
7.
Food Res Int ; 182: 114160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519185

RESUMO

Aqueous enzymatic extraction (AEE) of macauba pulp oil (MPO) was performed in this study with five commercial enzymatic pools. The chemical, nutritional, and thermal properties of the oils with high oil efficiency by AEE were evaluated and compared with mechanical pressing (MP) and organic solvent extraction (SE). Among the AEE processes, the pectinase pool (at pH 5.5 and 50 °C) exhibited the highest process efficiency (88.6 %). The oils presented low acidity values (0.4-3.1 %) and low molar absorptivities, indicating minimal oil degradation. Bioactive compounds, such as carotenoids, were found in MPO. The iodine index and the fatty acid profile of the oils revealed a high content of unsaturated fatty acids, particularly oleic and linoleic acids, with excellent nutritional scores, as evidenced by anti-atherogenicity and anti-thrombogenicity indices. These findings emphasized that AEE is an eco-friendly approach for extracting high-quality MPO with beneficial health compounds for food products.


Assuntos
Ácidos Graxos , Óleos de Plantas , Óleos de Plantas/química , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Antioxidantes/análise , Sementes/química , Água/análise
8.
Sci Rep ; 14(1): 6542, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503819

RESUMO

Fatty acids (FAs) play important roles as membrane components and signal transduction molecules. Changes in short chain FA (SCFA) composition are associated with gut microbiota modifications. However, the effect of bacteria-driven changes on the detailed FA spectrum has not been explored yet. We investigated the effect of antibiotics (ABx) and/or probiotics, in four treatment groups on rat stool FA composition. Principal component analysis indicated that the chromatogram profiles of the treatment groups differ, which was also observed at different time points. Linear mixed effects models showed that in the parameters compared (sampling times, treatments. and their interactions), both the weight percentage and the concentration of FAs were affected by ABx and probiotic administration. This study found that the gut microbiome defines trans and branched saturated FAs, most saturated FAs, and unsaturated FAs with less carbon atoms. These results are among the first ones to demonstrate the restoring effects of a probiotic mixture on a substantial part of the altered total FA spectrum, and also revealed a previously unknown relationship between gut bacteria and a larger group of FAs. These findings suggest that intestinal bacteria produce not only SCFAs but also other FAs that may affect the host's physiological processes.


Assuntos
Ácidos Graxos , Probióticos , Ratos , Animais , Ácidos Graxos/análise , Antibacterianos/farmacologia , Fezes/microbiologia , Ácidos Graxos Insaturados/análise , Probióticos/farmacologia , Bactérias , Ácidos Graxos Voláteis
9.
Sci Rep ; 14(1): 5401, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443452

RESUMO

Temperature is a vital environmental factor affecting organisms' survival as they determine the mechanisms to tolerate rapid temperature changes. We demonstrate an experimental system for screening chemicals that affect cold tolerance in Caenorhabditis elegans. The anticancer drugs leptomycin B and camptothecin were among the 4000 chemicals that were screened as those affecting cold tolerance. Genes whose expression was affected by leptomycin B or camptothecin under cold stimuli were investigated by transcriptome analysis. Abnormal cold tolerance was detected in several mutants possessing genes that were rendered defective and whose expression altered after exposure to either leptomycin B or camptothecin. The genetic epistasis analysis revealed that leptomycin B or camptothecin may increase cold tolerance by affecting a pathway upstream of the insulin receptor DAF-2 that regulates cold tolerance in the intestine. Our experimental system combining drug and cold tolerance could be used for a comprehensive screening of genes that control cold tolerance at a low cost and in a short time period.


Assuntos
Antineoplásicos , Camptotecina , Animais , Camptotecina/farmacologia , Caenorhabditis elegans/genética , Ácidos Graxos Insaturados
10.
Front Endocrinol (Lausanne) ; 15: 1368853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501107

