Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 885
Filtrar
1.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338444

RESUMO

The urea cycle has been found to be closely associated with certain types of cancers and other diseases such as cardiovascular disease and chronic kidney disease. An analytical method for the precise quantification of urea cycle amino acids (arginine, ornithine, citrulline, and argininosuccinate) by off-line two-dimensional liquid chromatography (2D-LC) combined with fluorescence-based detection was developed. Before analysis, the amino acids were derivatised with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to obtain NBD-amino acids. The first dimension involved the reversed-phase separation, in which NBD derivatives of urea cycle amino acids were completely separated from each other and mostly separated from the 18 NBD-proteinogenic amino acids. The samples were eluted with stepwise gradient using 0.02% trifluoroacetic acid in water-acetonitrile as the mobile phase. In the second dimension, an amino column was used for the separation of NBD-ornithine, -citrulline, and -argininosuccinate, while a sulfonic acid column was used to separate NBD-arginine. The developed 2D-LC system was used to analyse human plasma samples. The fractions of NBD-urea cycle amino acids obtained in the first dimension were collected manually and introduced into the second dimension. By choosing appropriate mobile phases for the second dimension, each NBD-urea cycle amino acid eluted in the first dimension was well separated from the other proteinogenic amino acids and interference from endogenous substance. This could not be achieved in the first dimension. The urea cycle amino acids in human plasma sample were quantified, and the method was well validated. The calibration curves for each NBD-urea cycle amino acid showed good linearity from 3 (ASA) or 15 (Orn, Cit, and Arg) to 600 nM, with correlation coefficients higher than 0.9969. The intraday and interday precisions were less than 7.9% and 15%, respectively. The 2D-LC system is expected to be useful for understanding the involvement of the urea cycle in disease progression.


Assuntos
Citrulina , Ureia , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Ornitina , Aminoácidos Cíclicos , Arginina/metabolismo
2.
Phys Chem Chem Phys ; 25(23): 15635-15646, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37166113

RESUMO

The photoionisation and photofragmentation of the two cyclic dipetides cyclo(alanyl-glycine) cGA and cyclo(glycyl-glycine) cGG, have been studied combining experiments and simulations. State selected fragments from the ionized molecules are detected using photo-electron photo-ion coincidence (PEPICO) measurements and specific fragmentation paths are identified and characterized via the use of ion-neutral coincidence maps. The simulations, performed using Quantum Chemistry methods, allow us to infer the fragmentation mechanisms of the ionized and excited molecules. We show that ring opening is followed by emission of the neutral fragments CO and HNCO. In the case of cGG the emission of neutral CO leads to a metastable structure that breaks producing small cationic fragments. The studied cyclic dipeptides evolve under ionizing radiation generating different small aziridin moieties and oxazolidinones. These two species are key reactants to elongate producing peptide chains. The corresponding mechanisms have been computed and show that the reaction requires very low energy and may occur in the presence of ionizing radiation.


Assuntos
Dicetopiperazinas , Peptídeos , Dipeptídeos/química , Glicilglicina , Aminoácidos Cíclicos
3.
New Phytol ; 236(6): 2103-2114, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36151927

RESUMO

In seed plants, 1-aminocyclopropane-1-carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene-independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. In Arabidopsis thaliana, ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants, LHT homologs have been uncharacterized. Here, we isolated an ACC-insensitive mutant (Mpain) that is defective in ACC uptake in the liverwort Marchantia polymorpha. Mpain contained a frameshift mutation (1 bp deletion) in the MpLHT1 coding sequence, and was complemented by expression of a wild-type MpLHT1 transgene. Additionally, ACC insensitivity was re-created in CRISPR/Cas9-Mplht1 knockout mutants. We found that MpLHT1 can also transport l-hydroxyproline and l-histidine. We examined the physiological functions of MpLHT1 in vegetative growth and reproduction based on mutant phenotypes. Mpain and Mplht1 plants were smaller and developed fewer gemmae cups compared to wild-type plants. Mplht1 mutants also had reduced fertility, and archegoniophores displayed early senescence. These findings reveal that MpLHT1 serves as an ACC and amino acid transporter in M. polymorpha and has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids in M. polymorpha growth and reproduction.


