Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.454
Filtrar
1.
Colloids Surf B Biointerfaces ; 237: 113858, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547797

RESUMO

Herein, lipid-polymer core-shell hybrid nanoparticles composed of poly(D,L-lactic-co-glycolic acid) (PLGA)/lecithin (PLNs) were synthesized through lipid-based surface engineering. Lipids were absorbed onto the surface of the PLGA core to enhance the advantages of polymeric nanoparticles and liposomes. The amounts of lipids and encapsulation of the drug nicardipine hydrochloride (NCH) in the PLNs were studied. NCH-loaded PLNs (NCH-PLNs) were produced in high yield (66%) with a high encapsulation efficiency (92%) and a size of 176 nm. The mass of phosphorus (P) on the NCH-PLN surface was qualitatively and quantitatively investigated using X-ray fluorescence spectroscopy, and lecithin addition increased the P mass percentage due to the phosphate group (PO43-) in its structure. These data confirmed the lipid-based surface engineering of NCH-PLNs. The zeta potential of NCH-PLN exceeded -30 mV, ensuring colloidal stability, and preventing precipitation through electrostatic stabilization. In vitro, NCH was continuously and slowly released from NCH-PLNs over 16 days. Furthermore, PSVK1 cells exhibited high viability after treatment with NCH-PLNs, indicating favorable cytocompatibility. After comparing various mathematical equations of drug release kinetics, the data best fit the Korsmeyer-Peppas model with R2 values of 0.989, 0.990, and 0.982 for 1.0, 3.0, and 5.0 mg/mL lecithin, respectively. The release exponents obtained ranged from 0.480 to 0.505, suggesting anomalous transport release. Thus, NCH-PLNs have potential as a robust drug delivery platform for the controlled administration of NCH, particularly for vasodilation during neurosurgery.


Assuntos
Lipossomos , Nanopartículas , Polímeros/química , Lecitinas/química , Lipídeos/química , Ácido Láctico/química , Liberação Controlada de Fármacos , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
2.
Food Chem ; 447: 138979, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518617

RESUMO

Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.


Assuntos
Patos , Glicerol/análogos & derivados , Lecitinas , Ácidos Ricinoleicos , Animais , Lecitinas/química , Emulsões/química , Açúcares , Água/química , Pequim
3.
PeerJ ; 12: e17110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525281

RESUMO

Background: The prevalence of inflammatory bowel diseases is increasing, especially in developing countries, with adoption of Western-style diet. This study aimed to investigate the effects of two emulsifiers including lecithin and carboxymethyl cellulose (CMC) on the gut microbiota, intestinal inflammation and the potential of inulin as a means to protect against the harmful effects of emulsifiers. Methods: In this study, male C57Bl/6 mice were divided into five groups (n:6/group) (control, CMC, lecithin, CMC+inulin, and lecithin+inulin). Lecithin and CMC were diluted in drinking water (1% w/v) and inulin was administered daily at 5 g/kg for 12 weeks. Histological examination of the ileum and colon, serum IL-10, IL-6, and fecal lipocalin-2 levels were analyzed. 16S rRNA gene V3-V4 region amplicon sequencing was performed on stool samples. Results: In the CMC and lecithin groups, shortening of the villus and a decrease in goblet cells were observed in the ileum and colon, whereas inulin reversed this effect. The lipocalin level, which was 9.7 ± 3.29 ng in the CMC group, decreased to 4.1 ± 2.98 ng with the administration of inulin. Bifidobacteria and Akkermansia were lower in the CMC group than the control, while they were higher in the CMC+inulin group. In conclusion, emulsifiers affect intestinal health negatively by disrupting the epithelial integrity and altering the composition of the microbiota. Inulin is protective on their harmful effects. In addition, it was found that CMC was more detrimental to microbiota composition than lecithin.