RESUMO

Background: Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have been reported to combat saturated fatty acid (SFA)-induced cellular damage, however, their clinical effects on patients with metabolic diseases such as diabetes and hyperlipidemia are still controversial. Since comparative studies of the effects of these two types of unsaturated fatty acids (UFAs) are still limited. In this study, we aimed to compare the protective effects of various UFAs on pancreatic islets under the stress of SFA-induced metabolic disorder and lipotoxicity. Methods: Rat insulinoma cell line INS-1E were treated with palmitic acid (PA) with or without UFAs including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA), and oleic acid (OA) to determine cell viability, apoptosis, endoplasmic reticulum (ER) stress, and inflammatory. In vivo, male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 w. Then the lard in HFD was partially replaced with fish oil (FO) and olive oil (OO) at low or high proportions of energy (5% or 20%) to observe the ameliorative effects of the UFA supplement. Results: All UFAs significantly improved PA-induced cell viability impairment in INS-1E cells, and their alleviation on PA induced apoptosis, ER stress and inflammation were confirmed. Particularly, OA had better effects than EPA, DHA, and AA on attenuating cellular ER stress. In vivo, the diets with a low proportion of UFAs (5% of energy) had limited effects on HFD induced metabolic disorder, except for a slight improved intraperitoneal glucose tolerance in obese mice. However, when fed diets containing a high proportion of UFAs (20% of energy), both the FO and OO groups exhibited substantially improved glucose and lipid metabolism, such as decrease in total cholesterol (TC), low-density lipoprotein (LDL), fasting blood glucose (FBG), and fasting blood insulin (FBI)) and improvement of insulin sensitivity evidenced by intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT). Unexpectedly, FO resulted in abnormal elevation of the liver function index aspartate aminotransferase (AST) in serum. Pathologically, OO attenuated HFD-induced compensatory hyperplasia of pancreatic islets, while this effect was not obvious in the FO group. Conclusions: Both MUFAs and PUFAs can effectively protect islet ß cells from SFA-induced cellular lipotoxicity. In particular, both OA in vitro and OO in vivo showed superior activities on protecting islets function and enhance insulin sensitivity, suggesting that MUFAs might have greater potential for nutritional intervention on diabetes.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Insulinas , Humanos , Ratos , Camundongos , Animais , Masculino , Ácidos Graxos Monoinsaturados , Camundongos Endogâmicos C57BL , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos , Ácido Palmítico , Ácido Eicosapentaenoico/farmacologia , Glucose
11.
Nutrients ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474820

RESUMO

Children with severe acute malnutrition (SAM) are at high risk of impaired development. Contributing causes include the inadequate intake of specific nutrients such as polyunsaturated fatty acids (PUFAs) and a lack of adequate stimulation. We conducted a pilot study assessing developmental and nutritional changes in children with SAM provided with a modified ready-to-use therapeutic food and context-specific psychosocial intervention in Mwanza, Tanzania. We recruited 82 children with SAM (6-36 months) and 88 sex- and age-matched non-malnourished children. We measured child development, using the Malawi Development Assessment Tool (MDAT), measures of family and maternal care for children, and whole-blood PUFA levels. At baseline, the mean total MDAT z-score of children with SAM was lower than non-malnourished children; -2.37 (95% confidence interval: -2.92; -1.82), as were their total n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels. After 8 weeks of intervention, MDAT z-scores improved in all domains, especially fine motor, among children with SAM. Total n-3 and EPA levels increased, total n-6 fatty acids decreased, and DHA remained unchanged. Family and maternal care also improved. The suggested benefits of the combined interventions on the developmental and nutritional status of children with SAM will be tested in a future trial.


Assuntos
Ácidos Graxos Ômega-3 , Desnutrição Aguda Grave , Humanos , Lactente , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos Insaturados , Projetos Piloto , Tanzânia , Masculino , Feminino , Pré-Escolar
12.
J Proteomics ; 296: 105107, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325729

