Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.156
Filtrar
1.
Iran Biomed J ; 28(1): 46-52, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445441

RESUMO

Background: The potential anticancer effect of melittin has motivated scientists to find its exact molecular mechanism of action. There are few data on the effect of melittin on the UPR and autophagy as two critical pathways involved in tumorigenesis of colorectal and drug resistance. This study aimed to investigate the effect of melittin on these pathways in the colorectal cancer (CRC) HCT116 cells. Methods: MTT method was carried out to assess the cytotoxicity of melittin on the HCT116 cell line for 24, 48, and 72 h. After selecting the optimal concentrations and treatment times, the gene expression of autophagy flux markers (LC3-ßII and P62) and UPR markers (CHOP and XBP-1s) were determined using qRT-PCR. The protein level of autophagy initiation marker (Beclin1) was also determined by Western blotting. Results: MTT assay showed a cytotoxic effect of melittin on the HCT116 cells. The increase in LC3-ßII and decrease in P62 mRNA expression levels, along with the elevation in the Beclin1 protein level, indicated the stimulatory role of melittin on the autophagy. Melittin also significantly enhanced the CHOP and XBP-1s expressions at mRNA level, suggesting the positive role of the melittin on the UPR activation. Conclusion: This study shows that UPR and autophagy can potentially be considered as two key signaling pathways in tumorigenesis, which can be targeted by the BV melittin in the HCT116 cells. Further in vivo evaluations are recommended to verify the obtained results.


Assuntos
Neoplasias Colorretais , Meliteno , Humanos , Células HCT116 , Meliteno/farmacologia , Meliteno/genética , Meliteno/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Resposta a Proteínas não Dobradas , Autofagia , RNA Mensageiro/metabolismo , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
2.
Sci Rep ; 14(1): 5797, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461178

RESUMO

Enterotoxins are a type of toxins that primarily affect the intestines. Understanding their harmful effects is essential for food safety and medical research. Current methods lack high-throughput, robust, and translatable models capable of characterizing toxin-specific epithelial damage. Pressing concerns regarding enterotoxin contamination of foods and emerging interest in clinical applications of enterotoxins emphasize the need for new platforms. Here, we demonstrate how Caco-2 tubules can be used to study the effect of enterotoxins on the human intestinal epithelium, reflecting toxins' distinct pathogenic mechanisms. After exposure of the model to toxins nigericin, ochratoxin A, patulin and melittin, we observed dose-dependent reductions in barrier permeability as measured by TEER, which were detected with higher sensitivity than previous studies using conventional models. Combination of LDH release assays and DRAQ7 staining allowed comprehensive evaluation of toxin cytotoxicity, which was only observed after exposure to melittin and ochratoxin A. Furthermore, the study of actin cytoskeleton allowed to assess toxin-induced changes in cell morphology, which were only caused by nigericin. Altogether, our study highlights the potential of our Caco-2 tubular model in becoming a multi-parametric and high-throughput tool to bridge the gap between current enterotoxin research and translatable in vivo models of the human intestinal epithelium.


Assuntos
Toxinas Bacterianas , Enterotoxinas , Humanos , Enterotoxinas/toxicidade , Toxinas Bacterianas/toxicidade , Células CACO-2 , Meliteno/farmacologia , Nigericina/farmacologia , Mucosa Intestinal/patologia
3.
Nano Lett ; 24(9): 2698-2704, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408754

RESUMO

Artificial organelles (AnOs) are in the spotlight as systems to supplement biochemical pathways in cells. While polymersome-based artificial organelles containing enzymes to reduce reactive oxygen species (ROS) are known, applications requiring control of their enzymatic activity and cell-targeting to promote intracellular ROS detoxification are underexplored. Here, we introduce advanced AnOs where the chemical composition of the membrane supports the insertion of pore-forming melittin, enabling molecular exchange between the AnO cavity and the environment, while the encapsulated lactoperoxidase (LPO) maintains its catalytic function. We show that H2O2 outside AnOs penetrates through the melittin pores and is rapidly degraded by the encapsulated enzyme. As surface attachment of cell-penetrating peptides facilitates AnOs uptake by cells, electron spin resonance revealed a remarkable enhancement in intracellular ROS detoxification by these cell-targeted AnOs compared to nontargeted AnOs, thereby opening new avenues for a significant reduction of oxidative stress in cells.