Assuntos
Arabidopsis , Marchantia , Aminoácidos Cíclicos , Arabidopsis/genética , Etilenos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fertilidade
4.
BMC Plant Biol ; 22(1): 386, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35918649

RESUMO

BACKGROUND: Verticillium wilt of cotton is a serious disease caused by the infection of soil borne fungus Verticillium dahliae Kleb, and the infection mechanisms may involve the regulation of phytohormone ethylene. The precursor of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylic acid (ACC), whose biosynthesis in vivo depends on activation of ACC synthase (ACS). Here, we investigated how ACS activation and ACC accumulation affected the infection of V. dahliae strain Vd991 on cotton (Gossypium hirsutum L.) cultivar YZ1. RESULTS: Preliminary observations indicated that ACC applications reduced the disease incidence, disease index and stem vascular browning by impeding fungal biomass accumulation. Transcriptome and qRT-PCR data disclosed that Vd991 induced GhACS2 and GhACS6 expression. GhACS2- or GhACS6-overexpressing transgenic YZ1 lines were generated, respectively. In a Verticillium disease nursery with about 50 microsclerotia per gram of soil, these ACC-accumulated plants showed decreased disease indexes, stem fungal biomasses and vascular browning. More importantly, these transgenic plants decreased the green fluorescent protein-marked Vd991 colonization and diffusion in root tissues. Further, either ACC treatment or ACC-accumulating cotton plants activated salicylic acid (SA)-dependent resistance responses. CONCLUSIONS: The GhACS2- and GhACS6-dependent ACC accumulations enhanced the resistance of cotton to V. dahliae in a SA-dependent manner, and this lays a foundation for cotton resistance breeding.


Assuntos
Gossypium , Verticillium , Aminoácidos Cíclicos , Resistência à Doença/genética , Etilenos , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/microbiologia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Ácido Salicílico , Solo , Verticillium/fisiologia
5.
Curr Opin Plant Biol ; 65: 102116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34653952

RESUMO

In seed plants, 1-amino-cyclopropane-1-carboxylic acid (ACC) is the well-known precursor of the plant hormone ethylene. In nonseed plants, the current view is that ACC is produced but is inefficiently converted to ethylene. Distinct responses to ACC that are uncoupled from ethylene biosynthesis have been discovered in diverse aspects of growth and development in liverworts and angiosperms, indicating that ACC itself can function as a signal. Evolutionarily, ACC may have served as a signal before acquiring its role as the ethylene precursor in seed plants. These findings pave the way for unraveling a potentially conserved ACC signaling pathway in plants and have ramifications for the use of ACC as a substitute for ethylene treatment in seed plants.


Assuntos
Aminoácidos Cíclicos , Etilenos , Aminoácidos Cíclicos/metabolismo , Ácidos Carboxílicos , Etilenos/metabolismo , Plantas/metabolismo , Transdução de Sinais
6.
World J Microbiol Biotechnol ; 38(1): 16, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34897563

RESUMO

The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.


Assuntos
Endófitos/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Tolerância ao Sal , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , África do Norte , Aminoácidos Cíclicos/metabolismo , Endófitos/classificação , Interações entre Hospedeiro e Microrganismos , RNA Ribossômico 16S , Espécies Reativas de Oxigênio/metabolismo , Rizosfera , Salinidade , Estresse Salino , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo
7.
Physiol Plant ; 173(4): 2291-2297, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609746

RESUMO

The plant hormone ethylene plays vital roles in plant development, including pollen tube (PT) growth. Many studies have used the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), as a tool to trigger ethylene signaling. Several studies have suggested that ACC can act as a signal molecule independently of ethylene, inducing responses that are distinct from those induced by ethylene. In this study, we confirmed that ethylene receptor function is essential for promoting PT growth in tomato, but interestingly, we discovered that ACC itself can act as a signal that also promotes PT growth. Exogenous ACC stimulated PT growth even when ethylene perception was inhibited either chemically by treating with 1-methylcyclopropene (1-MCP) or genetically by using the ethylene-insensitive Never Ripe (NR) mutant. Treatment with aminoethoxyvinylglycine, which reduces endogenous ACC levels, led to a reduction of PT growth, even in the NR mutants. Furthermore, GUS activity driven by an EIN3 Binding Site promoter (EBS:GUS transgene) was triggered by ACC in the presence of 1-MCP. Taken together, these results suggest that ACC signaling can bypass the ethylene receptor step to stimulate PT growth and EBS driven gene expression.


