Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.196
Filtrar
1.
J Nutr Sci ; 13: e18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572365

RESUMO

Lipid emulsions are essential components of parenteral nutrition solutions that provide energy and essential fatty acids. The complexity of the formulations of lipid emulsions may lead to adverse outcomes such as platelet reactivity and changes in platelet aggregation and related coagulation. Platelets are responsible for haemostasis; they activate and demonstrate morphological changes upon extracellular factors to maintain blood fluidity and vascular integrity. Although parenteral nutrition lipid emulsions are generally found safe with regard to modulation of platelet activity, studies are still accumulating. Thus, this review aims to investigate platelet-related changes by parenteral nutrition lipid emulsions in human studies. Studies have pointed out patients at risk of bleeding and increased platelet aggregation responses due to the administration of lipid emulsions. Lipid emulsions may further benefit patients at high risk of thrombosis due to anti-thrombotic effects and should be cautiously used in patients with thrombocytopenia. The reported platelet-related changes might be associated with the fatty acid change in the plasma membranes of platelets following changes in platelet synthesis and plasma levels of eicosanoids. In conclusion, studies investigating platelets and parenteral nutrition should be supported to minimize the adverse effects and to benefit from the potential protective effects of parenteral nutrition lipid emulsions.


Assuntos
Ácidos Graxos , Nutrição Parenteral , Humanos , Emulsões , Nutrição Parenteral/efeitos adversos , Eicosanoides
2.
Cell Mol Life Sci ; 81(1): 125, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467757

RESUMO

Adipose triglyceride lipase (ATGL) is involved in lipolysis and displays a detrimental pathophysiological role in cardio-metabolic diseases. However, the organo-protective effects of ATGL-induced lipolysis were also suggested. The aim of this work was to characterize the function of lipid droplets (LDs) and ATGL-induced lipolysis in the regulation of endothelial function. ATGL-dependent LDs hydrolysis and cytosolic phospholipase A2 (cPLA2)-derived eicosanoids production were studied in the aorta, endothelial and smooth muscle cells exposed to exogenous oleic acid (OA) or arachidonic acid (AA). Functional effects of ATGL-dependent lipolysis and subsequent activation of cPLA2/PGI2 pathway were also studied in vivo in relation to postprandial endothelial dysfunction.The formation of LDs was invariably associated with elevated production of endogenous AA-derived prostacyclin (PGI2). In the presence of the inhibitor of ATGL or the inhibitor of cytosolic phospholipase A2, the production of eicosanoids was reduced, with a concomitant increase in the number of LDs. OA administration impaired endothelial barrier integrity in vitro that was further impaired if OA was given together with ATGL inhibitor. Importantly, in vivo, olive oil induced postprandial endothelial dysfunction that was significantly deteriorated by ATGL inhibition, cPLA2 inhibition or by prostacyclin (IP) receptor blockade.In summary, vascular LDs formation induced by exogenous AA or OA was associated with ATGL- and cPLA2-dependent PGI2 production from endogenous AA. The inhibition of ATGL resulted in an impairment of endothelial barrier function in vitro. The inhibition of ATGL-cPLA2-PGI2 dependent pathway resulted in the deterioration of endothelial function upon exposure to olive oil in vivo. In conclusion, vascular ATGL-cPLA2-PGI2 dependent pathway activated by lipid overload and linked to LDs formation in endothelium and smooth muscle cells has a vasoprotective role by counterbalancing detrimental effects of lipid overload on endothelial function.


Assuntos
Eicosanoides , Lipólise , Lipólise/fisiologia , Azeite de Oliva , Ácido Araquidônico/metabolismo , Eicosanoides/metabolismo , Prostaglandinas I/metabolismo , Fosfolipases/metabolismo
3.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519981

RESUMO

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Eicosanoides/uso terapêutico , Células Endoteliais/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 3 da Matriz/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Osteoartrite/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540794