Assuntos
Células Artificiais , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Meliteno , Estresse Oxidativo
4.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38307819

RESUMO

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Assuntos
Dependovirus , Meliteno , Camundongos , Masculino , Animais , Humanos , Dependovirus/genética , Meliteno/farmacologia , Meliteno/genética , Transdução Genética , Células HEK293 , Camundongos Endogâmicos C57BL , Vetores Genéticos
5.
Arch Microbiol ; 206(3): 93, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329629

RESUMO

The present work aimed to examine the intracellular antibacterial efficacy of Recombinant Lactobacillus acidophilus/antimicrobial peptides (AMPs) Melittin and Alyteserin-1a, specifically targeting Gram-negative bacteria. The first assessment was to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Recombinant L. acidophilus/AMPs versus Gram-negative and Gram-positive bacteria. In addition, the researchers examined the in vitro viability and safety of AMPs generated by L. acidophilus. The experiments included exposing the AMPs to elevated temperatures, proteases, cationic salts at physiological levels, and specific pH settings. The safety aspect was evaluated using hemolytic analysis utilizing sheep erythrocytes; cytotoxicity assays employing cell lines, and experiments on beneficial gut lactobacilli. An experiment was done using a time-kill method to assess the intracellular antibacterial efficacy of Recombinant L. acidophilus/AMPs compared to pathogenic varieties in HEp-2 cells. Previous investigations have shown that the MBC levels of recombinant L. acidophilus/AMPs were consistently two to four times higher than the equivalent MIC values when evaluated versus Gram-negative bacteria. Furthermore, the stability of the Recombinant L. acidophilus/AMPs showed variability when exposed to elevated temperatures (70 and 90 â„ƒ), treated with protease enzymes (proteinase K, lysozyme), exposed to higher concentrations of physiological salts (150 mM NaCl and 2 mM MgCl2), and varying pH levels (ranging from 4.0 to 9.0). The recombinant L. acidophilus/AMPs are non-hemolytic towards sheep erythrocytes, exhibit little cytotoxicity in RAW 264.7 and HEp-2 cells, and are considered safe when compared to beneficial gut lactobacilli. The research examined the intracellular bacteriostatic effects of recombinant L. acidophilus/AMPs on Gram-negative bacteria inside HEp-2 cells. Nevertheless, no notable bactericidal impact was seen on Gram-positive bacteria (P > 0.05). The research shows that recombinant L. acidophilus/AMPs, namely (L. acidophilus/melittin/Alyteserin-1a) as the focus of the investigation, effectively eliminate Gram-negative bacteria. Therefore, more investigation is necessary to elaborate on these discoveries.


Assuntos
Anti-Infecciosos , Meliteno , Animais , Ovinos , Meliteno/farmacologia , Sais , Bactérias , Antibacterianos/farmacologia , Lactobacillus , Peptídeo Hidrolases , Peptídeos Antimicrobianos
6.
J Phys Chem Lett ; 15(7): 1930-1935, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38346015

RESUMO

Non-equilibrium kinetics techniques like pressure-jump nuclear magnetic resonance (NMR) are powerful in tracking changes in oligomeric populations and are not limited by relaxation rates for the time scales of exchange that can be probed. However, these techniques are less sensitive to minor, transient populations than are Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments. We integrated non-equilibrium pressure-jump and equilibrium CPMG relaxation dispersion data to fully map the kinetic landscape of melittin tetramerization. While monomeric peptides weakly form dimers (Kd,D/M ≈ 26 mM) whose population never exceeds 1.6% at 288 K, dimers associate tightly to form stable tetrameric species (Kd,T/D ≈ 740 nM). Exchange between the monomer and dimer, along with exchange between the dimer and tetramer, occurs on the millisecond time scale. The NMR approach developed herein can be readily applied to studying the folding and misfolding of a wide range of oligomeric assemblies.