RESUMO

To explore the effect of feeding fermented distiller's grains (FDG) diets on spleen and mesenteric lymph nodes (MLN) immune status and metabolomics in finishing cattle, eighteen Guanling crossbred cattle (18 months old, 250.0 ± 25 kg) were randomly divided into 3 groups: a basal diet (Control) group, an FDG-15% group, and an FDG-30% group (containing 0%, 15% and 30% FDG to partially replace the concentrates, respectively). After 75 days, the spleens and MLN were collected for detection of relative spleen weight, immune parameters, and metabolomic analysis. Compared with the Control group, FDG-30% group significantly increased (P<0.05) the relative spleen weight. In addition, the level of IL-17A in the spleen of the FDG-30% group was significantly higher than that of the FDG-15% group. Metabolomic analysis showed that differential metabolites (VIP>1, P<0.05) of spleen and MLN in FDG-15% and FDG-30% groups are mostly lipids and lipid molecules. KEGG analysis illustrated that choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance were metabolic pathways in spleen shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group, and choline metabolism in cancer was a metabolic pathway in MLN shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group. These results suggest that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance. Additionally, it may affect MLN development by regulating choline metabolism in cancer. SIGNIFICANCE: Fermented distiller's grains (FDG) is a high quality alternative to feed because it is rich in beneficial microorganisms and nutrients. The spleen and mesenteric lymph nodes (MLN) are important peripheral immune organs in animals, whose status reflects the health of the animal. However, there are few reports on the effect of feeding FDG diets on spleen and MLN immune status and metabolomics in domestic animals. In this study, we found that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance metabolic pathways, and may affect MLN development by regulating choline metabolism in cancer. This study extends our understanding of the metabolomics of the spleen and MLN in FDG and helps to further understand of the immunomodulatory effects of the FDG diet.


Assuntos
Resistência à Insulina , Neoplasias , Bovinos , Animais , Baço , Fluordesoxiglucose F18 , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Insaturados , Linfonodos , Glicerofosfolipídeos , Colina
13.
Cien Saude Colet ; 29(2): e10752022, 2024 Feb.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38324828

RESUMO

A number of studies have focused on the evaluation of the relationship between pre-pregnancy overweight and polyunsaturated fatty acids content in human milk. However, given the complexity of potentially confounding risk factors, the use of graphical tools is recommended to identify possible biases. This article aims to propose a theoretical model of causality using the directed acyclic graph between pre-pregnancy overweight and polyunsaturated fatty acids content in human milk. Methods: An extensive literature review was performed to identify variables with causal relationships with exposure and/or outcome. The choice of variables for adjustment followed the graphic algorithm that comprises six criteria for selecting a minimum set of potentially confounding variables. Socioeconomic conditions, interpartum interval, maternal age and food consumption pattern were the variables that would have to be adjusted in order to estimate the total effect of pre-pregnancy overweight on polyunsaturated fatty acids content in human milk. The minimum set of variables found in the present study can be used in the analysis of other studies that evaluate this association.


Inúmeros estudos têm se detido na avaliação da associação entre o excesso de peso pré-gestacional e os ácidos graxos poli-insaturados no leite humano. Todavia, diante da complexidade de fatores de risco potencialmente confundidores, é recomendável a utilização de ferramentas gráficas para identificar possíveis vieses. O objetivo deste artigo é propor um modelo teórico de causalidade utilizando o gráfico acíclico direcionado entre o excesso de peso pré-gestacional e os ácidos graxos poli-insaturados no leite humano. Foi realizada ampla revisão da literatura para identificar as variáveis com relações causais com a exposição e/ou desfecho. A escolha das variáveis para ajuste seguiu o algoritmo gráfico que compreende seis critérios para a seleção de um conjunto mínimo de variáveis potencialmente confundidoras. Condições socioeconômicas, intervalo interpartal, idade materna e padrão de consumo alimentar foram as variáveis ajustadas a fim de se estimar o efeito total do excesso de peso pré-gestacional sobre o conteúdo dos ácidos graxos poli-insaturados no leite humano. O conjunto mínimo de variáveis encontrado pelo presente estudo pode ser utilizado na análise de outros estudos que avaliem essa associação.


Assuntos
Leite Humano , Sobrepeso , Humanos , Gravidez , Feminino , Leite Humano/química , Sobrepeso/epidemiologia , Ácidos Graxos Insaturados/análise , Modelos Teóricos
14.
Food Res Int ; 178: 113903, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309899

RESUMO

The volatile and non-volatile compounds were monitored to investigate the microbial evolution associated with the characteristic flavors for sturgeon caviar during refrigeration. The results revealed that the composition of volatile compounds changed significantly with prolonged refrigeration time, especially hexanal, nonanal, phenylacetaldehyde, 3-methyl butyraldehyde, and 1-octen-3-ol. The nonvolatile metabolites were mainly represented by the increase of bitter amino acids (Thr. Ser, Gly, Ala, and Pro) and a decrease in polyunsaturated fatty acids, especially an 18.63 % decrease in 5 months of storage. A total of 332 differential metabolites were mainly involved in the biosynthetic metabolic pathways of α-linolenic acid, linoleic acid, and arachidonic acid. The precursors associated with flavor evolution were mainly phospholipids, including oleic, linoleic, arachidonic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. The most abundant at the genus level was Serratia, followed by Arsenophnus, Rhodococcus, and Pseudomonas, as obtained by high-throughput sequencing. Furthermore, seven core microorganisms were isolated and characterized from refrigerated caviar. Among them, inoculation with Mammalian coccus and Bacillus chrysosporium restored the flavor profile of caviar and enhanced the content of nonvolatile precursors, contributing to the characteristic aroma attributes of sturgeon caviar. The study presents a theoretical basis for the exploitation of technologies for quality stabilization and control of sturgeon caviar during storage.


