Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.303
Filtrar
1.
Nucleic Acids Res ; 52(5): 2130-2141, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38407292

RESUMO

Outliers in scientific observations are often ignored and mostly remain unreported. However, presenting them is always beneficial since they could reflect the actual anomalies that might open new avenues. Here, we describe two examples of the above that came out of the laboratories of two of the pioneers of nucleic acid research in the area of protein biosynthesis, Paul Berg and Donald Crothers. Their work on the identification of D-aminoacyl-tRNA deacylase (DTD) and 'Discriminator hypothesis', respectively, were hugely ahead of their time and were partly against the general paradigm at that time. In both of the above works, the smallest and the only achiral amino acid turned out to be an outlier as DTD can act weakly on glycine charged tRNAs with a unique discriminator base of 'Uracil'. This peculiar nature of glycine remained an enigma for nearly half a century. With a load of available information on the subject by the turn of the century, our work on 'chiral proofreading' mechanisms during protein biosynthesis serendipitously led us to revisit these findings. Here, we describe how we uncovered an unexpected connection between them that has implications for evolution of different eukaryotic life forms.


Assuntos
Aminoaciltransferases , Eucariotos , Glicina , Biossíntese de Proteínas , Aminoácidos/genética , Aminoaciltransferases/genética , Glicina/genética , Aminoacil-RNA de Transferência/metabolismo , Pesquisa , Bioquímica , Eucariotos/química , Eucariotos/genética
2.
Elife ; 122024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372335

RESUMO

Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.e., formaldehyde and methylglyoxal in addition to acetaldehyde, generate adducts with aminoacyl-tRNAs, a substrate for protein synthesis. Plants are unique in possessing two distinct chiral proofreading systems, D-aminoacyl-tRNA deacylase1 (DTD1) and DTD2, of bacterial and archaeal origins, respectively. Extensive biochemical analysis revealed that only archaeal DTD2 can remove the stable D-aminoacyl adducts on tRNA thereby shielding archaea and plants from these system-generated aldehydes. Using Arabidopsis as a model system, we have shown that the loss of DTD2 gene renders plants susceptible to these toxic aldehydes as they generate stable alkyl modification on D-aminoacyl-tRNAs, which are recycled only by DTD2. Bioinformatic analysis identifies the expansion of aldehyde metabolising repertoire in land plant ancestors which strongly correlates with the recruitment of archaeal DTD2. Finally, we demonstrate that the overexpression of DTD2 offers better protection against aldehydes than in wild type Arabidopsis highlighting its role as a multi-aldehyde detoxifier that can be explored as a transgenic crop development strategy.


Assuntos
Aldeídos , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Bactérias/genética , Archaea/genética , Archaea/metabolismo , RNA de Transferência
3.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297033

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Assuntos
Antimaláricos , Aspartato-tRNA Ligase , Animais , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-tRNA Ligase/genética , Aminoacil-RNA de Transferência/metabolismo , Antimaláricos/farmacologia , Mamíferos/genética
4.
RNA ; 30(3): 298-307, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164606

RESUMO

Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.


Assuntos
Compostos de Boro , Peptídeos , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/química , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Eletroforese em Gel de Poliacrilamida , Biossíntese de Proteínas
5.
Nat Commun ; 14(1): 5582, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696823

RESUMO

Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.


Assuntos
Magnoliopsida , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/genética , RNA Mensageiro/genética , Anticódon , Ribossomos , Biossíntese de Proteínas
6.
Nat Commun ; 14(1): 5008, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591858

RESUMO

Genetic code expansion (GCE) offers many exciting opportunities for the creation of synthetic organisms and for drug discovery methods that utilize in vitro translation. One type of GCE, sense codon reassignment (SCR), focuses on breaking the degeneracy of the 61 sense codons which encode for only 20 amino acids. SCR has great potential for genetic code expansion, but extensive SCR is limited by the post-transcriptional modifications on tRNAs and wobble reading of these tRNAs by the ribosome. To better understand codon-tRNA pairing, here we develop an assay to evaluate the ability of aminoacyl-tRNAs to compete with each other for a given codon. We then show that hyperaccurate ribosome mutants demonstrate reduced wobble reading, and when paired with unmodified tRNAs lead to extensive and predictable SCR. Together, we encode seven distinct amino acids across nine codons spanning just two codon boxes, thereby demonstrating that the genetic code hosts far more re-assignable space than previously expected, opening the door to extensive genetic code engineering.