RESUMO

Polyunsaturated fatty acids (PUFAs) generate pro- and anti-inflammatory eicosanoids via three different metabolic pathways. This study profiled tear PUFAs and their metabolites and examined the relationships with dry eye (DE) and meibomian gland dysfunction (MGD) symptoms and signs. A total of 40 individuals with normal eyelids and corneal anatomies were prospectively recruited. The symptoms and signs of DE and MGD were assessed, and tear samples (from the right eye) were analyzed by mass spectrometry. Mann-Whitney U tests assessed differences between medians; Spearman tests assessed correlations between continuous variables; and linear regression models assessed the impact of potential confounders. The median age was 63 years; 95% were male; 30% were White; and 85% were non-Hispanic. The symptoms of DE/MGD were not correlated with tear PUFAs and eicosanoids. DE signs (i.e., tear break-up time (TBUT) and Schirmer's) negatively correlated with anti-inflammatory eicosanoids (11,12-dihydroxyeicosatrienoic acid (11,12 DHET) and 14,15-dihydroxyicosatrienoic acid (14,15, DHET)). Corneal staining positively correlated with the anti-inflammatory PUFA, docosahexaenoic acid (DHA). MGD signs significantly associated with the pro-inflammatory eicosanoid 15-hydroxyeicosatetranoic acid (15-HETE) and DHA. Several relationships remained significant when potential confounders were considered. DE/MGD signs relate more to tear PUFAs and eicosanoids than symptoms. Understanding the impact of PUFA-related metabolic pathways in DE/MGD may provide targets for new therapeutic interventions.


Assuntos
Síndromes do Olho Seco , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Síndromes do Olho Seco/tratamento farmacológico , Eicosanoides/metabolismo , Lágrimas/metabolismo , Córnea/metabolismo , Ácidos Docosa-Hexaenoicos , Anti-Inflamatórios/uso terapêutico
5.
J Biomed Sci ; 31(1): 28, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438941

RESUMO

BACKGROUND: Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy. METHODS: The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS: The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment. CONCLUSION: Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.


Assuntos
Anaplasma phagocytophilum , Borrelia burgdorferi , Coinfecção , Vírus da Encefalite Transmitidos por Carrapatos , Carrapatos , Humanos , Animais , Metabolismo dos Lipídeos , Antioxidantes , Endocanabinoides , Bactérias , Aldeídos , Eicosanoides , Fosfolipídeos
6.
Pharmacol Res ; 202: 107113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387744

RESUMO

Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.


Assuntos
Anti-Inflamatórios , Sepse , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/complicações , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Eicosanoides , Mediadores da Inflamação , Sepse/tratamento farmacológico , Sepse/complicações
7.
Toxicol Appl Pharmacol ; 484: 116856, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336253

RESUMO

High-fat diet (HFD) contributes to neuroinflammation forming, hence it is crucial to find safe and effective substances that are able to counteract its progress. The anti-inflammatory properties of phytocannabinoids acquired from the Cannabis plant have been widely acknowledged. We evaluated the effects of cannabidiol (CBD) treatment on induced by applying HFD early stages of neuroinflammation in Wistar rat cerebral cortex. In our 7-week experiment, CBD was injected intraperitoneally over the last 14days at a dose of 10 mg/kg of body weight once a day. The level of arachidonic acid, a precursor to pro-inflammatory eicosanoids, decreased in all analysed lipid classes after CBD administration to the HFD group. Moreover, the extent of diminishing the activity of the omega-6 (n-6) fatty acid pathway by CBD was the greatest in diacylglycerols and phospholipids. Surprisingly, CBD was also capable of downregulating the activity of the omega-3 (n-3) pathway. The expression of enzymes involved in the synthesis of the eicosanoids was significantly increased in the HFD group and subsequently lowered by CBD. Significant changes in various cytokines levels were also discovered. Our results strongly suggest the ability of CBD to reduce the formation of lipid inflammation precursors in rat cerebral cortex, as a primary event in the development of neurodegenerative diseases. This can raise hopes for the future use of this cannabinoid for therapeutic purposes since it is a substance lacking lasting and severe side effects.


Assuntos
Canabidiol , Ratos , Animais , Canabidiol/farmacologia , Doenças Neuroinflamatórias , Ratos Wistar , Dieta Hiperlipídica/efeitos adversos , Fosfolipídeos , Córtex Cerebral , Eicosanoides
8.
Arch Insect Biochem Physiol ; 115(1): e22081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288493