Assuntos
Microbioma Gastrointestinal , Inulina , Masculino , Camundongos , Animais , Inulina/farmacologia , Lecitinas/farmacologia , RNA Ribossômico 16S/genética , Dieta Ocidental
4.
Int J Biol Macromol ; 264(Pt 1): 130595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437939

RESUMO

The digestive instability of anthocyanins (ACNs) limits their application in food nutrition, especially precision nutrition. Blueberry ACNs-loaded nanoparticles (Lipo/GA-ACNs NPs) were prepared using gum arabic (GA) as the delivery carrier and liposomal vesicles (Lipo) prepared from soy lecithin as the targeting scaffold. The average particle size of the NPs was 99.4 nm, and the polydispersion index (PDI) was 0.46. The results showed that the presence of the Lipo-GA matrix enhanced the NPs' in vitro stability and antioxidant activity. In addition, the in vitro biocompatibility, uptake ability, lipid-lowering activity, and free-radical scavenging ability were improved to a certain extent. In a high-fat diet (HFD)-induced obese mouse model, oral administration of ACNs-LNP (LNP, liver-targeted nanoparticle) showed better effects on body weight, liver injury, and lipid droplet accumulation in the liver than ACNs. In addition, ACNs-LNP also played a role in regulating HFD-induced gut microbiota imbalance. These results provide a promising ACNs delivery strategy with the potential to be developed into a functional food that targets the liver to prevent fatty liver.


Assuntos
Mirtilos Azuis (Planta) , Microbioma Gastrointestinal , Nanopartículas , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Antocianinas/farmacologia , Camundongos Obesos , Lecitinas , Goma Arábica/farmacologia , Gotículas Lipídicas , Camundongos Endogâmicos C57BL
5.
Int J Nanomedicine ; 19: 1709-1721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410418

RESUMO

Introduction: Lipid nanovesicles associated with bioactive phytochemicals from spruce needle homogenate (here called nano-sized hybridosomes or nanohybridosomes, NSHs) were considered. Methods: We formed NSHs by mixing appropriate amounts of lecithin, glycerol and supernatant of isolation of extracellular vesicles from spruce needle homogenate. We visualized NSHs by light microscopy and cryogenic transmission electron microscopy and assessed them by flow cytometry, dynamic light scattering, ultraviolet-visual spectroscopy, interferometric light microscopy and liquid chromatography-mass spectrometry. Results: We found that the particles consisted of a bilayer membrane and a fluid-like interior. Flow cytometry and interferometric light microscopy measurements showed that the majority of the particles were nano-sized. Dynamic light scattering and interferometric light microscopy measurements agreed well on the average hydrodynamic radius of the particles Rh (between 140 and 180 nm), while the concentrations of the particles were in the range between 1013 and 1014/mL indicating that NSHs present a considerable (more than 25%) of the sample which is much more than the yield of natural extracellular vesicles (EVs) from spruce needle homogenate (estimated less than 1%). Spruce specific lipids and proteins were found in hybridosomes. Discussion: Simple and low-cost preparation method, non-demanding saving process and efficient formation procedure suggest that large-scale production of NSHs from lipids and spruce needle homogenate is feasible.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica de Transmissão , Difusão Dinâmica da Luz , Proteínas/metabolismo , Lecitinas
6.
Food Funct ; 15(4): 2103-2114, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305429

RESUMO

This study aims to introduce a new liposome to co-load Antarctic krill oil (AKO) and quercetin (QC) as a new delivery formulation to enrich the application of AKO and QC. The stability of liposomes could be increased by adding an appropriate quantity of soy lecithin (SL). Changes in the composition of the phospholipid membrane were strongly correlated with the stability and release capacity of loaded nutrients. SL2@QC/AKO-lips displayed a nearly spherical shape with higher oxidative stability and controlled the in vitro release performance of QC in simulated digestion. Moreover, in vitro studies indicated that new liposomes had no adverse effects on cell viability and could combine the physiological functions of AKO and QC to protect the HepG2 cells from oleic acid-induced steatosis and oxidative stress. The findings demonstrated that the AKO and QC co-loaded liposomes prepared with the addition of an appropriate quantity of SL had excellent loading efficiency of AKO/QC and good oxidative stability, security and functional activity.


