Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.210
Filtrar
1.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481813

RESUMO

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Assuntos
Injúria Renal Aguda , Fator 1 de Crescimento de Fibroblastos , Humanos , Camundongos , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Quinases Ciclina-Dependentes/genética , Rim , Injúria Renal Aguda/induzido quimicamente , Instabilidade Genômica
2.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474378

RESUMO

BACKGROUND: Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS: An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS: The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION: f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 1 de Crescimento de Fibroblastos , Neovascularização Fisiológica/fisiologia , Cicatrização/fisiologia , Modelos Animais de Doenças
3.
Biochem Pharmacol ; 221: 116039, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301966

RESUMO

Translocator protein (18 kDa) (TSPO) plays an important role in retinal neuroinflammation in the early stage of diabetic retinopathy (DR). Studies have found that a FGF1 variant (FGF1ΔHBS) with reduced proliferative potency exerts excellent anti-inflammatory effects and potential therapeutic value for diabetic complications. In this study, intravitreal injection of FGF1ΔHBS was administrated every week for one month in db/db mice, which are genetically predisposed to develop type 2 diabetes mellitus and early retinopathy. Changes in retinal function and structure in the animal models were detected by electrophysiology (ERG) and optical tomography coherence (OCT). TSPO expression and retinal inflammation were analyzed by immunofluorescence, Western blot and real-time qPCR. In the retina of T2D (db/db) mice, FGF1 was significantly down-regulated while FGFR1 was up-regulated (both p < 0.05). TSPO and retinal inflammatory factors were all up-regulated. TSPO and FGFR1 were mainly co-stained in the inner retina. After FGF1ΔHBS treatment, ERG showed that the total amplitude of dark-adapted b-wave and oscillating potentials (Ops) was significantly improved, and OCT showed that the thickness of the retina around the optical nerve head was significantly preserved in T2D mice (all p < 0.05). The TSPO signal was significantly suppressed by FGF1ΔHBS. The activation of NF-κB p65 and the expression of inflammatory factors such as TNF-α, IL-1ß, IL-6, COX-2, MIP-1α, and iNOS were all significantly down-regulated (all p < 0.05). Collectively, our current data demonstrated that intravitreal FGF1ΔHBS treatment can effectively inhibit retinal inflammation via suppressing TSPO signal and to preserve retinal function and structure in a T2D mouse model.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Camundongos , Animais , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Retina/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Proteínas de Transporte/metabolismo
4.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391921

RESUMO

FGF9 is a potent mitogen and survival factor, but FGF9 protein levels are generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established. Previous studies showed that FGF1 and FGF2 directly bind to integrin αvß3, and this interaction is critical for signaling functions (FGF-integrin crosstalk). FGF1 and FGF2 mutants defective in integrin binding were defective in signaling, whereas the mutants still bound to FGFR suppressed angiogenesis and tumor growth, indicating that they act as antagonists. We hypothesize that FGF9 requires direct integrin binding for signaling. Here, we show that docking simulation of the interaction between FGF9 and αvß3 predicted that FGF9 binds to the classical ligand-binding site of αvß3. We show that FGF9 bound to integrin αvß3 and generated FGF9 mutants in the predicted integrin-binding interface. An FGF9 mutant (R108E) was defective in integrin binding, activating FRS2α and ERK1/2, inducing DNA synthesis, cancer cell migration, and invasion in vitro. R108E suppressed DNA synthesis and activation of FRS2α and ERK1/2 induced by WT FGF9 (dominant-negative effect). These findings indicate that FGF9 requires direct integrin binding for signaling and that R108E has potential as an antagonist to FGF9 signaling.