Assuntos
Solanum lycopersicum , Aminoácidos Cíclicos/farmacologia , Etilenos , Solanum lycopersicum/genética , Tubo Polínico
8.
Biomolecules ; 11(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439819

RESUMO

With the introduction of the new auxinic herbicide halauxifen-methyl into the oilseed rape (Brassica napus) market, there is a need to understand how this new molecule interacts with indigenous plant hormones (e.g., IAA) in terms of crop response. The aim of this study was to investigate the molecular background by using different growth conditions under which three different auxinic herbicides were administered. These were halauxifen-methyl (Hal), alone and together with aminopyralid (AP) as well as picloram (Pic). Three different hormone classes were determined, free and conjugated indole-3-acetic acid (IAA), aminocyclopropane carboxylic acid (ACC) as a precursor for ethylene, and abscisic acid (ABA) at two different temperatures and growth stages as well as over time (2-168 h after treatment). At 15 °C growth temperature, the effect was more pronounced than at 9 °C, and generally, the younger leaves independent of the developmental stage showed a larger effect on the alterations of hormones. IAA and ACC showed reproducible alterations after auxinic herbicide treatments over time, while ABA did not. Finally, a transcriptome analysis after treatment with two auxinic herbicides, Hal and Pic, showed different expression patterns. Hal treatment leads to the upregulation of auxin and hormone responses at 48 h and 96 h. Pic treatment induced the hormone/auxin response already after 2 h, and this continued for the other time points. The more detailed analysis of the auxin response in the datasets indicate a role for GH3 genes and genes encoding auxin efflux proteins. The upregulation of the GH3 genes correlates with the increase in conjugated IAA at the same time points and treatments. Also, genes for were found that confirm the upregulation of the ethylene pathway.


Assuntos
Ácido Abscísico/farmacologia , Aminoácidos Cíclicos/farmacologia , Brassica napus/efeitos dos fármacos , Herbicidas/farmacologia , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Carboxílicos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Ácidos Indolacéticos/metabolismo , Anotação de Sequência Molecular , Picloram/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piridinas/farmacologia , Temperatura , Transcriptoma
9.
Plant J ; 107(6): 1819-1836, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296474

RESUMO

Leaf senescence is a pivotal step in the last stage of the plant life cycle and is influenced by various external and endogenous cues. A series of reports have indicated the involvement of the WRKY transcription factors in regulating leaf senescence, but the molecular mechanisms and signaling pathways remain largely unclear. Here we provide evidence demonstrating that WRKY71 acts as a positive regulator of leaf senescence in Arabidopsis. WRKY71-1D, an overexpressor of WRKY71, exhibited early leaf senescence, while wrky71-1, the WRKY71 loss-of-function mutant, displayed delayed leaf senescence. Accordingly, a set of senescence-associated genes (SAGs) were substantially elevated in WRKY71-1D but markedly decreased in wrky71-1. Chromatin immunoprecipitation assays indicated that WRKY71 can bind directly to the promoters of SAG13 and SAG201. Transcriptome analysis suggested that WRKY71 might mediate multiple cues to accelerate leaf senescence, such as abiotic stresses, dark and ethylene. WRKY71 was ethylene inducible, and treatment with the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid enhanced leaf senescence in WRKY71-1D but caused only a marginal delay in leaf senescence in wrky71-1. In vitro and in vivo assays demonstrated that WRKY71 can directly regulate ETHYLENE INSENSITIVE2 (EIN2) and ORESARA1 (ORE1), genes of the ethylene signaling pathway. Consistently, leaf senescence of WRKY71-1D was obviously retarded in the ein2-5 and nac2-1 mutants. Moreover, WRKY71 was also proved to interact with ACS2 in vitro and in vivo. Treatment with AgNO3 and aminoethoxyvinylglycine and acs2-1 could greatly arrest the leaf senescence of WRKY71-1D. In conclusion, our data revealed that WRKY71 mediates ethylene signaling and synthesis to hasten leaf senescence in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Liases de Carbono-Enxofre/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/fisiologia , Senescência Vegetal/fisiologia , Fatores de Transcrição/genética , Oxirredutases do Álcool/genética , Aminoácidos Cíclicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Senescência Vegetal/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Receptores de Superfície Celular/genética , Transativadores , Fatores de Transcrição/metabolismo
10.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34134142