Assuntos
Imageamento por Ressonância Magnética , Meliteno , Ressonância Magnética Nuclear Biomolecular/métodos , Modelos Moleculares , Espectroscopia de Ressonância Magnética
7.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338303

RESUMO

The development of antibiotic-resistant microorganisms is a major global health concern. Recently, there has been an increasing interest in antimicrobial peptides as a therapeutic option. This study aimed to evaluate the triple-action (broad-spectrum antibacterial, anti-biofilm, and anti-quorum sensing activities) of melittin, a membrane-active peptide present in bee venom. The minimum inhibitory concentration and minimum bactericidal concentration of the melittin were determined using the microdilution method and agar plate counting. Growth curve analysis revealed that melittin showed a concentration-dependent antibacterial activity. Scanning electron microscope analysis revealed that melittin treatment altered the morphology. Confocal laser scanning microscope revealed that melittin increased the membrane permeability and intracellular ROS generation in bacteria, all of which contribute to bacterial cell death. In addition, the crystal violet (CV) assay was used to test the anti-biofilm activity. The CV assay demonstrated that melittin inhibited biofilm formation and eradicated mature biofilms. Biofilm formation mediated by quorum sensing (QS) plays a major role in this regard, so molecular docking and molecular dynamics analysis confirmed that melittin interacts with LasR receptors through hydrogen bonds, and further evaluates the anti-QS activity of melittin through the production of virulence factors (pyocyanin, elastase, and rhamnolipid), exopolysaccharides secretion, and bacterial motility, that may be the key to inhibiting the biofilm formation mechanism. The present findings highlight the promising role of melittin as a broad-spectrum antibacterial, anti-biofilm agent, and potential QS inhibitor, providing a new perspective and theoretical basis for the development of alternative antibiotics.


Assuntos
Meliteno , Percepção de Quorum , Meliteno/farmacologia , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/química , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa/fisiologia
8.
Front Immunol ; 15: 1326033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318188

RESUMO

Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.


Assuntos
Venenos de Abelha , Meliteno , Meliteno/farmacologia , Meliteno/química , Meliteno/metabolismo , Peptídeos Antimicrobianos , Venenos de Abelha/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais
9.
Toxicon ; 239: 107611, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211805

RESUMO

Melittin is honey bee venom's primary and most toxic pharmacologically active component. Melittin causes haemolysis, lymphocyte lysis, long-term pain, localised inflammation followed by rhabdomyolysis, and severe renal failure. Renal failure or cardiovascular complications could lead to the victim's death. Severe honey bee bites are treated with general medication involving antihistaminic, anti-inflammatory, and analgesic drugs, as a specific treatment option is unavailable. An earlier study showed the anti-hemolysis and anti-lymphocyte lysis activity of mini- αA-crystallin (MAC), a peptide derived from human eye lens alpha-crystallin. MAC's use has often been restricted despite its high therapeutic potential due to its poor skin permeability. This study compared the skin permeation, anti-inflammatory and analgesic activities of natural peptide MAC and its modified version (MAC-GRD) formed by attaching cell-penetrating peptide (CPP) and GRD amino residues into MAC. Gel formulations were prepared for MAC and MAC-GRD peptides using carbopol (1% w/w), Tween 80 (1%), and ethanol (10%). An ex-vivo skin permeation study was performed using a vertical-type Franz diffusion apparatus. Preclinical in-vivo experiments were conducted to compare the native and modified peptide formulations against melittin-induced toxicity in Wistar rats. MAC gel, MAC-GRD gel and 1% hydrocortisone cream significantly reduced the melittin-induced writhing (20.16 ± 0.792) response in rats with 15.16 ± 0.47, 11.16 ± 0.477 and 12.66 ± 0.66 wriths, respectively. There was a significant reduction in melittin-induced inflammation when MAC-GRD gel was applied immediately after melittin administration. At 0.5, 1, 3, and 5 h, the MAC-GRD-treated rat paws were 0.9 ± 0.043 mm, 0.750 ± 0.037 mm, 0.167 ± 0.0070 mm, and 0.133 ± 0.031 mm thick. Administration of melittin resulted in reduced GSH (antioxidant) levels (47.33 ± 0.760 µg/mg). However, treatment with MAC-GRD gel (71.167 ± 0.601 µg/mg), MAC gel (65.167 ± 1.138 µg/mg), and 1% hydrocortisone (68.33 ± 0.667 µg/mg) significantly increased the antioxidant enzyme levels. MAC-GRD gel significantly reduced the elevated MDA levels (6.933 ± 0.049 nmol/mg) compared to the melittin group (12.533 ± 0.126 nmol/mg), followed by the 1% hydrocortisone (7.367 ± 0.049 nmol/mg) and MAC gel (7.917 ± 0.048 nmol/mg). MAC-GRD demonstrated more skin permeability and superior anti-inflammatory, analgesic, and antioxidant activities when compared to MAC gel. When compared to standard 1% hydrocortisone cream, MAC-GRD had better anti-inflammatory, analgesic, antioxidant, and comparable action in anti-oxidant restoration against melittin. These findings suggest that the developed MAC-GRD gel formulation could help to treat severe cases of honey bee stings.