Assuntos
Integrina alfaVbeta3 , Mitógenos , Integrina alfaVbeta3/metabolismo , Ligantes , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , DNA
5.
Methods Mol Biol ; 2762: 151-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315365

RESUMO

Fibroblast growth factors (FGFs) are proteins with a vast array of biological activity, such as cell development and repair, glucose and bile acid metabolisms, and wound healing. Due to their critical and diverse physiological functions, FGFs are believed to possess potential as therapeutic agents for many diseases and conditions that warrant further investigations. Thus, a simple, cost-efficient method to purify these biologically active signaling proteins is desirable. Herein, we introduce such techniques to purify FGFs that possess either high heparin-binding affinity or low to no heparin-binding affinity. This method takes advantage of the high affinity toward heparin sulfate from paracrine FGF1 to isolate the targeted protein. It also accounts for FGF members that have low heparin affinity, such as the metabolic FGFs, by introducing poly-histidine tags in the recombinant protein in combination with the immobilized metal affinity chromatography. Subsequently, the purified FGF products are separated from the other small protein by high-speed centrifugation. Products are then subjected to other biophysical experiments like SDS-PAGE, mass spectrometry, circular dichroism, intrinsic fluorescence, isothermal titration calorimetry, differential scanning calorimetry, and biological cell activity assay to confirm that the target proteins are purified with intact native conformation and no significant change in the intrinsic characteristics and biological activities.


Assuntos
Fatores de Crescimento de Fibroblastos , Mitógenos , Fatores de Crescimento de Fibroblastos/metabolismo , Proliferação de Células , Proteínas Recombinantes/metabolismo , Heparina/química , Fator 1 de Crescimento de Fibroblastos/genética
6.
Genes Cells ; 29(3): 231-253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253356

RESUMO

The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Humanos , Adipogenia , Diferenciação Celular , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , PPAR gama/metabolismo
7.
ACS Appl Mater Interfaces ; 16(2): 1969-1984, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181175

RESUMO

Exosomes possess several inherent properties that make them ideal for biomedical applications, including robust stability, biocompatibility, minimal immunogenicity, and the ability to cross biological barriers. These natural nanoparticles have recently been developed as drug delivery vesicles. To do so, therapeutic molecules must be efficiently loaded into exosomes first. Very recently, we developed a cell-penetrating peptide (CPP)-based platform for loading of nucleic acids and small molecules into exosomes by taking advantage of the membrane-penetration power of CPPs. Here, we extended this simple but effective platform by loading a protein cargo into exosomes isolated from either mesenchymal stem cells from three different sources or two different cancer cell lines. The protein cargo is a fusion protein YARA-FGF1-GFP through the covalent conjugation of a model CPP called YARA to human fibroblast growth factor 1 (FGF1) and green fluorescence protein (GFP). Loading of YARA-FGF1-GFP into exosomes was time-dependent and reached a maximum of about 1600 YARA-FGF1-GFP molecules in each exosome after 16 h. The ladened exosomes were effectively internalized by mammalian cells, and subsequently, the loaded protein cargo YARA-FGF1-GFP was delivered intracellularly. In comparison to YARA, YARA-FGF1-GFP, the unloaded exosomes, and the exosomes loaded with YARA, the exosomes loaded with YARA-FGF1-GFP substantially promoted the migration, proliferation, and invasion capabilities of mouse and human fibroblasts, which are important factors for wound repair. The work extended our CPP-based exosomal cargo loading platform and established a foundation for developing novel wound-healing therapies using exosomes loaded with FGF1 and other growth factors.


Assuntos
Exossomos , Fator 1 de Crescimento de Fibroblastos , Animais , Humanos , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Exossomos/metabolismo , Cicatrização , Proliferação de Células , Fibroblastos , Mamíferos
8.
Aging (Albany NY) ; 16(1): 322-347, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189813