Assuntos
Aminoácidos , Magnoliopsida , Aminoácidos/genética , Código Genético , Aminoacil-RNA de Transferência , Bioensaio , Descoberta de Drogas
7.
ACS Chem Biol ; 18(10): 2233-2239, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37433044

RESUMO

Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are frequently needed for structural and functional studies of protein synthesis in the ribosome. Such conjugates are accessible by chemical solid-phase synthesis, allowing for the utmost flexibility of both the peptide and the RNA sequence. Commonly used protection group strategies, however, have severe limitations with respect to generating the characteristic Nα-formylmethionyl terminus because the formyl group of the conjugate synthesized at the solid support is easily cleaved during the final basic deprotection/release step. In this study, we demonstrate a simple solution to the problem by coupling appropriately activated Nα-formyl methionine to the fully deprotected conjugate. The structural integrity of the obtained Nα-formylmethionyl conjugate─and hence the chemoselectivity of the reaction─were verified by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry sequence analysis. Additionally, we confirmed the applicability of our procedure for structural studies by obtaining two structures of the ribosome in complex with either fMAI-nh-ACCA or fMFI-nh-ACCA in the P site and ACC-PMN in the A site of the bacterial ribosome at 2.65 and 2.60 Å resolution, respectively. In summary, our approach for hydrolysis-resistant Nα-formylated RNA-peptide conjugates is synthetically straightforward and opens up new avenues to explore ribosomal translation with high-precision substrate mimics.


Assuntos
Aminoacil-RNA de Transferência , RNA , Aminoacil-RNA de Transferência/metabolismo , RNA/metabolismo , Peptídeos/química , Ribossomos/metabolismo
8.
Postepy Biochem ; 69(1): 42-46, 2023 03 31.
Artigo em Polonês | MEDLINE | ID: mdl-37493554

RESUMO

Charcot-Marie-Tooth (CMT) is a genetic, incurable neurodegenerative disease which etiology is linked to mutations in almost hundred different genes. The disease affects peripheral nerves which control muscle work and their myelin sheath resulting in progressive muscular dystrophy. The most remarkable genes which mutations are associated with CMT phenotype, are genes encoding aminoacyl-tRNA synthases (aaRS). These proteins are enzymes which common role is to catalyze the reaction of amino acids transfer into tRNA molecules and thereby, to participate in translation of genetic code into the language of proteins. aaRS have been gaining new functions resulting from the mutations acquired in the course of evolution. These functions remain unidentified, despite unraveling the binding partners of aaRS. However, the ongoing molecular studies, which focus on mutations carried by CMT patients and model organisms, bring the researchers closer to unravel the novel functions of aaRS and their potential key role in CMT pathogenesis.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Doenças Neurodegenerativas , Humanos , Aminoacil-RNA de Transferência/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Mutação , RNA de Transferência/genética , RNA de Transferência/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(24): e2219292120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276405

RESUMO

Plants have two endosymbiotic organelles originated from two bacterial ancestors. The transition from an independent bacterium to a successful organelle would have required extensive rewiring of biochemical networks for its integration with archaeal host. Here, using Arabidopsis as a model system, we show that plant D-aminoacyl-tRNA deacylase 1 (DTD1), of bacterial origin, is detrimental to organellar protein synthesis owing to its changed tRNA recognition code. Plants survive this conflict by spatially restricting the conflicted DTD1 to the cytosol. In addition, plants have targeted archaeal DTD2 to both the organelles as it is compatible with their translation machinery due to its strict D-chiral specificity and lack of tRNA determinants. Intriguingly, plants have confined bacterial-derived DTD1 to work in archaeal-derived cytosolic compartment whereas archaeal DTD2 is targeted to bacterial-derived organelles. Overall, the study provides a remarkable example of the criticality of optimization of biochemical networks for survival and evolution of plant mitochondria and chloroplast.


Assuntos
Arabidopsis , Organelas , Organelas/metabolismo , Mitocôndrias/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Cloroplastos/metabolismo , RNA de Transferência/metabolismo , Arabidopsis/genética
10.
Nat Commun ; 14(1): 2704, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198183

RESUMO

In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.


Assuntos
Escherichia coli , Aminoacil-RNA de Transferência , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Peptídeos/química , Controle de Qualidade , Biossíntese de Proteínas
11.
Nature ; 617(7959): 200-207, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020024

RESUMO

In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.