Assuntos
Cristalinas , Mordeduras e Picadas de Insetos , Insuficiência Renal , Ratos , Abelhas , Humanos , Animais , Meliteno/farmacologia , Hidrocortisona , Antioxidantes , Ratos Wistar , Peptídeos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Analgésicos , Inflamação
10.
ACS Infect Dis ; 10(2): 763-778, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38259029

RESUMO

Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in the inner leaflet. Molecular dynamics simulations revealed that the positively charged helical C-terminus of melittin anchors rapidly into the hydrophilic headgroup region of KLA, while the flexible N-terminus makes contacts with the phosphate groups of KLA, supporting melittin penetration into the boundary between the hydrophilic and hydrophobic regions of the lipids. Electrochemical techniques confirmed the binding of melittin to the model membrane. To probe the peptide conformation and orientation during interaction with the membrane, polarization modulation infrared reflection absorption spectroscopy was used. The measurements revealed conformational changes in the peptide, accompanied by reorientation and translocation of the peptide at the membrane surface. The study suggests that melittin insertion into the outer membrane affects its permeability and capacitance but does not disturb the membrane's bilayer structure, indicating a distinct mechanism of the peptide action on the outer membrane of Gram-negative bacteria.


Assuntos
Peptídeos Antimicrobianos , Lipopolissacarídeos , Lipopolissacarídeos/química , Meliteno/química , Peptídeos/química , Bactérias Gram-Negativas/metabolismo
11.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255940

RESUMO

Melittin, a natural antimicrobial peptide, has broad-spectrum antimicrobial activity. This has resulted in it gaining increasing attention as a potential antibiotic alternative; however, its practical use has been limited by its weak antimicrobial activity, high hemolytic activity, and low proteolytic stability. In this study, N-terminal fatty acid conjugation was used to develop new melittin-derived lipopeptides (MDLs) to improve the characteristics of melittin. Our results showed that compared with native melittin, the antimicrobial activity of MDLs was increased by 2 to 16 times, and the stability of these MDLs against trypsin and pepsin degradation was increased by 50 to 80%. However, the hemolytic activity of the MDLs decreased when the length of the carbon chain of fatty acids exceeded 10. Among the MDLs, the newly designed analog Mel-C8 showed optimal antimicrobial activity and protease stability. The antimicrobial mechanism studied revealed that the MDLs showed a rapid bactericidal effect by interacting with lipopolysaccharide (LPS) or lipoteichoic acid (LTA) and penetrating the bacterial cell membrane. In conclusion, we designed and synthesized a new class of MDLs with potent antimicrobial activity, high proteolytic stability, and low hemolytic activity through N-terminal fatty acid conjugation.


Assuntos
Endopeptidases , Meliteno , Meliteno/farmacologia , Peptídeo Hidrolases , Antibacterianos/farmacologia , Ácidos Graxos/farmacologia , Lipopeptídeos
12.
J Toxicol Environ Health B Crit Rev ; 27(2): 73-90, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247328

RESUMO

Africanized bees have spread across the Americas since 1956 and consequently resulted in human and animal deaths attributed to massive attacks related to exposure from Argentina to the USA. In Brazil, more than 100,000 accidents were registered in the last 5 years with a total of 303 deaths. To treat such massive attacks, Brazilian researchers developed the first specific antivenom against Africanized honey bee sting exposure. This unique product, the first of its kind in the world, has been safely tested in 20 patients during a Phase 2 clinical trial. To develop the antivenom, a standardized process was undertaken to extract primary venom antigens from the Africanized bees for immunization of serum-producing horses. This process involved extracting, purifying, fractionating, characterizing, and identifying the venom (apitoxin) employing mass spectrometry to generate standardized antigen for hyperimmunization of horses using the major toxins (melittin and its isoforms and phospholipase A2). The current guide describes standardization of the entire production chain of venom antigens in compliance with good manufacturing practices (GMP) required by regulatory agencies. Emphasis is placed upon the welfare of bees and horses during this process, as well as the development of a new biopharmaceutical to ultimately save lives.