RESUMO

Transitional hypoglycemia in normal newborns occurs in the first 3 days of life and has clinical features consistent with hyperinsulinism. We found a lower threshold for glucose-stimulated insulin secretion from freshly isolated embryonic day (E) 22 rat islets, which persisted into the first postnatal days. The threshold reached the adult level by postnatal day (P) 14. Culturing P14 islets also decreased the glucose threshold. Freshly isolated P1 rat islets had a lower threshold for insulin secretion in response to 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid, a nonmetabolizable leucine analog, and diminished insulin release in response to tolbutamide, an inhibitor of ß-cell KATP channels. These findings suggested that decreased KATP channel function could be responsible for the lower glucose threshold for insulin secretion. Single-cell transcriptomic analysis did not reveal a lower expression of KATP subunit genes in E22 compared with P14 ß cells. The investigation of electrophysiological characteristics of dispersed ß cells showed that early neonatal and cultured cells had fewer functional KATP channels per unit membrane area. Our findings suggest that decreased surface density of KATP channels may contribute to the observed differences in glucose threshold for insulin release.


Assuntos
Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Canais KATP/fisiologia , 1-Metil-3-Isobutilxantina/farmacologia , Aminoácidos Cíclicos/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Embrião de Mamíferos , Feminino , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Canais KATP/agonistas , Canais KATP/genética , Canais KATP/metabolismo , Cloreto de Potássio/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Chemistry ; 27(43): 11216-11220, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34028101

RESUMO

N-terminal thiourea-modified l-Leu-based peptide {(3,5-diCF3 Ph)NHC(=S)-(l-Leu-l-Leu-Ac5 c)2 -OMe} with five-membered ring α,α-disubstituted α-amino acids (Ac5 c) catalyzed a highly enantioselective 1,4-addition reaction between ß-nitrostyrene and dimethyl malonate. The enantioselective reaction required only 0.5 mol % chiral peptide-catalyst in the presence of i Pr2 EtN (2.5 equiv.), and gave a 1,4-adduct with 93 % ee of an 85 % yield. As Michael acceptors, various ß-nitrostyrene derivatives such as methyl, p-fluoro, p-bromo, and p-methoxy substituents on the phenyl group, 2-furyl, 2-thiophenyl, and naphthyl ß-nitroethylenes could be applied. Furthermore, various alkyl malonates and cyclic ß-keto-esters could be used as Michael donors. It became clear that the length of the peptide chain, a right-handed helical structure, amide N-Hs, and the N-terminal thiourea moiety play crucial roles in asymmetric induction.


Assuntos
Aminoácidos Cíclicos , Tioureia , Catálise , Peptídeos , Estereoisomerismo
12.
Arch Microbiol ; 203(5): 2279-2290, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33644819

RESUMO

Plant growth-promoting rhizobacteria that produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase can promote plant growth and enhance abiotic stress tolerance. In this study, Burkholderia pyrrocinia strain P10, with an ACC deaminase activity of 33.01-µmol/h/mg protein, was isolated from the tea rhizosphere and identified based on morphological, biochemical, and molecular characteristics. In addition to its ACC deaminase activity at pH 5.0-9.0 and in response to 5% NaCl and 20% polyethylene glycol, strain P10 can also solubilize phosphorus compounds, produce indole-3-acetic acid, and secrete siderophores. Pot experiments revealed that strain P10 can significantly enhance peanut seedling growth under saline conditions (100- and 170-mmol/L NaCl). Specifically, it increased the fresh weight and root length of plants by 90.12% and 79.22%, respectively, compared with high-salt stress. These results provide new insights into the biological characteristics of Burkholderia pyrrocinia, which may be useful as a bio-fertilizer.