RESUMO

Phospholipase A2 (PLA2 ) catalyzes phospholipids at the sn-2 position to release free fatty acids, including arachidonic acid (AA) or its precursor. The free AA is then oxygenated into different eicosanoids, which mediate the diverse physiological processes in insects. Any inhibition of the PLA2 catalysis would give rise to serious malfunctioning in insect growth and development. An onion moth, Acrolepiopsis sapporensis, encodes four different PLA2 genes (As-PLA2 A-As-PLA2 D), in which As-PLA2 A is dominantly expressed at all developmental stages and in different larval tissues. RNA interference of the As-PLA2 A expression significantly reduced the PLA2 activity of A. sapporensis, which suffered from immunosuppression. A recombinant As-PLA2 A protein was purified from a bacterial expression system, which exhibited a typical Michaelis-Menten kinetics and hence susceptible to a specific inhibitor to sPLA2 and dithiothreitol. A total of 19 bacterial metabolites derived from Xenorhabdus and Photorhabdus were screened against the recombinant As-PLA2 A. Five potent metabolites were highly inhibitory and followed a competitive enzyme inhibition. These five inhibitors suppressed the immune responses of A. sapporensis by inhibiting hemocyte-spreading behavior and phenoloxidase activity. However, an addition of AA could significantly rescue the immunosuppression induced by the selected inhibitors. These studies suggest that the recombinant As-PLA2 A protein can be applied for high-throughput screening of insect immunosuppressive compounds.


Assuntos
Fosfolipases A2 Secretórias , Animais , Spodoptera , Fosfolipases A2 Secretórias/genética , Fosfolipases A2 Secretórias/metabolismo , Eicosanoides/metabolismo , Larva/metabolismo , Insetos , Ácido Araquidônico/metabolismo
9.
Redox Biol ; 70: 103020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211441

RESUMO

UDP-glucuronosyltransferases (UGTs) catalyze the conjugation of glucuronic acid with endogenous and exogenous lipophilic small molecules to facilitate their inactivation and excretion from the body. This represents approximately 35 % of all phase II metabolic transformations. Fatty acids and their oxidized eicosanoid derivatives can be metabolized by UGTs. F2-isoprostanes (F2-IsoPs) are eicosanoids formed from the free radical oxidation of arachidonic acid. These molecules are potent vasoconstrictors and are widely used as biomarkers of endogenous oxidative damage. An increasing body of evidence demonstrates the efficacy of measuring the ß-oxidation metabolites of F2-IsoPs rather than the unmetabolized F2-IsoPs to quantify oxidative damage in certain settings. Yet, the metabolism of F2-IsoPs is incompletely understood. This study sought to identify and characterize novel phase II metabolites of 15-F2t-IsoP and 5-epi-5-F2t-IsoP, two abundantly produced F2-IsoPs, in human liver microsomes (HLM). Utilizing liquid chromatography-mass spectrometry, we demonstrated that glucuronide conjugates are the major metabolites of these F2-IsoPs in HLM. Further, we showed that these molecules are metabolized by specific UGT isoforms. 15-F2t-IsoP is metabolized by UGT1A3, 1A9, and 2B7, while 5-epi-5-F2t-IsoP is metabolized by UGT1A7, 1A9, and 2B7. We identified, for the first time, the formation of intact glucuronide F2-IsoPs in human urine and showed that F2-IsoP glucuronidation is reduced in people supplemented with eicosapentaenoic and docosahexaenoic acids for 12 weeks. These studies demonstrate that endogenous F2-IsoP levels can be modified by factors other than redox mechanisms.


Assuntos
F2-Isoprostanos , Isoprostanos , Humanos , Glucuronídeos , Estresse Oxidativo , Eicosanoides , Difosfato de Uridina
10.
J Neuroinflammation ; 21(1): 21, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233951

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), characterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complexity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), also termed eicosanoids, may contribute to MS pathogenesis. For example, disturbances in LM profiles and especially those derived from the ω-6 PUFA arachidonic acid (AA) have been reported in people with MS (PwMS), where they may contribute to the chronicity of neuroinflammatory processes. Moreover, we have previously shown that certain AA-derived LMs also associated with neurodegenerative processes in PwMS, suggesting that AA-derived LMs are involved in more pathological events than solely neuroinflammation. Yet, to date, a comprehensive overview of the contribution of these LMs to MS-associated pathological processes remains elusive. MAIN BODY: This review summarizes and critically evaluates the current body of literature on the eicosanoid biosynthetic pathway and its contribution to key pathological hallmarks of MS during different disease stages. Various parts of the eicosanoid pathway are highlighted, namely, the prostanoid, leukotriene, and hydroxyeicosatetraenoic acids (HETEs) biochemical routes that include specific enzymes of the cyclooxygenases (COXs) and lipoxygenases (LOX) families. In addition, cellular sources of LMs and their potential target cells based on receptor expression profiles will be discussed in the context of MS. Finally, we propose novel therapeutic approaches based on eicosanoid pathway and/or receptor modulation to ultimately target chronic neuroinflammation, demyelination and neurodegeneration in MS. SHORT CONCLUSION: The eicosanoid pathway is intrinsically linked to specific aspects of MS pathogenesis. Therefore, we propose that novel intervention strategies, with the aim of accurately modulating the eicosanoid pathway towards the biosynthesis of beneficial LMs, can potentially contribute to more patient- and MS subtype-specific treatment opportunities to combat MS.