Assuntos
Euphausiacea , Lipossomos , Animais , Lipossomos/farmacologia , Quercetina/farmacologia , Ácido Oleico/farmacologia , Óleos/farmacologia , Estresse Oxidativo , Lecitinas
7.
Ultrason Sonochem ; 103: 106799, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364484

RESUMO

Ultrasonic technology is a non-isothermal processing technology that can be used to modify the physicochemical properties of food ingredients. This study investigated the effects of ultrasonic time (5 min, 10 min, 15 min) and power (150 W,300 W,500 W) on the structural properties of three types of phospholipids composed of different fatty acids (milk fat globule membrane phospholipid (MPL), egg yolk lecithin (EYL), soybean lecithin (SL)) and milk fat globule membrane protein (MFGMP). We found that the ultrasound treatment changed the conformation of the protein, and the emulsions prepared by the pretreatment showed better emulsification and stability, the lipid droplets were also more evenly distributed. Meanwhile, the flocculation phenomenon of the lipid droplets was significantly improved compared with the non-ultrasonic emulsions. Compared with the three complexes, it was found that ultrasound had the most significant effect on the properties of MPL-MFGMP, and its emulsion state was the most stable. When the ultrasonic condition was 300 W, the particle size of the emulsion decreased significantly (from 441.50 ±â€¯4.79 nm to 321.77 ±â€¯9.91 nm) at 15 min, and the physical stability constants KE decreased from 14.49 ±â€¯0.702 % to 9.4 ±â€¯0.261 %. It can be seen that proper ultrasonic pretreatment can effectively improve the stability of the system. At the same time, the emulsification performance of the emulsion had also been significantly improved. While the accumulation phenomenon occurred when the ultrasonic power was 150 W and 500 W. These results showed that ultrasonic pretreatment had great potential to improve the properties of emulsions, and this study would provide a theoretical basis for the application of emulsifier in the emulsions.


Assuntos
Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Fosfolipídeos , Emulsões/química , Fosfolipídeos/química , Lecitinas/química , Tamanho da Partícula
8.
Int J Pharm ; 651: 123784, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185340

RESUMO

Dasatinib (DAS) is an oral tyrosine kinase inhibitor; however, its efficacy is significantly subsided by its low oral bioavailability. The present research aimed to improve DAS's oral delivery and efficacy in triple-negative breast cancer by fabricating its mucoadhesive lecithin-chitosan hybrid nanoparticles (DAS-L/CS-NPs). DAS-L/CS-NPs were optimized using Box-Behnken design which showed mean particle size and percent entrapment efficiency of 179.7 ± 5.42 nm and 64.65 ± 0.06 %, respectively. DAS-L/CS-NPs demonstrated sustained release profile in different release media up to 48 h and showed 10 times higher apparent permeability coefficient and flux than free DAS suspension. The binding of DAS-L/CS-NPs to the mucus layer was demonstrated via ex-vivo mucoadhesion study and change in absorbance using turbidimetry. In cell culture studies, DAS-L/CS-NPs revealed a 4.14-fold decrease in IC50, significantly higher cellular uptake and mitochondrial membrane depolarization, 3.82-fold increased reactive oxygen species generation and 2.10-fold enhanced apoptosis in MDA-MB-231 cells than free DAS. In in-vivo pharmacokinetic assessment, DAS-L/CS-NPs showed a 5.08-fold and 3.74-fold rise in AUC (0-t) and Cmax than free DAS suspension, respectively. An acute toxicity study revealed a good safety profile of DAS-L/CS-NPs. In a nutshell, proposed hybrid nanoparticles are promising carriers for improved oral delivery of poorly water-soluble drugs.