RESUMO

BACKGROUND: MicroRNA-221-3p (miR-221-3p) facilitates the advancement of breast cancer (BC) through the induction of epithelial-mesenchymal transition (EMT). Our research aimed to utilize bioinformatics to discover possible EMT-related target genes (ETGs) of miR-221-3p and examine their roles in breast cancer. METHODS: We employed bioinformatics techniques to identify ten key ETGs of miR-221-3p. Subsequently, we conducted an extensive analysis of both miR-221-3p and the ten ETGs, including clinical significance and immune characteristics. RESULTS: The expression of miR-221-3p was notably higher in Basal-like BC compared to other subtypes and adjacent normal tissue. Our pathway analysis suggested that miR-221-3p might regulate EMT through the MAPK signaling pathway by targeting its ETGs. Among the ETGs, seven core genes (EGFR, IGF1, KDR, FGF2, KIT, FGFR1, and FGF1) exhibited downregulation in BC. Conversely, ERBB2, SDC1, and MMP14 showed upregulation in BC and displayed potential diagnostic value. The analysis of prognostication indicated that increased levels of SDC1 and MMP14 were correlated with an unfavorable prognosis, whereas elevated expression of KIT was associated with a more favorable prognosis. The infiltration of various immune cells and the expression of immune checkpoint genes (ICGs) exhibited positive correlations with most ETGs and miR-221-3p. SDC1 exhibited a greater tumor mutational burden (TMB) score, while ERBB2, KDR, FGF2, KIT, FGFR1, and FGF1 showed lower TMB scores. Furthermore, decreased ERBB2 and KDR expression levels were correlated with elevated microsatellite instability (MSI) scores. Elevated expression of ETGs was linked to decreased mRNA stemness indices (mRNAsi), whereas miR-221-3p displayed the opposite pattern. Most ETGs and miR-221-3p expression exhibited a negative correlation with IC50 values for drugs. Among the ETGs, amplification was the most significant genetic alteration, except for IGF1. CONCLUSION: In conclusion, miR-221-3p acts as a unique indicator for Basal-like BC. The examination revealed ten essential ETGs of miR-221-3p, some of which show potential as diagnostic and prognostic markers. The in-depth examination of these ten ETGs and miR-221-3p indicates their participation in the development of BC, emphasizing their promise as innovative targets for therapy in BC patients.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metaloproteinase 14 da Matriz/genética , Linhagem Celular Tumoral , Relevância Clínica , Fator 1 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética
9.
Oral Dis ; 30(2): 551-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36648372

RESUMO

OBJECTIVE: The present study identified potentially pivotal miRNAs contributing to chondrogenic differentiation in temporomandibular joint suffering abnormal stress. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into control and experimental unilateral mastication (EUM) group. Bone micro-structure parameters was detected by micro-CT, and FGF-1 and MMP-1 expression was examined by immunohistochemistry. Differentially expressed miRNAs of bilateral condyle cartilage were screened via miRNA microarray at 4- and 8-week EUM, then further verified using quantitative reverse-transcription PCR. Over-expression of five differentially expressed miRNAs in chondrocytes was triggered by transfecting miRNA mimics. The expression of MMP-13, Col-II, OPN, and Runx2 was verified by western blotting. RESULTS: Expressions of FGF-1 and MMP-1 in right condyles gradually increased from 2 to 6 weeks after EUM. A total of 20 differentially expressed miRNAs were regulated by EUM, which related to cell proliferation, invasion, and osteoblast differentiation pathways. The over-expression of miR-148a-3p and miR-1-3p led to down-regulation of Col-II, while MMP-13 and Runx2 were up-regulated by induction of hypotrophic differentiation or IL-1ß stimulation. These findings suggested that miR-148a-3p and miR-1-3p promote chondrogenic differentiation. CONCLUSIONS: Several pivotal miRNAs were found to be related to chondrogenic differentiation, which provides novel insight into pathogenic mechanisms of cartilage homeostasis.