Assuntos
Bactérias , Biossíntese de Proteínas , Humanos , Bactérias/genética , Bactérias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica , Ribossomos/genética , Ribossomos/metabolismo
12.
J Mol Model ; 29(4): 87, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872402

RESUMO

CONTEXT: Lymphatic filariasis, generally called as elephantiasis, is a vector-borne infectious disease caused by the filarial nematodes, mainly Wuchereria bancrofti, Brugia malayi, and Brugia timori, which are transmitted through mosquitoes. The infection affects the normal flow of lymph leading to abnormal enlargement of body parts, severe pain, permanent disability, and social stigma. Due to the development of resistance as well as toxic effects, existing medicines for lymphatic filariasis are becoming ineffective in killing the adult worms. It is essential to search novel filaricidal drugs with new molecular targets. Asparaginyl-tRNA synthetase (PDB ID: 2XGT) belongs to the group of aminoacyl-tRNA synthetases that catalyze specific attachment of amino acids to their tRNA during protein biosynthesis. Plants and their extracts are well-known medicinal practice for the management of several parasitic infectious diseases including filarial infections. METHODS: In this study, asparaginyl-tRNA synthetase of Brugia malayi was used as a target to perform virtual screening of plant phytoconstituents of Vitex negundo from IMPPAT database, which exhibits anti-filarial and anti-helminthic properties. A total of sixty-eight compounds from Vitex negundo were docked against asparaginyl-tRNA synthetase using Autodock module of PyRx tool. Among the 68 compounds screened, 3 compounds, negundoside, myricetin, and nishindaside, exhibited a higher binding affinity compared to standard drugs. The pharmacokinetic and physicochemical prediction, stability of ligand-receptor complexes via molecular dynamics simulation, and density functionality theory were done further for the top-scored ligands with receptor.


Assuntos
Aspartato-tRNA Ligase , Filariose Linfática , Vitex , Animais , Aminoacil-RNA de Transferência
13.
Biochem J ; 480(5): 307-318, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-36825659

RESUMO

Translational elongation factor EF-Tu, which delivers aminoacyl-tRNA to the ribosome, is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803. However, the sensitivity to ROS of chloroplast-localized EF-Tu (cpEF-Tu) of plants remains to be elucidated. In the present study, we generated a recombinant cpEF-Tu protein of Arabidopsis thaliana and examined its sensitivity to ROS in vitro. In cpEF-Tu that lacked a bound nucleotide, one of the two cysteine residues, Cys149 and Cys451, in the mature protein was sensitive to oxidation by H2O2, with the resultant formation of sulfenic acid. The translational activity of cpEF-Tu, as determined with an in vitro translation system, derived from Escherichia coli, that had been reconstituted without EF-Tu, decreased with the oxidation of a cysteine residue. Replacement of Cys149 with an alanine residue rendered cpEF-Tu insensitive to inactivation by H2O2, indicating that Cys149 might be the target of oxidation. In contrast, cpEF-Tu that had bound either GDP or GTP was less sensitive to oxidation by H2O2 than nucleotide-free cpEF-Tu. The addition of thioredoxin f1, a major thioredoxin in the Arabidopsis chloroplast, to oxidized cpEF-Tu allowed the reduction of Cys149 and the reactivation of cpEF-Tu, suggesting that the oxidation of cpEF-Tu might be a reversible regulatory mechanism that suppresses the chloroplast translation system in a redox-dependent manner.


Assuntos
Arabidopsis , Cisteína , Cisteína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Cloroplastos/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Guanosina Trifosfato/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220038, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633283

RESUMO

Ribosomal incorporation of d-α-amino acids (dAA) and N-methyl-l-α-amino acids (MeAA) with negatively charged sidechains, such as d-Asp, d-Glu, MeAsp and MeGlu, into nascent peptides is far more inefficient compared to those with neutral or positively charged ones. This is because of low binding affinity of their aminoacyl-transfer RNA (tRNA) to elongation factor-thermo unstable (EF-Tu), a translation factor responsible for accommodation of aminoacyl-tRNA onto ribosome. It is well known that EF-Tu binds to two parts of aminoacyl-tRNA, the amino acid moiety and the T-stem; however, the amino acid binding pocket of EF-Tu bearing Glu and Asp causes electric repulsion against the negatively charged amino acid charged on tRNA. To circumvent this issue, here we adopted two strategies: (i) use of an EF-Tu variant, called EF-Sep, in which the Glu216 and Asp217 residues in EF-Tu are substituted with Asn216 and Gly217, respectively; and (ii) reinforcement of the T-stem affinity using an artificially developed chimeric tRNA, tRNAPro1E2, whose T-stem is derived from Escherichia coli tRNAGlu that has high affinity to EF-Tu. Consequently, we could successfully enhance the incorporation efficiencies of d-Asp, d-Glu, MeAsp and MeGlu and demonstrated for the first time, to our knowledge, ribosomal synthesis of macrocyclic peptides containing multiple d-Asp or MeAsp. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
Aminoácidos , Fator Tu de Elongação de Peptídeos , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Aminoácidos/genética , Ribossomos/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(12): 1424-1428, 2022 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-36453973