Assuntos
Venenos de Abelha , Mordeduras e Picadas de Insetos , Abelhas , Humanos , Animais , Antivenenos/uso terapêutico , Mordeduras e Picadas de Insetos/tratamento farmacológico , Venenos de Abelha/análise , Venenos de Abelha/química , Meliteno/análise , Meliteno/química , Fosfolipases A2 , Antígenos
13.
ACS Appl Bio Mater ; 7(2): 685-691, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36820798

RESUMO

Monolayer-protected atomically precise metal nanoclusters (MPCs) have potential applications in catalysis, imaging, and drug delivery. Understanding their interactions with biomolecules such as peptides is of paramount interest for their use in cell imaging and drug delivery. Here we have carried out atomistic molecular dynamics simulations to investigate the interactions between MPCs and an anticancer peptide, melittin. Melittin gets attached to the MPCs surface by the formation of multiple hydrogen bonds between its amino acid residues with MPCs ligands. Additionally, the positively charged Lys, Arg, and peptide's N-terminal strongly anchor the peptide to the MPC metal surface, providing extra stabilization.


Assuntos
Meliteno , Peptídeos , Peptídeos/química , Ouro/química
14.
J Pept Sci ; 30(2): e3543, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37734745

RESUMO

The standard GAFF2 force field parameterization has been refined for the fluorinated alcohols 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 1,1,1,3,3,3-hexafluoropropan-2-one (HFA), which are commonly used to study proteins and peptides in biomimetic media. The structural and dynamic properties of both proteins and peptides are significantly influenced by the biomimetic environment created by the presence of these cosolvents in aqueous solutions. Quantum mechanical calculations on stable conformers were used to parameterize the atomic charges. Different systems, such as pure liquids, aqueous solutions, and systems formed by melittin protein and cosolvent/water solutions, have been used to validate the new models. The calculated macroscopic and structural properties are in agreement with experimental findings, supporting the validity of the newly proposed models.


Assuntos
Álcoois , Meliteno , Meliteno/química , Solventes/química , Álcoois/química , Peptídeos/química , Proteínas/química , Água/química , Trifluoretanol/química
15.
J Control Release ; 365: 802-817, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092255

RESUMO

Melittin (M) has attracted increasing attention for its significant antitumor effects and various immunomodulatory effects. However, various obstacles such as the short plasma half-life and adverse reactions restrict its application. This study aimed to systematically investigate the self-assembly mechanism, components of the protein corona, targeting behavior, and anti-4 T1 tumor effect of vitamin E-succinic acid-(glutamate)n /melittin nanoparticles with varying amounts of glutamic acid. Here, we present a new vitamin E-succinic acid-(glutamate)5 (E5), vitamin E-succinic acid-(glutamate)10 (E10) or vitamin E-succinic acid-(glutamate)15 (E15), and their co-assembly system with positively charged melittin in water. The molecular dynamics simulations demonstrated that the electrostatic energy and van der Waals force in the system decreased significantly with the increase in the amount of glutamic acid. The melittin and E15 system exhibited the optimal stability for nanoparticle self-assembly. When nanoparticles derived from different self-assembly systems were co-incubated with plasma from patients with breast cancer, the protein corona showed heterogeneity. In vivo imaging demonstrated that an increase in the number of glutamic acid residues enhanced circulation duration and tumor-targeting effects. Both in vitro and in vivo antitumor evaluation indicated a significant increase in the antitumor effect with the addition of glutamic acid. According to our research findings, the number of glutamic acid residues plays a crucial role in the targeted delivery of melittin for immunomodulation and inhibition of 4 T1 breast cancer. Due to the self-assembly capabilities of vitamin E-succinic acid-(glutamate)n in water, these nanoparticles carry significant potential for delivering cationic peptides such as melittin.