Assuntos
MicroRNAs , Ratos , Animais , MicroRNAs/genética , Subunidade alfa 1 de Fator de Ligação ao Core , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 1 da Matriz , Fator 1 de Crescimento de Fibroblastos , Mastigação , Ratos Sprague-Dawley , Cartilagem/metabolismo , Homeostase
10.
Food Res Int ; 175: 113794, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129067

RESUMO

Cell cultured meat is a novel and promising technology, but developing specific culture medium for muscle cells remains one of the main technical obstacles. FGF1 signaling is reported to promote proliferation and maintain proliferative capacity of satellite cells. However, the effect of FGF1 as a supplement to serum-free medium on satellite cells in vitro culture is still unclear. In this study, an efficient method for the production of soluble and biologically active recombinant bovine FGF1 (rbFGF1) protein in Escherichia coli was established. The soluble expression level of TrxA-rbFGF1 fusion protein was 562 mg/L in shake flasks, resulting in 5.5 mg of pure rbFGF1 from 0.1 L of starting culture. In serum-free culture conditions, rbFGF1 effectively promoted the proliferation and regulated the mitochondrial morphology and function of C2C12 myoblasts.rbFGF1 activated extracellular signal-regulated kinases1/2 (ERK1/2) signaling in C2C12 myoblasts, which further stimulated dynamin related protein 1 (DRP1) Ser616 phosphorylation. These findings highlighted the potential application of rbFGF1 in developing effective serum-free medium for cultured meat production.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Células Satélites de Músculo Esquelético , Animais , Bovinos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Dinâmica Mitocondrial/fisiologia , Fosforilação , Proliferação de Células
11.
Int Immunopharmacol ; 127: 111372, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38118314

RESUMO

Mesangial proliferative glomerulonephritis (MsPGN) and its related rat model Thy-1 nephritis (Thy-1N) are associated with C5b-9 deposition and are characterized by proliferation of glomerular mesangial cell (GMC) and expansion of extracellular matrix (ECM) expansion, alongside overexpression of multiple growth factors. Although fibroblast growth factor 1 (FGF1), platelet-derived growth factor alpha (PDGFα), and transforming growth factor beta 1 (TGF-ß1) are well known for their proproliferative and profibrotic roles, the molecular mechanisms responsible for regulating the expression of these growth factors have not been thoroughly elucidated. In this study, we found that sublytic C5b-9 induction of sex-determining region Y-box 9 (SOX9) transactivated FGF1, PDGFα, and TGF-ß1 genes in GMCs, resulting in a significant increase in their mRNA and protein levels. Besides, sublytic C5b-9 induction of activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylated SOX9 at serine 181 and serine 64, which enhanced SOX9's ability to transactivate FGF1, PDGFα, and TGF-ß1 genes in GMCs. Furthermore, we demonstrated that inhibiting ERK1/2 activation or silencing either ERK1/2 or SOX9 gene led to reduced SOX9 phosphorylation, decreased generation of FGF1, PDGFα, and TGF-ß1, and ameliorated glomerular injury in rat Thy-1N. Overall, these findings suggest that expression of FGF1, PDGFα, and TGF-ß1 is promoted by ERK1/2-mediated phosphorylation of SOX9, which may provide a valuable insight into the pathogenesis of MsPGN and offer a potential target for the development of novel treatment strategies for MsPGN.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Nefrite , Ratos , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fosforilação , Ratos Sprague-Dawley , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Sistema de Sinalização das MAP Quinases , Nefrite/metabolismo , Serina/metabolismo
12.
Cell Mol Life Sci ; 80(10): 311, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783936