RESUMO

As conserved enzymes with important functions, aminoacyl-tRNA synthetase are expressed ubiquitously in cells. These include cytoplasmic aminoacyl-tRNA synthetase, mitochondrial aminoacyl-tRNA synthetase and bifunctional aminoacyl-tRNA synthetase. Mitochondrial aminoacyl-tRNA synthetases catalyze the binding of amino acids with its corresponding tRNA in the mitochondria and participate in the translation of 13 subunits of oxidative phosphorylation enzyme complexes encoded by the mitochondrial genome. Mutations in genes encoding mitochondrial aminoacyl-tRNA synthase may cause a variety of genetic disorders. This review has summarized the clinical characteristics, molecular pathogenesis and treatment of genetic diseases caused by mutations of such genes.


Assuntos
Aminoacil-tRNA Sintetases , Genoma Mitocondrial , Humanos , Aminoacil-RNA de Transferência , Genes Mitocondriais , Aminoacil-tRNA Sintetases/genética , Mitocôndrias/genética
16.
J Am Chem Soc ; 144(47): 21494-21501, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394560

RESUMO

Translation is an elementary cellular process that involves a large number of factors interacting in a concerted fashion with the ribosome. Numerous natural products have emerged that interfere with the ribosomal function, such as puromycin, which mimics an aminoacyl tRNA and causes premature chain termination. Here, we introduce a photoswitchable version of puromycin that, in effect, puts translation under optical control. Our compound, termed puroswitch, features a diazocine that allows for reversible and nearly quantitative isomerization and pharmacological modulation. Its synthesis involves a new photoswitchable amino acid building block. Puroswitch shows little activity in the dark and becomes substantially more active and cytotoxic, in a graded fashion, upon irradiation with various wavelengths of visible light. In vitro translation assays confirm that puroswitch inhibits translation with a mechanism similar to that of puromycin itself. Once incorporated into nascent proteins, puroswitch reacts with standard puromycin antibodies, which allows for tracking de novo protein synthesis using western blots and immunohistochemistry. As a cell-permeable small molecule, puroswitch can be used for nascent proteome profiling in a variety of cell types, including primary mouse neurons. We envision puroswitch as a useful biochemical tool for the optical control of translation and for monitoring newly synthesized proteins in defined locations and at precise time points.


Assuntos
Luz , Aminoacil-RNA de Transferência , Animais , Camundongos , Puromicina/farmacologia , Western Blotting , Aminoácidos
17.
Nucleic Acids Res ; 50(21): 12515-12526, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36370110

RESUMO

In Escherichia coli, the heat shock protein 15 (Hsp15) is part of the cellular response to elevated temperature. Hsp15 interacts with peptidyl-tRNA-50S complexes that arise upon dissociation of translating 70S ribosomes, and is proposed to facilitate their rescue and recycling. A previous structure of E. coli Hsp15 in complex with peptidyl-tRNA-50S complex reported a binding site located at the central protuberance of the 50S subunit. By contrast, recent structures of RqcP, the Hsp15 homolog in Bacillus subtilis, in complex with peptidyl-tRNA-50S complexes have revealed a distinct site positioned between the anticodon-stem-loop (ASL) of the P-site tRNA and H69 of the 23S rRNA. Here we demonstrate that exposure of E. coli cells to heat shock leads to a decrease in 70S ribosomes and accumulation of 50S subunits, thus identifying a natural substrate for Hsp15 binding. Additionally, we have determined a cryo-EM reconstruction of the Hsp15-50S-peptidyl-tRNA complex isolated from heat shocked E. coli cells, revealing that Hsp15 binds to the 50S-peptidyl-tRNA complex analogously to its B. subtilis homolog RqcP. Collectively, our findings support a model where Hsp15 stabilizes the peptidyl-tRNA in the P-site and thereby promotes access to the A-site for putative rescue factors to release the aberrant nascent polypeptide chain.