Assuntos
Neoplasias da Mama , Nanopartículas , Coroa de Proteína , Humanos , Feminino , Ácido Glutâmico , Meliteno/química , Meliteno/farmacologia , Ácido Succínico , Vitamina E , Neoplasias da Mama/patologia , Nanopartículas/química , Água
16.
Neurochem Res ; 49(2): 348-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37812268

RESUMO

Melittin, a principal constituent of honeybee venom, exhibits diverse biological effects, encompassing anti-inflammatory capabilities and neuroprotective actions against an array of neurological diseases. In this study, we probed the prospective protective influence of melittin on cerebral ischemia, focusing on its anti-inflammatory activity. Mechanistically, we explored whether monocyte chemotactic protein-induced protein 1 (MCPIP1, also known as ZC3H12A), a recently identified zinc-finger protein, played a role in melittin-mediated anti-inflammation and neuroprotection. Male C57/BL6 mice were subjected to distal middle cerebral artery occlusion to create a focal cerebral cortical ischemia model, with melittin administered intraperitoneally. We evaluated motor functions, brain infarct volume, cerebral blood flow, and inflammatory marker levels within brain tissue, employing quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assays, and western blotting. In vitro, an immortalized BV-2 microglia culture was stimulated with lipopolysaccharide (LPS) to establish an inflammatory cell model. Post-melittin exposure, cell viability, and cytokine expression were examined. MCPIP1 was silenced using siRNA in LPS-induced BV-2 cells, with the ensuing nuclear translocation of nuclear factor-κB assessed through cellular immunofluorescence. In vivo, melittin enhanced motor functions, diminished infarction, fostered blood flow restoration in ischemic brain regions, and markedly inhibited the expression of inflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor-α, and nuclear factor-κB). In vitro, melittin augmented MCPIP1 expression in LPS-induced BV-2 cells and ameliorated inflammation-induced cell death. The neuroprotective effect conferred by melittin was attenuated upon MCPIP1 knockdown. Our findings establish that melittin-induced tolerance to ischemic injury is intrinsically linked with its anti-inflammatory capacity. Moreover, MCPIP1 is, at the very least, partially implicated in this process.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Meliteno/farmacologia , Meliteno/uso terapêutico , Meliteno/genética , Regulação para Cima , Lipopolissacarídeos/farmacologia , Estudos Prospectivos , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Isquemia/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Microglia/metabolismo
17.
Int J Antimicrob Agents ; 63(2): 107054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072166

RESUMO

The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae strains causes severe problems in the treatment of bacterial infections owing to limited treatment options. Especially, carbapenem-resistant Klebsiella pneumoniae (CRKP) is rapidly spreading worldwide and is emerging as a new cause of drug-resistant healthcare-associated infections. CRKP also has been announced by the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) as one of the most pressing antibiotic resistance threats. Antimicrobial peptides (AMPs) are drawing considerable attention as ideal antibiotic alternative candidates to combat MDR bacterial infections. In a previous study, Osmin is composed of 17 amino acids and is isolated from solitary bee (Osmia rufa) venom. Herein, we evaluated the potential of Osmin to be used against drug-resistant K. pneumoniae as an alternative to conventional antibiotics. Osmin exhibited significant antimicrobial and anti-biofilm activity and lower toxicity than melittin, a well-known bee venom peptide. Additionally, we confirmed that it possesses a bactericidal mechanism that rapidly destroys bacterial membranes. Osmin was relatively more stable than melittin under the influence of various environmental factors and unlike conventional antibiotics, it exhibited a low bacterial resistance risk. During in vivo tests, Osmin reduced bacterial growth and the expression of pro-inflammatory cytokines and fibrosis-related genes in mice with CRKP-induced sepsis. Overall, our results indicate a high potential for Osmin to be used as a valuable therapeutic agent against drug-resistant K. pneumoniae infections.