Assuntos
Quitosana , Nanopartículas , Portadores de Fármacos/farmacocinética , Lecitinas , Dasatinibe , Tamanho da Partícula
9.
Nat Commun ; 15(1): 844, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286999

RESUMO

Infection by Helicobacter pylori, a prevalent global pathogen, currently requires antibiotic-based treatments, which often lead to antimicrobial resistance and gut microbiota dysbiosis. Here, we develop a non-antibiotic approach using sonodynamic therapy mediated by a lecithin bilayer-coated poly(lactic-co-glycolic) nanoparticle preloaded with verteporfin, Ver-PLGA@Lecithin, in conjunction with localized ultrasound exposure of a dosage permissible for ultrasound medical devices. This study reveals dual functionality of Ver-PLGA@Lecithin. It effectively neutralizes vacuolating cytotoxin A, a key virulence factor secreted by H. pylori, even in the absence of ultrasound. When coupled with ultrasound exposure, it inactivates H. pylori by generating reactive oxygen species, offering a potential solution to overcome antimicrobial resistance. In female mouse models bearing H. pylori infection, this sonodynamic therapy performs comparably to the standard triple therapy in reducing gastric infection. Significantly, unlike the antibiotic treatments, the sonodynamic therapy does not negatively disrupt gut microbiota, with the only major impact being upregulation of Lactobacillus, which is a bacterium widely used in yogurt products and probiotics. This study presents a promising alternative to the current antibiotic-based therapies for H. pylori infection, offering a reduced risk of antimicrobial resistance and minimal disturbance to the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Feminino , Animais , Camundongos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Lecitinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
10.
Carbohydr Polym ; 328: 121738, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220330

RESUMO

Developing artificial substitutes that mimic the structures and performances of natural cartilage is of great importance. However, it is challenging to integrate the high strength, excellent biocompatibility, low coefficient of friction, long-term wear resistance, outstanding swelling resistance, and osseointegration potential into one material. Herein, a sandwich hydrogel with cartilage-mimetic structures and performances was prepared to achieve this goal. The precursor hydrogel was obtained by freezing-thawing the mixture of poly vinyl alcohol, chitosan and deionized water three cycles, accompanied by soaking in sodium hyaluronate solution. The top of the precursor hydrogel was hydrophobically modified with lauroyl chloride and then loaded with lecithin, while the bottom was mineralized with hydroxyapatite. Due to the multiple linkages (crystalline domains, hydrogen bonds, and ionic interactions), the compressive stress was 71 MPa. Owing to the synergy of the hydrophobic modification and lecithin, the coefficient of friction was 0.01. Additionally, no wear trace was observed after 50,000 wear cycles. Remarkably, hydroxyapatite enabled the hydrogel osseointegration potential. The swelling ratio of the hydrogel was 0.06 g/g after soaking in simulated synovial fluid for 7 days. Since raw materials were non-toxic, the cell viability was 100 %. All of the above merits make it an ideal material for cartilage replacement.


Assuntos
Quitosana , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Álcool de Polivinil/química , Ácido Hialurônico , Teste de Materiais , Lecitinas , Durapatita/química , Cartilagem
11.
J Sci Food Agric ; 104(7): 4242-4250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288644

RESUMO

BACKGROUND: Phytosterols (PS) have various beneficial effects on human health, especially the property of reducing blood cholesterol. However, the low solubility and bioaccessibility of PS have greatly limited their application in functional food ingredients. RESULTS: To improve the bioaccessibility and stability of PS, chitosan-coated PS nanoparticles (CS-PNP) were successfully prepared by self-assembly. The properties of CS-PNP, including size, zeta potential, encapsulation efficiency (EE) and loading amount (LA) were characterised. The optimisation of CS concentration (0.4 mg mL-1) and pH (3.5) resulted in the formation of CS-PNP with an EE of over 90% and a particle size of 187.7 nm. Due to the special properties of CS chitosan, the interaction between CS and soybean protein isolate (SPI)/lecithin (SL) led to the formation of a soluble complex. CS-PNP exhibited good stability to temperature variations but was more sensitive to salt ions. During in vitro digestion, CS efficiently maintained the stability of nanoparticles against the hydrolysis of SPI by pepsin under acidic conditions. However, these nanoparticles tended to aggregate in a neutral intestinal environment. After 3 h of in vitro digestion, the bioaccessibility of PS increased from 18.2% of free PS to 63.5% of CS-PNP. CONCLUSION: Overall, these results highlight the potential of chitosan-coated nanoparticles as effective carriers for the oral administration of PS. This multilayer construction may serve as a promising for applications in food products as delivery vehicles for nutraceuticals. © 2024 Society of Chemical Industry.