Assuntos
Escherichia coli , Proteínas de Choque Térmico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Ribossomos/metabolismo , RNA Ribossômico 23S/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo
18.
J Biol Chem ; 298(11): 102509, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36300356

RESUMO

Translation terminates by releasing the polypeptide chain in one of two chemical reactions catalyzed by the ribosome. Release is also a target for engineering, as readthrough of a stop codon enables incorporation of unnatural amino acids and treatment of genetic diseases. Hydrolysis of the ester bond of peptidyl-tRNA requires conformational changes of both a class I release factor (RF) protein and the peptidyl transferase center of a large subunit rRNA. The rate-limiting step was proposed to be hydrolysis at physiological pH and an RF conformational change at higher pH, but evidence was indirect. Here, we tested this by activating the ester electrophile at the Escherichia coli ribosomal P site using a trifluorine-substituted amino acid. Quench-flow kinetics revealed that RF1-catalyzed release could be accelerated, but only at pH 6.2-7.7 and not higher pH. This provided direct evidence for rate-limiting hydrolysis at physiological or lower pH and a different rate limitation at higher pH. Additionally, we optimized RF-free release catalyzed by unacylated tRNA or the CCA trinucleotide (in 30% acetone). We determined that these two model release reactions, although very slow, were surprisingly accelerated by the trifluorine analog but to a different extent from each other and from RF-catalyzed release. Hence, hydrolysis was rate limiting in all three reactions. Furthermore, in 20% ethanol, we found that there was significant competition between fMet-ethyl ester formation and release in all three release reactions. We thus favor proposed mechanisms for translation termination that do not require a fully-negatively-charged OH- nucleophile.


Assuntos
Ésteres , Fatores de Terminação de Peptídeos , Fatores de Terminação de Peptídeos/metabolismo , Hidrólise , Ésteres/metabolismo , Ribossomos/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Códon de Terminação/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Terminação Traducional da Cadeia Peptídica/fisiologia
19.
Elife ; 112022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264623

RESUMO

Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structurally unrelated cyclic peptides didemnin B and ternatin-4 bind to the eEF1A(GTP)-aa-tRNA ternary complex and inhibit translation but have different effects on protein synthesis in vitro and in vivo. Here, we employ single-molecule fluorescence imaging and cryogenic electron microscopy to determine how these natural products inhibit translational elongation on mammalian ribosomes. By binding to a common site on eEF1A, didemnin B and ternatin-4 trap eEF1A in an intermediate state of aa-tRNA selection, preventing eEF1A release and aa-tRNA accommodation on the ribosome. We also show that didemnin B and ternatin-4 exhibit distinct effects on the dynamics of aa-tRNA selection that inform on observed disparities in their inhibition efficacies and physiological impacts. These integrated findings underscore the value of dynamics measurements in assessing the mechanism of small-molecule inhibition and highlight potential of single-molecule methods to reveal how distinct natural products differentially impact the human translation mechanism.


Assuntos
Produtos Biológicos , Aminoacil-RNA de Transferência , Animais , Humanos , Produtos Biológicos/metabolismo , Códon/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos/genética , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Ribossomos/metabolismo , Aminoacil-RNA de Transferência/metabolismo
20.
J Phys Chem B ; 126(42): 8447-8459, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36251478

RESUMO

Protein synthesis involves a complex series of large-scale conformational changes in the ribosome. While long-lived intermediate states of these processes can be characterized by experiments, computational methods can be used to identify the interactions that contribute to the rate-limiting free-energy barriers. To this end, we use a simplified energetic model to perform molecular dynamics (MD) simulations of aminoacyl-tRNA (aa-tRNA) accommodation on the ribosome. While numerous studies have probed the energetics of the early stages of accommodation, we focus on the final stage of accommodation, where the 3'-CCA tail of aa-tRNA enters the peptidyl transferase center (PTC). These simulations show how a distinct intermediate is induced by steric confinement of the tail, immediately before it completes accommodation. Multiple pathways for 3'-CCA tail accommodation can be quantitatively distinguished, where the tail enters the PTC by moving past a pocket enclosed by Helix 89, 90, and 92, or through an alternate route formed by Helix 93 and the P-site tRNA. C2573, located within Helix 90, is shown to provide the largest contribution to this late-accommodation steric barrier, such that sub-Å perturbations to this residue can alter the time scale of tail accommodation by nearly an order of magnitude. In terms of biological function, these calculations suggest how this late-stage sterically induced barrier may contribute to tRNA proofreading by the ribosome.


Assuntos
Peptidil Transferases , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Peptidil Transferases/metabolismo , Ribossomos/química , RNA de Transferência/química , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...