Assuntos
Anti-Infecciosos , Venenos de Abelha , Infecções por Klebsiella , Abelhas , Camundongos , Animais , Klebsiella pneumoniae , Peptídeos Antimicrobianos , Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Meliteno/farmacologia , Meliteno/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Testes de Sensibilidade Microbiana
18.
Redox Rep ; 29(1): 2290864, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149613

RESUMO

OBJECTIVES: Melittin, the main component of bee venom, is a natural anti-inflammatory substance, in addition to its ability to fight cancer, antiviral, and useful in diabetes treatment. This study seeks to determine whether melittin can protect renal tissue from sepsis-induced damage by preventing ferroptosis and explore the protective mechanism. METHODS: In this study, we investigated the specific protective mechanism of melittin against sepsis-induced renal injury by screening renal injury indicators and ferroptosis -related molecules and markers in animal and cellular models of sepsis. RESULTS: Our results showed that treatment with melittin attenuated the pathological changes in mice with lipopolysaccharide-induced acute kidney injury. Additionally, we found that melittin attenuated ferroptosis in kidney tissue by enhancing GPX4 expression, which ultimately led to the reduction of kidney tissue injury. Furthermore, we observed that melittin enhanced NRF2 nuclear translocation, which consequently upregulated GPX4 expression. our findings suggest that melittin may be a potential therapeutic agent for the treatment of sepsis-associated acute kidney injury by inhibiting ferroptosis through the GPX4/NRF2 pathway. CONCLUSIONS: Our study reveals the protective mechanism of melittin in septic kidney injury and provides a new therapeutic direction for Sepsis-AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Sepse , Animais , Camundongos , Meliteno/farmacologia , Meliteno/uso terapêutico , Fator 2 Relacionado a NF-E2 , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Sepse/complicações , Sepse/tratamento farmacológico
19.
Biotechnol Lett ; 46(1): 97-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109017

RESUMO

OBJECTIVES: Microalgae cell wall affects the recovery of lipids, representing one of the main difficulties in the development of biofuel production. This work aimed to test a new method based on melittin peptide to induce a cellular disruption in N. oleoabundans. RESULTS: Neochloris oleoabundans cells were grown at 32 °C in the presence of a high concentration of nitrate-phosphate, causing a cell disruption extent of 83.6%. Further, a two-fold increase in lipid recovery following melittin treatment and solvent extraction was observed. Additionally, it was possible to verify the effects of melittin, both before and after treatment on the morphology of the cells. Scanning electron microscopy (SEM) and confocal images of the melittin-treated microalgae revealed extensive cell damage with degradation of the cell wall and release of intracellular material. CONCLUSIONS: Melittin produced a selective cell wall rupture effect in N. oleoabundans under some culture conditions. These results represent the first report on the effect of melittin on lipid recovery from microalgae.


Assuntos
Clorófitas , Microalgas , Meliteno/farmacologia , Meliteno/metabolismo , Clorófitas/metabolismo , Peptídeos/metabolismo , Lipídeos
20.
Mol Biol (Mosk) ; 57(6): 1077-1083, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062961

RESUMO

Melittin, a peptide from bee venom, was found to be able to interact with many proteins, including calmodulin target proteins and ion-transporting P-type ATPases. It is assumed that melittin mimics a protein module involved in protein-protein interactions within cells. Previously, a Na^(+)/K^(+)-ATPase containing the α1 isoform of the catalytic subunit was found to co-precipitate with a protein with a molecular weight of about 70 κDa that interacts with antibodies against melittin by cross immunoprecipitation. In the presence of a specific Na^(+)/K^(+)-ATPase inhibitor (ouabain), the amount of protein with a molecular weight of 70 κDa interacting with Na^(+)/K^(+)-ATPase increases. In order to identify melittin-like protein from murine kidney homogenate, a fraction of melittin-like proteins with a molecular weight of approximately 70 κDa was obtained using affinity chromatography with immobilized antibodies specific to melittin. By mass spectrometry analysis, the obtained protein fraction was found to contain three molecular chaperones of Hsp70 superfamily: mitochondrial mtHsp70 (mortalin), Hsp73, Grp78 (BiP) of endoplasmic reticulum. These data suggest that chaperones from the HSP-70 superfamily contain a melittin-like module.


Assuntos
Meliteno , ATPase Trocadora de Sódio-Potássio , Camundongos , Animais , Meliteno/química , Meliteno/metabolismo , Meliteno/farmacologia , ATPase Trocadora de Sódio-Potássio/química , Peso Molecular , Ouabaína/farmacologia , Peptídeos/metabolismo , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...