RESUMO

Fibroblast growth factor 1 (FGF1) acts by activating specific tyrosine kinase receptors on the cell surface. In addition to this classical mode of action, FGF1 also exhibits intracellular activity. Recently, we found that FGF1 translocated into the cell interior exhibits anti-apoptotic activity independent of receptor activation and downstream signaling. Here, we show that expression of FGF1 increases the survival of cells treated with various apoptosis inducers, but only when wild-type p53 is present. The p53-negative cells were not protected by either ectopically expressed or translocated FGF1. We also confirmed the requirement of p53 for the anti-apoptotic intracellular activity of FGF1 by silencing p53, resulting in loss of the protective effect of FGF1. In contrast, in p53-negative cells, intracellular FGF1 regained its anti-apoptotic properties after transfection with wild-type p53. We also found that FGF1 directly interacts with p53 in cells and that the binding region is located in the DBD domain of p53. We therefore postulate that intracellular FGF1 protects cells from apoptosis by directly interacting with p53.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Proteína Supressora de Tumor p53 , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Apoptose
13.
Mol Cell Proteomics ; 22(11): 100655, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793502

RESUMO

Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Cromatografia Líquida , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem
14.
J Mol Histol ; 54(5): 427-438, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659992

RESUMO

Osteoarthritis (OA) is a systemic joint degenerative disease involving a variety of cytokines and growth factors. In this study, we investigated the protective effect of fibroblast growth factor 1 (FGF1) knockdown on OA and its underlying mechanisms in vitro. In addition, we evaluated the effect of FGF1 knockout on the destabilization of the medial meniscus (DMM) and examined the anterior and posterior cruciate ligament model in vivo. FGF1 affects OA cartilage destruction by increasing the protein expression of Nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1), which is associated with the phosphorylation of AMPK and its substrates. Our study showed that FGF1 knockdown could reverse the oxidative damage associated with osteoarthritis. Nrf2 knockdown eliminated the antioxidant effect of FGF1 knockdown on chondrocytes. Furthermore, AMPK knockdown could stop the impact of FGF1 knockdown on osteoarthritis. These findings suggested that FGF1 knockdown could effectively prevent and reverse osteoarthritis by activating AMPK and Nrf2 in articular chondrocytes.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem/metabolismo , Cartilagem Articular/metabolismo
15.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37705188

RESUMO

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Esclerose Múltipla , Animais , Ratos , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos
16.
Mod Pathol ; 36(12): 100336, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742927

RESUMO

Phosphaturic mesenchymal tumors (PMT) are uncommon neoplasms that cause hypophosphatemia/osteomalacia mainly by secreting fibroblast growth factor 23. We previously identified FN1::FGFR1/FGF1 fusions in nearly half of the PMTs and frequent KL (Klotho or α-Klotho) overexpression in only those with no known fusion. Here, we studied a larger cohort of PMTs for KL expression and alterations. By FN1 break-apart fluorescence in situ hybridization (FISH) and reappraisal of previous RNA sequencing data, 6 tumors previously considered "fusion-negative" (defined by negative results of FISH for FN1::FGFR1 fusion and FGF1 break-apart and/or of RNA sequencing) were reclassified as fusion-positive PMTs, including 1 containing a novel FN1::ZACN fusion. The final cohort of fusion-negative PMTs included 33 tumors from 32 patients, which occurred in the bone (n = 18), soft tissue (n = 10), sinonasal tract (n = 4), and brain (n = 1). In combination with previous work, RNA sequencing, RNA in situ hybridization, and immunohistochemistry showed largely concordant results and demonstrated KL/α-Klotho overexpression in 17 of the 28 fusion-negative and none of the 10 fusion-positive PMTs studied. Prompted by a patient in this cohort harboring germline KL upstream translocation with systemic α-Klotho overexpression and multifocal PMTs, FISH was performed and revealed KL rearrangement in 16 of the 33 fusion-negative PMTs (one also with amplification), including 14 of the 17 cases with KL/α-Klotho overexpression and none of the 11 KL/α-Klotho-low fusion-negative and 11 fusion-positive cases studied. Whole genomic sequencing confirmed translocation and inversion in 2 FISH-positive cases involving the KL upstream region, warranting further investigation into the mechanism whereby these rearrangements may lead to KL upregulation. Methylated DNA immunoprecipitation and sequencing suggested no major role of promoter methylation in KL regulation in PMT. Interestingly, KL-high/-rearranged cases seemed to form a clinicopathologically homogeneous group, showing a predilection for skeletal/sinonasal locations and typically matrix-poor, cellular solitary fibrous tumor-like morphology. Importantly, FGFR1 signaling pathways were upregulated in fusion-negative PMTs regardless of the KL status compared with non-PMT mesenchymal tumors by gene set enrichment analysis, perhaps justifying FGFR1 inhibition in treating this subset of PMTs.