Assuntos
Quitosana , Nanopartículas , Fitosteróis , Humanos , Lecitinas , Quitosana/química , Proteínas de Soja/química , Fitosteróis/química , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
12.
BMC Pulm Med ; 24(1): 37, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233819

RESUMO

BACKGROUND: Type 2 diabetes (T2D) leads to serious respiratory problems. This study investigated the effectiveness of high-intensity interval training (HIIT) on T2D-induced lung injuries at histopathological and molecular levels. METHODS: Forty-eight male Wistar rats were randomly allocated into control (CTL), Diabetes (Db), exercise (Ex), and Diabetes + exercise (Db + Ex) groups. T2D was induced by a high-fat diet plus (35 mg/kg) of streptozotocin (STZ) administration. Rats in Ex and Db + Ex performed HIIT for eight weeks. Tumor necrosis factor-alpha (TNFα), Interleukin 10 (IL-10), BAX, Bcl2, Lecithin, Sphingomyelin (SPM) and Surfactant protein D (SPD) levels were measured in the bronchoalveolar lavage fluid (BALF) and malondialdehyde (MDA) and total antioxidant capacity (TAC) levels were measured in lung tissue. Lung histopathological alterations were assessed by using H&E and trichrome mason staining. RESULTS: Diabetes was significantly associated with imbalance in pro/anti-inflammatory, pro/anti-apoptosis and redox systems, and reduced the SPD, lecithin sphingomyelin and alveolar number. Performing HIIT by diabetic animals increased Bcl2 (P < 0.05) and IL10 (P < 0.01) levels as well as surfactants components and TAC (P < 0.05) but decreased fasting blood glucose (P < 0.001), TNFα (P < 0.05), BAX (P < 0.05) and BAX/Bcl2 (P < 0.001) levels as well as MDA (P < 0.01) and MDA/TAC (P < 0.01) compared to the diabetic group. Furthermore, lung injury and fibrosis scores were increased by T2D and recovered in presence of HIIT. CONCLUSION: These findings suggested that the attenuating effect of HIIT on diabetic lung injury mediated by reducing blood sugar, inflammation, oxidative stress, and apoptosis as well as improving pulmonary surfactants components.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Lesão Pulmonar , Ratos , Masculino , Animais , Ratos Wistar , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Lecitinas/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Esfingomielinas/efeitos adversos , Proteína X Associada a bcl-2/farmacologia , Pulmão/metabolismo , Antioxidantes/metabolismo
13.
AAPS PharmSciTech ; 25(1): 18, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263347

RESUMO

Due to tenoxicam (TX)'s poor aqueous solubility (0.072 mg/ml), it is poorly absorbable in the GIT, and the long-term oral administration of TX may cause severe GIT disturbances. Topical administration of TX can help in bypassing the GIT adverse effects. Therefore, in the present work, we constructed different pluronic/lecithin organogels (PLOs) for topical delivery of TX. PLO was constructed simply via direct mixing of an aqueous pluronic solution with lecithin solution. The prepared PLO formulations were characterized for their physicochemical properties including pH, drug content, visual inspection, viscosity, and spreadability. Also, the in vitro release and kinetic studies were carried out to investigate the mechanism of drug release. Moreover, the in vivo studies were carried out by investigating the anti-inflammatory and analgesic activities using albino male rats. The results showed that the modified PLOs have good physicochemical properties. The viscosity of the modified gels is a direct proportionality with both lecithin and pluronic concentrations. Also, subsequently, the drug release rate is directly proportional to gel viscosity. Moreover, the in vivo studies showed that the modified PLOs (F19) showed a significant ( < 0.05%) paw edema inhibition and pain analgesia compared with other investigated groups. Also, the results indicated that the increase in dose is accompanied by higher activity and a longer duration of action which extended to 12 h. Hence, the modified PLOs are promising safe candidates or vehicles for effective TX loading with sustained delivery behavior.