Assuntos
Burkholderia/enzimologia , Burkholderia/metabolismo , Carbono-Carbono Liases/metabolismo , Raízes de Plantas/microbiologia , Chá/microbiologia , Aminoácidos Cíclicos/metabolismo , Burkholderia/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Rizosfera , Plantas Tolerantes a Sal/metabolismo , Plântula/microbiologia , Sideróforos/metabolismo
13.
Plant Cell Physiol ; 62(5): 858-871, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33768225

RESUMO

Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.


Assuntos
Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Marchantia/metabolismo , Aminoácidos Cíclicos/farmacologia , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Marchantia/efeitos dos fármacos , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Mutação , Compostos Organofosforados/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiossulfatos/farmacologia
14.
Chem Phys Lipids ; 235: 105051, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33460592

RESUMO

Novel quaternary ammonium surfactants (QUATs) derived from phenylalaninyl-proline dipeptide with chain length C12 and C14 were synthesised as potential active ingredients to be used in body cleansing formulations. The physicochemical properties and biological activities of the QUATs were determined in both single and in mixed surfactant system with either the conventional anionic surfactant sodium dodecyl sulphate (SDS) or sodium N-dodecyl prolinate. The C12 QUAT derivative showed antagonistic behaviour in both SDS and sodium N-dodecyl prolinate mixed surfactant system. Comparing the mixed system of the C12 QUAT with SDS and sodium N-dodecyl prolinate, it was found that the latter displayed better antibacterial activity together with the lower ocular irritation. The C12 QUAT-sodium N-dodecyl prolinate mixture were non cytotoxic at a concentration corresponding to its MIC value, showing that the mixture was selective towards bacterial cells rather than mammalian cell lines. Diffusion measurements showed that the sodium N-dodecyl prolinate surfactant consisted of 26 molecules per micelle in water but only 3 molecules per micelle in DMSO/water (1:1). On the other hand, C12 QUAT did not form a micelle in DMSO/Water. Membrane permeability studies of the C12 QUAT and sodium N-dodecyl prolinate showed that these surfactants are capable to penetrate into deeper skin layers to exert their antibacterial and cleansing action and hence can be used as a promising candidate as active ingredients in body wash formulations.


Assuntos
Aminoácidos Aromáticos/farmacologia , Aminoácidos Cíclicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Aminoácidos Aromáticos/química , Aminoácidos Cíclicos/química , Antibacterianos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Tensoativos/química , Tensoativos/farmacologia
15.
Methods Mol Biol ; 2213: 123-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33270198

RESUMO

The gaseous hormone ethylene regulates a diverse range of plant development and stress responses. Ethylene biosynthesis is tightly regulated by the transcriptional and posttranscriptional regulation of ethylene biosynthetic enzymes. ACC synthase (ACS) is the rate-limiting enzyme that controls the speed of ethylene biosynthesis in plant tissues, thus serving as a primary target for biotic and abiotic stresses to modulate ethylene production. Despite the critical role of ACS in ethylene biosynthesis, only a few regulatory components regulating ACS stability or ACS transcript levels have been identified and characterized. Here we show a genetic approach for identifying novel regulatory components in ethylene biosynthesis by screening EMS-mutagenized Arabidopsis seeds.


Assuntos
Metanossulfonato de Etila/química , Etilenos/biossíntese , Testes Genéticos/métodos , Aminoácidos Cíclicos/metabolismo , Bioensaio , Citocininas/farmacologia , Genes Supressores , Mutação/genética , Fenótipo , Sementes/efeitos dos fármacos , Esterilização
16.
Sci Rep ; 10(1): 20951, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262413