Assuntos
Mesenquimoma , Seios Paranasais , Neoplasias de Tecidos Moles , Humanos , Hibridização in Situ Fluorescente , Fator 1 de Crescimento de Fibroblastos/genética , Neoplasias de Tecidos Moles/genética , Mesenquimoma/genética , Mesenquimoma/patologia , Translocação Genética , Seios Paranasais/patologia
17.
Breast Cancer Res ; 25(1): 99, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608351

RESUMO

BACKGROUND: Obesity increases breast cancer risk and breast cancer-specific mortality, particularly for people with estrogen receptor (ER)-positive tumors. Body mass index (BMI) is used to define obesity, but it may not be the best predictor of breast cancer risk or prognosis on an individual level. Adult weight gain is an independent indicator of breast cancer risk. Our previous work described a murine model of obesity, ER-positive breast cancer, and weight gain and identified fibroblast growth factor receptor (FGFR) as a potential driver of tumor progression. During adipose tissue expansion, the FGF1 ligand is produced by hypertrophic adipocytes as a stimulus to stromal preadipocytes that proliferate and differentiate to provide additional lipid storage capacity. In breast adipose tissue, FGF1 production may stimulate cancer cell proliferation and tumor progression. METHODS: We explored the effects of FGF1 on ER-positive endocrine-sensitive and resistant breast cancer and compared that to the effects of the canonical ER ligand, estradiol. We used untargeted proteomics, specific immunoblot assays, gene expression profiling, and functional metabolic assessments of breast cancer cells. The results were validated in tumors from obese mice and breast cancer datasets from women with obesity. RESULTS: FGF1 stimulated ER phosphorylation independently of estradiol in cells that grow in obese female mice after estrogen deprivation treatment. Phospho- and total proteomic, genomic, and functional analyses of endocrine-sensitive and resistant breast cancer cells show that FGF1 promoted a cellular phenotype characterized by glycolytic metabolism. In endocrine-sensitive but not endocrine-resistant breast cancer cells, mitochondrial metabolism was also regulated by FGF1. Comparison of gene expression profiles indicated that tumors from women with obesity shared hallmarks with endocrine-resistant breast cancer cells. CONCLUSIONS: Collectively, our data suggest that one mechanism by which obesity and weight gain promote breast cancer progression is through estrogen-independent ER activation and cancer cell metabolic reprogramming, partly driven by FGF/FGFR. The first-line treatment for many patients with ER-positive breast cancer is inhibition of estrogen synthesis using aromatase inhibitors. In women with obesity who are experiencing weight gain, locally produced FGF1 may activate ER to promote cancer cell metabolic reprogramming and tumor progression independently of estrogen.


Assuntos
Neoplasias da Mama , Fator 1 de Crescimento de Fibroblastos , Receptores de Estrogênio , Animais , Feminino , Camundongos , Estradiol , Estrogênios , Fator 1 de Crescimento de Fibroblastos/metabolismo , Ligantes , Obesidade/complicações , Proteômica , Receptores de Estrogênio/genética , Aumento de Peso , Neoplasias da Mama/metabolismo
18.
Ann Med ; 55(2): 2244515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603701