Assuntos
Lecitinas , Piroxicam/análogos & derivados , Poloxâmero , Animais , Ratos , Cinética , Inflamação , Dor
14.
Food Res Int ; 176: 113821, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163721

RESUMO

The use of lipids from conventional oils and fats to produce solid lipid nanoparticles (SLN) attracting interest from the food industry, since due their varying compositions directly affects crystallization behavior, stability, and particle sizes (PS) of SLN. Thus, this study aimed evaluate the potential of fully hydrogenated oils (hardfats) with different hydrocarbon chain lengths to produce SLN using different emulsifiers. For that, fully hydrogenated palm kern (FHPkO), palm (FHPO), soybean (FHSO), microalgae (FHMO) and crambe (FHCO) oils were used. Span 60 (S60), soybean lecithin (SL), and whey protein isolate (WPI) were used as emulsifiers. The physicochemical characteristics and crystallization properties of SLN were evaluated during 60 days. Results indicates that the crystallization properties were more influenced by the hardfat used. SLN formulated with FHPkO was more unstable than the others, and hardfats FHPO, FHSO, FHMO, and FHCO exhibited the appropriate characteristics for use to produce SLN. Concerning emulsifiers, S60- based SLN showed high instability, despite the hardfat used. SL-based and WPI-based SLN formulations, showed a great stability, with crystallinity properties suitable for food incorporation.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Óleos , Nanopartículas/química , Lipossomos , Lecitinas , Emulsificantes
15.
Yakugaku Zasshi ; 144(1): 87-97, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38171800

RESUMO

I have been studying the improvement of drug solubility using solid dispersion and skin-applied formulations. When preparing solid dispersions using phosphatidylcoline (PC) as a carrier, drug with hydrogen-donating groups interacts with PC to produce amorphous solid dispersions with high drug content; this overcomes improves drug absorption. The drug was solubilized and supersaturated in the oil-based gel formed with hyadrogenated lecithin; this facilitates drug permeation through the skin. The promoting effect differs with the nature of the oil used because of the skin penetration of the oil itself and the accompanying increase in drug solubility and diffusion coefficient in the skin. At actual application volumes of 10 µL/cm2 or less, the skin penetration of poorly-absorbable drugs depends on the molecular weight and surface tension of the oil. The penetration of the oil vehicle into the upper stratum corneum influences the reach of the drug into the stratum corneum; a high drug concentration near the 7th layer of the stratum corneum promotes migration through the skin by increasing the linear concentration gradient in deeper layers. In addition, we performed a risk assessment, in collaboration with toxicologists, for dermal safety that included the toxicity potential of substances and the parts related to skin transfer.


Assuntos
Lecitinas , Pele , Lecitinas/metabolismo , Lecitinas/farmacologia , Pele/metabolismo , Absorção Cutânea , Epiderme , Solubilidade
16.
J Cosmet Dermatol ; 23(3): 918-925, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947116