RESUMO

1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity is one of the most beneficial traits of plant growth promoting (PGP) rhizobacteria responsible for protecting the plants from detrimental effects of abiotic and biotic stress. The strain S3 with ACC deaminase activity (724.56 nmol α-ketobutyrate mg-1 protein hr-1) was isolated from rhizospheric soil of turmeric (Curcuma longa), a medicinal plant, growing in Motihari district of Indian state, Bihar. The halotolerant strain S3, exhibited optimum growth at 8% (w/v) NaCl. It also exhibited multiple PGP traits such as indole acetic acid production (37.71 µg mL-1), phosphate solubilization (69.68 mg L-1), siderophore, hydrocyanic acid (HCN) and ammonia production as well as revealed antagonism against Rhizoctonia solani. The potential of isolated strain to alleviate salinity stress in tomato plants was investigated through pots trials by inoculating strain S3 through-seed bacterization, soil drenching, root dipping as well as seed treatment + soil drenching. The strain S3 inoculated through seed treatment and soil drenching method led to improved morphological attributes (root/shoot length, root/shoot fresh weight and root/shoot dry weight), photosynthetic pigment content, increased accumulation of osmolytes (proline and total soluble sugar), enhanced activities of antioxidants (Catalase and Peroxidase) and phenolic content in salt stressed tomato plants. The biochemical characterisation, FAMEs analysis and 16S rRNA gene sequencing revealed that strain S3 belongs to the genus Pseudomonas. The overall findings of the study revealed that Pseudomonas sp. strain S3 can be explored as an effective plant growth promoter which stimulate growth and improve resilience in tomato plants under saline condition.


Assuntos
Pseudomonas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Estresse Fisiológico , Aminoácidos Cíclicos/metabolismo , Antioxidantes/metabolismo , Biomassa , Carbono-Carbono Liases/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Ésteres/análise , Etilenos/metabolismo , Ácidos Graxos/análise , Germinação , Solanum lycopersicum/fisiologia , Osmose , Fenóis/análise , Fotossíntese , Filogenia , Desenvolvimento Vegetal , Folhas de Planta/enzimologia , Prolina/metabolismo , Rhizoctonia/fisiologia , Sementes/crescimento & desenvolvimento , Solubilidade , Açúcares/análise
17.
Nat Plants ; 6(11): 1335-1344, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106638

RESUMO

The plant hormone ethylene has many roles in growth and development1. In seed plants, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is converted into ethylene by ACC oxidase (ACO), and treatment with ACC induces ethylene responses2. However, non-seed plants lack ACO homologues3-8, which led us to examine the relationship between ACC and ethylene in the liverwort Marchantia polymorpha. Here, we demonstrate that ACC and ethylene can induce divergent growth responses in Marchantia. Ethylene increases plant and gemma size, induces more gemma cups and promotes gemmae dormancy. As predicted, Mpctr1-knockout mutants display constitutive ethylene responses, whereas Mpein3-knockout mutants exhibit ethylene insensitivity. Compared with the wild type, Mpctr1 gemmae have more and larger epidermal cells, whereas Mpein3 gemmae have fewer and smaller epidermal cells, suggesting that ethylene promotes cell division and growth in developing gemmae. By contrast, ACC treatment inhibits gemma growth and development by suppressing cell division, even in the Mpein3-knockout alleles. Knockout mutants of one or both ACC SYNTHASE (ACS) gene homologues produce negligible levels of ACC, have more and larger gemma cups, and have more-expanded thallus branches. Mpacs2 and Mpacs1 Mpacs2 gemmae also display a high frequency of abnormal apical notches (meristems) that are not observed in ethylene mutants. These findings reveal that ethylene and ACC have distinct functions, and suggest that ACC is a signalling molecule in Marchantia. ACC may be an evolutionarily conserved signal that predates its efficient conversion to ethylene in higher plants.


Assuntos
Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Marchantia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Técnicas de Inativação de Genes
18.
Plant Physiol Biochem ; 156: 345-356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002713