RESUMO

BACKGROUND: Papillary thyroid cancer (PTC) is the most common endocrine malignant tumour. The purpose of this study was to explore the potential molecular mechanism of circRNA regulating immune-related mRNA through sponge miRNA in the occurrence and immune regulation of PTC. METHODS: All data were downloaded from public databases, such as GEO, Immport and TCGA. Differentially expressed (DE) mRNAs (DEmRNAs), DEmiRNAs and DEcircRNAs were identified using metaMA and limma packages. Subsequently, immune-related DEmRNAs were screened, and circRNA-miRNA-mRNA (ceRNA) regulatory network was constructed. In addition, functional annotation, protein-protein interaction (PPI) network construction, immune cell infiltration analysis and Pearson correlation analysis were performed. Finally, qRT-PCR validation and cell experiments were also performed. RESULTS: In total, 2962 DEmRNAs, 78 DEmiRNAs and 51 DEcircRNAs were obtained. Subsequently, 195 immune-related DEmRNAs were obtained based on Immport database. Cytokine-cytokine receptor interaction was the only signalling pathway obtained in KEGG analysis. Then, 8 hub immune-related DEmRNAs were identified based on PPI network and CytoHubba plug-in. Subsequently, ceRNA sub-network containing hub immune-related DEmRNAs was extracted from ceRNA regulatory network. In ceRNA sub-network, hsa_circ_0082182-hsa-miR-18b-5p-FGF1/PDGFC, hsa_circ_0016404-hsa-miR-1275-FGF1/CTSB/IL13RA1, hsa_circ_0070100-hsa-miR-27a-3p/hsa-miR-27b-3p-TGFBR3, hsa_circ_0060055/hsa_circ_0038718-hsa-miR-150-3p-CXCL14, hsa_circ_0030427/hsa_circ_0002917-hsa-miR-22-3p-BMP7 and hsa_circ_0030427/hsa_circ_0002917-hsa-miR-125a-5p-LIFR axes were identified. Moreover, FGF1, PDGFC, CTSB, IL13RA1, TGFBR3, CXCL14, BMP7, LIFR, hsa-miR-125a-5p, hsa-miR-1275, hsa-miR-150-3p, hsa-miR-18b-5p and hsa-miR-27b-3p were also found to have good diagnostic accuracy and may be potential novel diagnostic markers for PTC. XCell analysis showed that the levels of immune cell infiltration (including Tregs, HSC, DC and Monocytes) were significantly different between the PTC and the control groups. Knockdown of the expression of hsa_circ_0082182 significantly inhibits the activity, proliferation, migration and invasion of TPC-1 cells. CONCLUSION: Several circRNA-miRNA-mRNA axes identified in this study may be related to the occurrence, progression and survival of PTC. This lays a theoretical foundation for further understanding the molecular mechanism of PTC, and also contributes to clinical management and research.


In ceRNA sub-network, hsa_circ_0082182-hsa-miR-18b-5p-FGF1/PDGFC, hsa_circ_0016404-hsa-miR-1275-FGF1/CTSB/IL13RA1, hsa_circ_0070100-hsa-miR-27a-3p/hsa-miR-27b-3p-TGFBR3, hsa_circ_0060055/hsa_circ_0038718-hsa-miR-150-3p-CXCL14, hsa_circ_0030427/hsa_circ_0002917-hsa-miR-22-3p-BMP7 and hsa_circ_0030427/hsa_circ_0002917-hsa-miR-125a-5p-LIFR axes were identified.FGF1, PDGFC, CTSB, IL13RA1, TGFBR3, CXCL14, BMP7, LIFR, hsa-miR-125a-5p, hsa-miR-1275, hsa-miR-150-3p, hsa-miR-18b-5p and hsa-miR-27b-3p were also found to have good diagnostic accuracy and may be potential novel diagnostic markers for PTC.Knockdown the expression of hsa_circ_0082182 significantly inhibits the activity, proliferation, migration and invasion of TPC-1 cell.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , RNA Circular/genética , Câncer Papilífero da Tireoide/genética , Fator 1 de Crescimento de Fibroblastos , MicroRNAs/genética , Neoplasias da Glândula Tireoide/genética
19.
Biomed Pharmacother ; 165: 115119, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423168