RESUMO

BACKGROUND: UV skin exposure is an important matter of public health, as the worldwide rising prevalence of skin cancers indicates. However, a wide majority of commercially available sunscreens are responsible for ocean ecosystem damages such as coral reef degradation and phytoplankton mortality. AIMS: To answer the urge for new eco-friendly UV filters, we studied the use of lecithin-based multilamellar liposomes (MLLs) of controlled size and elasticity as a bio-sourced and biodegradable alternative to classic sunscreens. These parameters control allows different skin layers targeting. METHODS: The performance of two different MLLs compositions and a commercially available SPF50+ water-resistant liposomal sunscreen was compared on skin explants. SC-MLLs target the stratum corneum and Epi-MLLs the whole epidermis. Preparations were applied prior to skin irradiation. Their efficiencies were evaluated histologically (hematoxylin and eosin staining plus cyclobutane pyrimidine dimer [CPD] immunostaining) and by skin barrier quality assessment (trans-epithelial electrical resistance). Adhesiveness to the skin was also investigated. RESULTS: Altogether, ex vivo results indicate MLLs offer a solar protection as effective as a SPF50+ water-resistant liposomal sunscreen but with a better skin adhesiveness and an improved skin barrier function. CONCLUSION: Lecithin-based MLLs of controlled physicochemical parameters can be used as a new eco-friendly and water-resistant agent for solar protection. The stratum corneum targeted action of SC-MLLs appears to be more interesting, as SC-MLLs exhibit an overall better performance than Epi-MLLs at a lower cost. The skin barrier improvement showcased could be of interest to people suffering from dry skin or skin barrier impairment related disease.


Assuntos
Lipossomos , Protetores Solares , Humanos , Protetores Solares/química , Lipossomos/metabolismo , Lecitinas/metabolismo , Lecitinas/farmacologia , Água/metabolismo , Ecossistema , Raios Ultravioleta/efeitos adversos , Pele
17.
Biol Pharm Bull ; 47(1): 245-252, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092382

RESUMO

We investigated the effect of the rheological properties and composition of lecithin reverse wormlike micelles (LRWs) on the skin permeation of a model of a hydrophilic drug to determine whether LRWs support uniform hydrophilic drug/oil-based formulations and good drug penetrate into skin. Here, we prepared LRWs with D (-)-ribose (RI) or glycerol (GL) as polar compounds, liquid paraffin (LP) or isopropyl myristate (IPM) as oils, and 6-carboxyfluorescein (CF) as a model for a hydrophilic drug, and evaluated the rheological properties and skin penetration characteristics of the preparations. The LRWs showed moderate viscosity at 25 °C, a typical storage temperature, but decreasing viscosity at 32 °C, the surface temperature of human skin, suggesting that the LRWs would penetrate the microstructure of skin (e.g., wrinkles and hair follicles). The highest skin permeability of CF was observed when IPM was used as the oil, suggesting that both the stratum corneum and hair follicle routes are involved in drug permeation. The penetration of CF into hair follicles is influenced not only by the rheology of the formulation but also by the interaction between IPM and sebum in the hair follicles.


Assuntos
Lecitinas , Micelas , Humanos , Lecitinas/química , Lecitinas/metabolismo , Pele/metabolismo , Absorção Cutânea , Óleos/química , Reologia
18.
J Colloid Interface Sci ; 657: 695-704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071818

RESUMO

HYPOTHESIS: Oleosomes are natural oil droplets with a unique phospholipid/protein membrane, abundant in plant seeds, from which they can be extracted and used in emulsion-based materials, such as foods, cosmetics and pharmaceutics. The lubrication properties of such materials are essential, on one hand, due to the importance of the in-mouth creaminess for the consumed products or the importance of spreading the topical creams. Therefore, here, we will evaluate the lubrication properties of oleosomes, and how these properties are affected by the components at the oleosome membrane. EXPERIMENT: Oleosomes were extracted, and their oral lubricating properties were evaluated using tribology. To understand the influence of the oil droplet membrane composition, reconstituted oleosomes were also studied, with membranes that differed in protein/lecithin ratio. Additionally, whey protein- and lecithin-stabilised emulsions were used as reference samples. Confocal laser scattering microscopy was used to study the samples visually before and after tribological analysis. FINDINGS: Oleosomes followed a ball-bearing mechanism, which was probably related to their high physical stability due to the presence of membrane proteins. When the membrane protein concentration at the surface was reduced, the droplet stability weakened, leading to plating-out lubrication. Following our results, we elucidated the oleosome lubrication mechanism and showed their possible control by changing the membrane composition.