Assuntos
Ácidos Graxos Ômega-3 , Esclerose Múltipla , Adulto Jovem , Humanos , Ácido Araquidônico/metabolismo , Doenças Neuroinflamatórias , Eicosanoides/metabolismo , Progressão da Doença
11.
Cell Rep ; 43(2): 113700, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38265935

RESUMO

Elevated interleukin (IL)-1ß levels, NLRP3 inflammasome activity, and systemic inflammation are hallmarks of chronic metabolic inflammatory syndromes, but the mechanistic basis for this is unclear. Here, we show that levels of plasma IL-1ß are lower in fasting compared to fed subjects, while the lipid arachidonic acid (AA) is elevated. Lipid profiling of NLRP3-stimulated mouse macrophages shows enhanced AA production and an NLRP3-dependent eicosanoid signature. Inhibition of cyclooxygenase by nonsteroidal anti-inflammatory drugs decreases eicosanoid, but not AA, production. It also reduces both IL-1ß and IL-18 production in response to NLRP3 activation. AA inhibits NLRP3 inflammasome activity in human and mouse macrophages. Mechanistically, AA inhibits phospholipase C activity to reduce JNK1 stimulation and hence NLRP3 activity. These data show that AA is an important physiological regulator of the NLRP3 inflammasome and explains why fasting reduces systemic inflammation and also suggests a mechanism to explain how nonsteroidal anti-inflammatory drugs work.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Araquidônico/uso terapêutico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Eicosanoides , Jejum
12.
Prostaglandins Other Lipid Mediat ; 171: 106815, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280539

RESUMO

Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and visual field loss, and remains a leading cause of irreversible blindness. Elevated intraocular pressure (IOP) is a critical risk factor that requires effective management. Emerging research underscores dual roles of bioactive lipid mediators in both IOP regulation, and the modulation of neurodegeneration and neuroinflammation in glaucoma. Bioactive lipids, encompassing eicosanoids, specialized pro-resolving mediators (SPMs), sphingolipids, and endocannabinoids, have emerged as crucial players in these processes, orchestrating inflammation and diverse effects on aqueous humor dynamics and tissue remodeling. Perturbations in these lipid mediators contribute to retinal ganglion cell loss, vascular dysfunction, oxidative stress, and neuroinflammation. Glaucoma management primarily targets IOP reduction via pharmacological agents and surgical interventions, with prostaglandin analogues at the forefront. Intriguingly, additional lipid mediators offer promise in attenuating inflammation and providing neuroprotection. Here we explore these pathways to shed light on their intricate roles, and to unveil novel therapeutic avenues for glaucoma management.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Humanos , Doenças Neuroinflamatórias , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Eicosanoides/uso terapêutico , Inflamação/tratamento farmacológico , Mediadores da Inflamação
13.
J Nutr Biochem ; 126: 109580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272323

RESUMO

Breastfeeding is the gold standard in infant nutrition and continuous researches aim to optimize infant formula composition as the best alternative available. Human milk lipid content provides more than 50% of energy requirements for infants together with essential vitamins, polyunsaturated fatty acids, and other bioactive components. While fatty acids and vitamins human milk content has been extensively studied and, when needed those have been added to infant formulas, less is known about polyunsaturated fatty acids functional derivatives and other bioactive components. Here we describe the comparison of lipid compositions in breast milk from 22 healthy volunteers breastfeeding mothers and the six most common infant formula devoting particular attention to two families of signaling lipids, endocannabinoids, and eicosanoids. The main differences between breast milk and formulas lie in a variety of saturated fatty and unsaturated fatty acids, in the total amount (45-95% less in infant formula) and a variety of endocannabinoids and eicosanoids (2-AG, 5(s)HETE, 15(S)-HETE and 14,15-EET).