RESUMO

Although ethylene (ET) is an important participant in plant responses to salt stress, its role in the early period of acclimation, especially in the case of photosynthesis has not been revealed in detail. In this study, the effects of tolerable (100 mM) or lethal (250 mM) NaCl concentrations were investigated in hydroponically grown tomato (Solanum lycopersicum L. cv. Ailsa Craig) plants of different ET status, in wild type (WT) plants, in WT plants pre-treated with the ET generator 1-aminocyclopropane-1-carboxylic acid (ACC) and in ET insensitive, Never ripe (Nr/Nr) mutants for 1-, 6- and 24 h. In the leaves ACC treatment reduced the osmotic effect of salt stress, while Nr mutation enhanced not only osmotic but ionic component of salt stress at 100 mM NaCl. ET insensitivity caused greater decline in stomatal conductance and photosynthetic CO2 assimilation rate than in the controls under tolerable salt stress, but both ACC treatment and Nr mutation helped to maintain positive carbon assimilation under lethal salt stress after 24 h. Nr mutant leaves showed highly enhanced regulated non-photochemical quenching (NPQ) and therefore lower quantum yield of photosystem II (PSII), due to more intensive cyclic electron flow around photosystem I (CEF-PSI), which was further increased under high salinity. Exogenous ACC treatment lowered CEF-PSI and enhanced PSII photochemistry after 6 h of lethal salt stress. Controlling PSI photoinhibition, ET is suggested to be an important regulator of CEF-PSI and photoprotection under salt stress. Furthermore, the altered ET status could cause contrasting effects under different stress severity.


Assuntos
Aminoácidos Cíclicos/farmacologia , Etilenos/metabolismo , Fotossíntese , Estresse Salino , Solanum lycopersicum/fisiologia , Ácidos Carboxílicos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
19.
Eur J Med Chem ; 208: 112736, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966895

RESUMO

Tailor-made AAs are indispensable components of modern medicinal chemistry and are becoming increasingly prominent in new drugs. In fact, about 30% of small-molecule pharmaceuticals contain residues of tailor-made AAs or structurally related diamines and amino-alcohols. Cyclic tailor-made AAs present a particular value to rational structural design by virtue of their local conformational constraints and are widely used in lead optimization programs. The present review article highlights 34 compounds, all of which are derived from cyclic AAs, representing recently-approved, small-molecule pharmaceuticals as well as promising drug candidates currently in various phases of clinical study. For each compound, the discussion includes the discovery, therapeutic profile and optimized synthesis, with a focus on the preparation of cyclic tailor-made AA as the principal structural feature. The present review article is intended to serve as a reference source for organic, medicinal and process chemists along with other professionals working in the fields of drug design and pharmaceutical discovery.


Assuntos
Aminoácidos Cíclicos/química , Preparações Farmacêuticas/química , Aminoácidos Cíclicos/síntese química , Aminoácidos Cíclicos/farmacologia , Animais , Linhagem Celular , Química Farmacêutica , Desenho de Fármacos , Humanos , Preparações Farmacêuticas/síntese química
20.
Mol Biotechnol ; 62(11-12): 557-562, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32949367

RESUMO

The study of senescence preservative on cut flowers helps boost the commercial value of flowers. Senescence in cut flower is associated with an increase of ethylene production, and is significantly influenced by ethylene pathway. This study was conducted to investigate whether S-adenosyl-L-methionine (SAM) and aminocyclopropane-1-carboxylic acid (ACC) involved in the ethylene synthesis process are correlated with the lysosome. The alterations of lysosome which was treated with the ethylene precursors ACC and SAM in HeLa cell using the confocal laser scanning microscope were investigated. According to the experimental results, the activity of lysosomes increased concentration dependently by ACC treatment, however, no change was observed by SAM treatment. In addition, Liquid chromatography-mass spectrometry (LC/MS) analysis was performed to confirm the effect of lysosomal enzyme (LE) extracted from egg white on ACC reduction, but no change was observed. On the contrary, to confirm the effect of ACC on lysosomes, lysosomes were extracted from HeLa cells treated with 5 mM ACC and confirmed by FE-SEM. The results showed that the size of lysosomes treated with ACC is larger than that of the control, which was treated with distilled water. The lysosomes in the control group were distributed in various ranges from 0 to 800 nm, but those treated with 5 mM ACC were in the range of 400 nm to 800 nm or more. Therefore, lysosomes had no effect on ACC, the precursor of ethylene, the aging hormone of cut flowers, however, ACC had effect on lysosomes.


Assuntos
Aminoácidos Cíclicos/farmacologia , Lisossomos/ultraestrutura , S-Adenosilmetionina/farmacologia , Cromatografia Líquida , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Espectrometria de Massas , Microscopia Confocal , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...