Assuntos
Ácidos Graxos Insaturados , Peixes , Animais , Fosfolipídeos , Produtos Pesqueiros , Ácido Linoleico , Mamíferos
15.
J Oleo Sci ; 73(2): 239-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311413

RESUMO

Frog oil has been recognized for its nutritional and medicinal value. However, there is limited research on the role of frog oil in preventing obesity. In this study, we aimed to investigate the lipid composition of Quasipaa spinosa oil (QSO) and Rana catesbeiana oil (RCO) using lipidomics analysis. We compared the lipid accumulation effects of these two kinds of frog oils and soybean oil (SO) in Caenorhabditis elegans (C. elegans). Additionally, we determined the gene expression related to lipid metabolism and used the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199) for validation experiments. The results showed that the lipid composition of QSO and RCO was significantly different (p < 0.05), and QSO was rich in more polyunsaturated fatty acids (PUFAs). After feeding C. elegans, the lipid accumulation of the QSO group was the lowest among the three dietary oil groups. In addition, compared with RCO and SO, QSO significantly inhibited the production of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). The effects of three kinds of dietary oils on the fatty acid composition of C. elegans were significantly different. Compared with SO and RCO, QSO significantly up-regulated (p < 0.05) the expression of sir-2.1 and ech-1 genes. The results showed that QSO might reduce lipid accumulation through the SIRT1 and nuclear hormone signaling pathways. Such a situation was verified experimentally by the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199). This study proposed a new functional oil, laying the groundwork for developing functional foods from Quasipaa spinosa.


Assuntos
Caenorhabditis elegans , Gorduras Insaturadas na Dieta , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Rana catesbeiana/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Óleo de Soja/metabolismo , Metabolismo dos Lipídeos/genética
16.
J Agric Food Chem ; 72(6): 2911-2924, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38303491

RESUMO

The intramuscular fat (IMF) content of beef determined the meat quality, and the market value of beef varies with different breeds. To provide some new approaches for improving meat quality and cattle breed improvement, 24-month-old Qinchuan cattle (Q, n = 6), Nanyang cattle (N, n = 6), and Japanese black cattle (J, n = 6) were selected. IMF content of the J group (16.92 ± 1.08%) is remarkably higher than that of indigenous Chinese cattle (Q, 13.38 ± 1.08%, and N, 12.35 ± 1.22%). Monounsaturated fatty acids and polyunsaturated fatty acids in the J group are higher than the Q and creatine, lysine, and glutamine are the three most abundant amino acids in beef, which contribute to the flavor formation. Similarly, IMF content-related genes were enriched in four vital KEGG pathways, including fatty acid metabolism, biosynthesis of unsaturated fatty acids, fatty acid elongation, and insulin resistance. Moreover, weighted genes coexpression network analysis (WGCNA) revealed that ITGB1 is the critical gene associated with the IMF content. This study compares transcriptome and metabolome of local and high-IMF cattle breeds, providing data for native cattle breeding and improvement of beef quality.


Assuntos
Carne , Transcriptoma , Bovinos/genética , Animais , Ácidos Graxos Insaturados/metabolismo , Metaboloma , Músculo Esquelético/metabolismo
17.
Cell Mol Life Sci ; 81(1): 85, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345762