Assuntos
Fórmulas Infantis , Leite Humano , Lactente , Feminino , Humanos , Leite Humano/química , Fórmulas Infantis/química , Endocanabinoides , Lipídeos/química , Ácidos Graxos/análise , Ácidos Graxos Insaturados , Vitaminas , Eicosanoides , Ácidos Hidroxieicosatetraenoicos/análise
14.
Eur J Immunol ; 54(3): e2350743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233139

RESUMO

Candida albicans causes opportunistic infections ranging from mucosal mycoses to life-threatening systemic infections in immunocompromised patients. During C. albicans infection, leukotrienes and prostaglandins are formed from arachidonic acid by 5-lipoxygenase (5-LOX) and cyclooxygenases, respectively to amplify inflammatory conditions, but also to initiate macrophage infiltration to achieve tissue homeostasis. Since less is known about the cellular mechanisms triggering such lipid mediator biosynthesis, we investigated the eicosanoid formation in monocyte-derived M1 and M2 macrophages, neutrophils and HEK293 cells transfected with 5-LOX and 5-LOX-activating protein (FLAP) in response to C. albicans yeast or hyphae. Leukotriene biosynthesis was exclusively induced by hyphae in neutrophils and macrophages, whereas prostaglandin E2 was also formed in response to yeast cells by M1 macrophages. Eicosanoid biosynthesis was significantly higher in M1 compared to M2 macrophages. In HEK_5-LOX/FLAP cells only hyphae activated the essential 5-LOX translocation to the nuclear membrane. Using yeast-locked C. albicans mutants, we demonstrated that hyphal-associated protein expression is critical in eicosanoid formation. For neutrophils and HEK_5-LOX/FLAP cells, hyphal wall protein 1 was identified as the essential surface protein that stimulates leukotriene biosynthesis. In summary, our data suggest that hyphal-associated proteins of C. albicans are central triggers of eicosanoid biosynthesis in human phagocytes.


Assuntos
Candida albicans , Hifas , Humanos , Células HEK293 , Eicosanoides/metabolismo , Leucotrienos/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38056555

RESUMO

Diet shifts can alter tissue fatty acid composition in birds, which is subsequently related to metabolic patterns. Eicosanoids, short-lived fatty acid-derived hormones, have been proposed to mediate these relationships but neither baseline concentrations nor the responses to diet and exercise have been measured in songbirds. We quantified a stable derivative of the vasodilatory eicosanoid prostacyclin in the plasma of male European Starlings (Sturnus vulgaris, N = 25) fed semisynthetic diets with either high (PUFA) or low (MUFA) amounts of n6 fatty acid precursors to prostacyclin. Plasma samples were taken from each bird before, immediately after, and two days following a 15-day flight-training regimen that a subset of birds (N = 17) underwent. We found elevated prostacyclin levels in flight-trained birds fed the PUFA diet compared to those fed the MUFA diet and a positive relationship between prostacyclin and body condition, indexed by fat score. Prostacyclin concentrations also significantly decreased at the final time point. These results are consistent with the proposed influences of precursor availability (i.e., dietary fatty acids) and regulatory feedback associated with exercise (i.e., fuel supply and inflammation), and suggest that prostacyclin may be an important mediator of dietary influence on songbird physiology.


Assuntos
Epoprostenol , Aves Canoras , Masculino , Animais , Aves Canoras/metabolismo , Ácidos Graxos , Eicosanoides , Hormônios , Gorduras na Dieta/metabolismo
17.
Drug Metab Dispos ; 52(2): 69-79, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37973374

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide. We found that the cytochrome P450 isoform CYP4F11 is significantly overexpressed in patients with lung squamous cell carcinoma. CYP4F11 is a fatty acid ω-hydroxylase and catalyzes the production of the lipid mediator 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid. 20-HETE promotes cell proliferation and migration in cancer. Inhibition of 20-HETE-generating cytochrome P450 enzymes has been implicated as novel cancer therapy for more than a decade. However, the exact role of CYP4F11 and its potential as drug target for lung cancer therapy has not been established yet. Thus, we performed a transient knockdown of CYP4F11 in the lung cancer cell line NCI-H460. Knockdown of CYP4F11 significantly inhibits lung cancer cell proliferation and migration while the 20-HETE production is significantly reduced. For biochemical characterization of CYP4F11-inhibitor interactions, we generated recombinant human CYP4F11. Spectroscopic ligand binding assays were conducted to evaluate CYP4F11 binding to the unselective CYP4A/F inhibitor HET0016. HET0016 shows high affinity to recombinant CYP4F11 and inhibits CYP4F11-mediated 20-HETE production in vitro with a nanomolar IC 50 Cross evaluation of HET0016 in NCI-H460 cells shows that lung cancer cell proliferation is significantly reduced together with 20-HETE production. However, HET0016 also displays antiproliferative effects that are not 20-HETE mediated. Future studies aim to establish the role of CYP4F11 in lung cancer and the underlying mechanism and investigate the potential of CYP4F11 as a therapeutic target for lung cancer. SIGNIFICANCE STATEMENT: Lung cancer is a deadly cancer with limited treatment options. Cytochrome P450 4F11 (CYP4F11) is significantly upregulated in lung squamous cell carcinoma. Knockdown of CYP4F11 in a lung cancer cell line significantly attenuates cell proliferation and migration with reduced production of the lipid mediator 20-hydroxyeicosatetraenoic acid (20-HETE). Studies with the unselective inhibitor HET0016 show a high inhibitory potency of CYP4F11-mediated 20-HETE production using recombinant enzyme. Overall, our studies demonstrate the potential of targeting CYP4F11 for new transformative lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Ácidos Graxos , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP4A , Eicosanoides , Ácidos Hidroxieicosatetraenoicos/metabolismo , Família 4 do Citocromo P450/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-37984607