RESUMO

Traditional Chinese medicine offer unique advantages in mitigating and preventing early or intermediate stage for treating heart failure (HF). The purpose of this study was to assess the in vivo therapeutic efficacy of Xin-shu-bao (XSB) at different stages of HF following induction of a myocardial infarction (MI) in mice and use mass spectrometry-based proteomics to identify potential therapeutic targets for different stages of HF based on the molecular changes following XSB treatment. XSB had high cardioprotective efficacy in the pre-HF with reduced ejection fraction (HFrEF) stages, but had a weak or no effect in the post-HFrEF stages. This was supported by echocardiographic measurements showing that XSB decreased ejection fraction and fractional shortening in HF. XSB administration improved cardiac function in the pre- and post-HFrEF mouse model, ameliorated deleterious changes to the morphology and subcellular structure of cardiomyocytes, and reduced cardiac fibrosis. Proteomics analysis showed that XSB intervention exclusively targeted thrombomodulin (THBD) and stromal interaction molecule 1 (STIM1) proteins when administered to the mice for both 8 and 6 weeks. Furthermore, XSB intervention for 8, 6, and 4 weeks after MI induction increased the expression of fibroblast growth factor 1 (FGF1) and decreased arrestin ß1 (ARRB1), which are classic biomarkers of cardiac fibroblast transformation and collagen synthesis, respectively. Overall, the study suggests that early intervention with XSB could be an effective strategy for preventing HFrEF and highlights potential therapeutic targets for further investigation into HFrEF remediation strategies.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Volume Sistólico , Fator 1 de Crescimento de Fibroblastos/metabolismo , Arrestina/metabolismo , Molécula 1 de Interação Estromal , Trombomodulina , Infarto do Miocárdio/tratamento farmacológico
20.
Gut Microbes ; 15(1): 2238959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37505920

RESUMO

Gut microbiota-diet interaction has been identified as a key factor of metabolic associated fatty liver disease (MAFLD). Recent studies suggested that dietary polyphenols may protect against MAFLD by regulating gut microbiota; however, the underlying mechanisms remain elusive. We first investigated the effects of cyanidin 3-glucoside and its phenolic metabolites on high-fat diet induced MAFLD in C57BL/6J mice, and protocatechuic acid (PCA) showed a significant positive effect. Next, regulation of PCA on lipid metabolism and gut microbiota were explored by MAFLD mouse model and fecal microbiota transplantation (FMT) experiment. Dietary PCA reduced intraperitoneal and hepatic fat deposition with lower levels of transaminases (AST & ALT) and inflammatory cytokines (IL-1ß, IL-2, IL-6, TNF-α & MCP-1), but higher HDL-c/LDL-c ratio. Characterization of gut microbiota indicated that PCA decreased the Firmicutes/Bacteroidetes ratio mainly by reducing the relative abundance of genus Enterococcus, which was positively correlated with the levels of LDL-c, AST, ALT and most of the up-regulated hepatic lipids by lipidomics analysis. FMT experiments showed that Enterococcus faecalis caused hepatic inflammation, fat deposition and insulin resistance with decreased expression of carnitine palmitoyltransferase-1 alpha (CPT1α), which can be reversed by PCA through inhibiting Enterococcus faecalis. Transcriptomics analysis suggested that Enterococcus faecalis caused a significant decrease in the expression of fibroblast growth factor 1 (Fgf1), and PCA recovered the expression of Fgf1 with insulin-like growth factor binding protein 2 (Igfbp2), insulin receptor substrate 1 (Irs1) and insulin receptor substrate 2 (Irs2). These results demonstrated that high proportion of gut Enterococcus faecalis accelerates MAFLD with decreased expression of CPT1α and Fgf1, which can be prevented by dietary supplementation of PCA.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , LDL-Colesterol , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...