RESUMO

The pathogenesis of renal calcium-oxalate (CaOx) stones is complex and influenced by various metabolic factors. In parallel, palmitic acid (PA) has been identified as an upregulated lipid metabolite in the urine and serum of patients with renal CaOx stones via untargeted metabolomics. Thus, this study aimed to mechanistically assess whether PA is involved in stone formation. Lipidomics analysis of PA-treated renal tubular epithelial cells compared with the control samples revealed that α-linoleic acid and α-linolenic acid were desaturated and elongated, resulting in the formation of downstream polyunsaturated fatty acids (PUFAs). In correlation, the levels of fatty acid desaturase 1 and 2 (FADS1 and FADS2) and peroxisome proliferator-activated receptor α (PPARα) in these cells treated with PA were increased relative to the control levels, suggesting that PA-induced upregulation of PPARα, which in turn upregulated these two enzymes, forming the observed PUFAs. Lipid peroxidation occurred in these downstream PUFAs under oxidative stress and Fenton Reaction. Furthermore, transcriptomics analysis revealed significant changes in the expression levels of ferroptosis-related genes in PA-treated renal tubular epithelial cells, induced by PUFA peroxides. In addition, phosphatidyl ethanolamine binding protein 1 (PEBP1) formed a complex with 15-lipoxygenase (15-LO) to exacerbate PUFA peroxidation under protein kinase C ζ (PKC ζ) phosphorylation, and PKC ζ was activated by phosphatidic acid derived from PA. In conclusion, this study found that the formation of renal CaOx stones is promoted by ferroptosis of renal tubular epithelial cells resulting from PA-induced dysregulation of PUFA and phosphatidic acid metabolism, and PA can promote the renal adhesion and deposition of CaOx crystals by injuring renal tubular epithelial cells, consequently upregulating adhesion molecules. Accordingly, this study provides a new theoretical basis for understanding the correlation between fatty acid metabolism and the formation of renal CaOx stones, offering potential targets for clinical applications.


Assuntos
Cálcio , Ferroptose , Humanos , Oxalato de Cálcio/química , PPAR alfa , Ácidos Graxos Insaturados , Ácidos Palmíticos
18.
Pharmacol Ther ; 256: 108612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369063

RESUMO

Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.


Assuntos
Neoplasias , Oxilipinas , Humanos , Oxilipinas/metabolismo , Lipoxigenases , Prostaglandina-Endoperóxido Sintases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Citocromos , Neoplasias/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/metabolismo
19.
Sci Rep ; 14(1): 4409, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388563

RESUMO

Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.


Assuntos
Cicloexilaminas , Ferroptose , Neoplasias Pancreáticas , Fenilenodiaminas , Camundongos , Animais , Gencitabina , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácido Linoleico , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia
20.
Food Res Int ; 180: 114053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395547

RESUMO

Turnip (Brassica rapa var rapa L.) leaves are a rich source of versatile bioactive phytochemicals with great potential in the food and herbal industries. However, the effect of drying on its constituents has never been studied before. Hereto, three drying techniques were compared, namely, lyophilization (LY), vacuum oven (VO), and shade drying (SD). Chemical profiling utilizing liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS) combined with chemometrics showed the different impacts of the drying methods on the phytochemical composition of the alcoholic leaf extracts. Unsupervised principal component analysis (PCA) and supervised partial least squares-discriminant analysis (PLS-DA) of the LC-QTOF-MS/MS data showed distinct distant clustering across the three drying techniques. Loading plots and VIP scores demonstrated that sinapic acid, isorhamnetin glycosides, and sinapoyl malate were key markers for LY samples. Meanwhile, oxygenated and polyunsaturated fatty acids were characteristic for SD samples and oxygenated polyunsaturated fatty acids and verbascoside were characteristic for VO samples. LY resulted in the highest total phenolics (TP) and total flavonoid (TF) contents followed by SD and VO. LY and SD samples had much higher antioxidant activity than VO measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), and iron metal chelation assays. According to the anticancer activity, the drying methods were ranked in descending order as SD > LY â‰« VO when tested against colon, breast, liver, and lung cancer cell lines. Among the identified compounds, flavonoids and omega-3 fatty acids were key metabolites responsible for the anticancer activity as revealed by partial least squares (PLS) regression and correlation analyses. In conclusion, compared to LY, SD projected out as a cost-effective drying method without compromising the phytochemical and biological activities of Brassica greens. The current findings lay the foundation for further studies concerned with the valorization of Brassica greens.


Assuntos
Antioxidantes , Brassica , Antioxidantes/análise , Espectrometria de Massas em Tandem , Brassica/metabolismo , Quimiometria , Cromatografia Líquida , Flavonoides/análise , Fenóis/análise , Compostos Fitoquímicos/farmacologia , Ácidos Graxos Insaturados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...