Assuntos
Lecitinas , Gotículas Lipídicas , Lubrificação , Emulsões/metabolismo , Fosfolipídeos/metabolismo
19.
Environ Toxicol Pharmacol ; 105: 104341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072218

RESUMO

Aquaponics is a method of producing food in a sustainable manner through the integration of aquaculture and hydroponics, which allows simultaneous cultivation of fish and economic crops. The use of natural fungicides are crucial to the sustainable control of diseases in aquaponics. We assessed the potential impacts of natural fungicides, such as clove oil and lecithin, as well as a synthetic fungicide, tebuconazole, following foliar application in aquaponics. This study examined the runoff rates of the fungicides in decoupled aquaponics, and the subsequent effects of the runoffs on nitrification processes and Nile tilapia (Oreochromis niloticus). The runoffs of the foliar-applied fungicides, clove oil, lecithin, and tebuconazole, were detected in aquaponics water at a percentage runoff rate of 0.3 %, 2.3 %, and 0.3-0.8 % respectively. In the biofilter, lecithin altered the ammonium levels by increasing ammonium-nitrogen levels by 7 mg L-1, 6 h post application. Clove oil, on the other hand, showed no significant effect on ammonium, nitrite, and nitrate-nitrogen. Similarly, the toxicity test showed that eugenol had no significant effects on the hematological, biochemical and antioxidative activities of O. niloticus. Conversely, tebuconazole exhibited significant and persistent effects on various biochemical parameters, including lactate, albumin, and total protein, as well as hematological parameters like hemoglobin and MCH. The use of lecithin and tebuconazole should only be limited to decoupled aquaponics.


Assuntos
Compostos de Amônio , Ciclídeos , Fungicidas Industriais , Animais , Nitrificação , Fungicidas Industriais/toxicidade , Óleo de Cravo , Lecitinas , Ciclídeos/metabolismo , Aquicultura/métodos , Nitrogênio/análise
20.
Drug Dev Ind Pharm ; 50(1): 23-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38079333

RESUMO

OBJECTIVE: This study aimed to develop a mixed polymeric micelle formulation incorporating candesartan cilexetil (CAND) drug to enhance its oral bioavailability for the better treatment of hypertension. METHODS: A Box-Behnken design was utilized to optimize the CAND-incorporated mixed polymeric micelles formulation (CAND-PFLC) consisting of Pluronics (P123 and F68) and lecithin (LC). The optimized CAND-PFLC micelles formulation was characterized for size, shape, zeta potential, polydispersity index (PDI), and entrapment efficiency (%EE). An in vitro release study, ex vivo permeability investigation, and an in vivo pharmacokinetic analysis were carried out to evaluate the performance of the formulation. RESULTS: The optimized CAND-PFLC micelles formulation demonstrated a spherical shape, a particle size of 44 ± 2.03 nm, a zeta potential of -7.07 ± 1.39 mV, a PDI of 0.326 ± 0.06, and an entrapment efficiency of 87 ± 3.12%. The formulation exhibited excellent compatibility, better stability, and a noncrystalline nature. An in vitro release study revealed a faster drug release of 7.98% at gastric pH in 2 hrs and 94.45% at intestinal pH within 24 hrs. The ex vivo investigation demonstrated a significantly enhanced permeability of CAND, with 94.86% in the micelle formulation compared to 9.03% of the pure drug. In vivo pharmacokinetic analysis showed a 4.11-fold increase in oral bioavailability of CAND compared to the marketed formulation. CONCLUSION: The CAND-PFLC mixed micelle formulation demonstrated improved performance compared to pure CAND, indicating its potential as a promising oral drug delivery system for the effective treatment of hypertension.


Assuntos
Benzimidazóis , Compostos de Bifenilo , Hipertensão , Micelas , Tetrazóis , Humanos , Poloxâmero/química , Lecitinas , Disponibilidade Biológica , Anti-Hipertensivos , Administração Oral , Liberação Controlada de Fármacos , Polímeros/química , Portadores de Fármacos/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...