RESUMO

Rheumatoid arthritis is a common systemic inflammatory autoimmune disease characterized by damage to joints, inflammation and pain. It is driven by an increase of inflammatory cytokines and lipids mediators such as prostaglandins. Epoxides of polyunsaturated fatty acids (PUFAs) are lipid chemical mediators in a group of regulatory compounds termed eicosanoids. These epoxy fatty acids (EpFA) have resolutive functions but are rapidly metabolized by the soluble epoxide hydrolase enzyme (sEH) into the corresponding diols. The pharmacological inhibition of sEH stabilizes EpFA from hydrolysis, improving their half-lives and biological effects. These anti-inflammatory EpFA, are analgesic in neuropathic and inflammatory pain conditions. Nonetheless, inhibition of sEH on arthritis and the resulting effects on eicosanoids profiles are little explored despite the physiological importance. In this study, we investigated the effect of sEH inhibition on collagen-induced arthritis (CIA) and its impact on the plasma eicosanoid profile. We measured the eicosanoid metabolites by LC-MS/MS-based lipidomic analysis. The treatment with a sEH inhibitor significantly modulated 11 out of 69 eicosanoids, including increased epoxides 12(13)-EpODE, 12(13)-EpOME, 13-oxo-ODE, 15-HEPE, 20-COOH-LTB4 and decreases several diols 15,6-DiHODE, 12,13-DiHOME, 14,15-DiHETrE, 5,6-DiHETrE and 16,17-DiHDPE. Overall the inhibition of sEH in the rheumatoid arthritis model enhanced epoxides generally considered anti-inflammatory or resolutive mediators and decreased several diols with inflammatory features. These findings support the hypothesis that inhibiting the sEH increases systemic EpFA levels, advancing the understanding of the impact of these lipid mediators as therapeutical targets.


Assuntos
Artrite Reumatoide , Epóxido Hidrolases , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácidos Graxos/metabolismo , Dor , Eicosanoides , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios , Compostos de Epóxi/farmacologia
19.
Prostaglandins Other Lipid Mediat ; 170: 106789, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37879396

RESUMO

Urinary eicosanoid concentrations reflect inflammatory processes in multiple diseases and have been used as biomarkers of disease as well as suggested for patient stratification in precision medicine. However, implementation of urinary eicosanoid profiling in large-scale analyses is restricted due to sample preparation limits. Here we demonstrate a single solid-phase extraction of 300 µL urine in 96-well-format for prostaglandins, thromboxanes, isoprostanes, cysteinyl-leukotriene E4 and the linoleic acid-derived dihydroxy-octadecenoic acids (9,10- and 12,13-DiHOME). A simultaneous screening protocol was also developed for cortisol/cortisone and 7 exogenous steroids as well as 3 cyclooxygenase inhibitors. Satisfactory performance for quantification of eicosanoids with an appropriate internal standard was demonstrated for intra-plate analyses (CV = 8.5-15.1%) as well as for inter-plate (n = 35) from multiple studies (CV = 22.1-34.9%). Storage stability was evaluated at - 20 °C, and polar tetranors evidenced a 50% decrease after 5 months, while the remaining eicosanoids evidenced no significant degradation. All eicosanoids were stable over 3.5-years in urine stored at - 80 °C. This method will facilitate the implementation of urinary eicosanoid quantification in large-scale screening.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Eicosanoides/metabolismo
20.
Hypertension ; 81(3): 516-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675576

RESUMO

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Assuntos
Hipertensão , Lipídeos , Cloreto de Sódio na Dieta , Humanos , Cloreto de Sódio na Dieta/metabolismo , Canais Epiteliais de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Eicosanoides , Pressão Sanguínea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...