Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.556
Filtrar
1.
Stem Cell Res Ther ; 15(1): 98, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581019

RESUMO

BACKGROUND: In vitro chondrogenesis of mesenchymal stromal cells (MSCs) driven by the essential chondro-inducer transforming growth factor (TGF)-ß is instable and yields undesired hypertrophic cartilage predisposed to bone formation in vivo. TGF-ß can non-canonically activate bone morphogenetic protein-associated ALK1/2/3 receptors. These have been accused of driving hypertrophic MSC misdifferentiation, but data remained conflicting. We here tested the antihypertrophic capacity of two highly specific ALK1/2/3 inhibitors - compound A (CompA) and LDN-212854 (LDN21) - in order to reveal potential prohypertrophic contributions of these BMP/non-canonical TGF-ß receptors during MSC in vitro chondrogenesis. METHODS: Standard chondrogenic pellet cultures of human bone marrow-derived MSCs were treated with TGF-ß and CompA (500 nM) or LDN21 (500 nM). Daily 6-hour pulses of parathyroid hormone-related peptide (PTHrP[1-34], 2.5 nM, from day 7) served as potent antihypertrophic control treatment. Day 28 samples were subcutaneously implanted into immunodeficient mice. RESULTS: All groups underwent strong chondrogenesis, but GAG/DNA deposition and ACAN expression were slightly but significantly reduced by ALK inhibition compared to solvent controls along with a mild decrease of the hypertrophy markers IHH-, SPP1-mRNA, and Alkaline phosphatase (ALP) activity. When corrected for the degree of chondrogenesis (COL2A1 expression), only pulsed PTHrP but not ALK1/2/3 inhibition qualified as antihypertrophic treatment. In vivo, all subcutaneous cartilaginous implants mineralized within 8 weeks, but PTHrP pretreated samples formed less bone and attracted significantly less haematopoietic marrow than ALK1/2/3 inhibitor groups. CONCLUSIONS: Overall, our data show that BMP-ALK1/2/3 inhibition cannot program mesenchymal stromal cells toward stable chondrogenesis. BMP-ALK1/2/3 signalling is no driver of hypertrophic MSC misdifferentiation and BMP receptor induction is not an adverse prohypertrophic side effect of TGF-ß that leads to endochondral MSC misdifferentiation. Instead, the prohypertrophic network comprises misregulated PTHrP/hedgehog signalling and WNT activity, and a potential contribution of TGF-ß-ALK4/5-mediated SMAD1/5/9 signalling should be further investigated to decide about its postulated prohypertrophic activity. This will help to successfully engineer cartilage replacement tissues from MSCs in vitro and translate these into clinical cartilage regenerative therapies.


Assuntos
Células-Tronco Mesenquimais , Proteína Relacionada ao Hormônio Paratireóideo , Animais , Humanos , Camundongos , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Proteínas Hedgehog/genética , Hipertrofia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Fator de Crescimento Transformador beta/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612913

RESUMO

Salt is frequently introduced in ecosystems, where it acts as a pollutant. This study examined how changes in salinity affect the survival and development of zebrafish from the two-cell to the blastocyst stage and from the blastocyst to the larval stage. Control zebrafish embryos were cultured in E3 medium containing 5 mM Sodium Chloride (NaCl), 0.17 mM Potassium Chloride (KCL), 0.33 mM Calcium Chloride (CaCl2), and 0.33 mM Magnesium Sulfade (MgSO4). Experiments were conducted using increasing concentrations of each individual salt at 5×, 10×, 50×, and 100× the concentration found in E3 medium. KCL, CaCl2, and MgSO4 did not result in lethal abnormalities and did not affect early embryo growth at any of the concentrations tested. Concentrations of 50× and 100× NaCl caused embryonic death in both stages of development. Concentrations of 5× and 10× NaCl resulted in uninflated swim bladders in 12% and 65% of larvae, compared to 4.2% of controls, and caused 1654 and 2628 genes to be differentially expressed in blastocysts, respectively. The ATM signaling pathway was affected, and the Sonic Hedgehog pathway genes Shh and Ptc1 implicated in swim bladder development were downregulated. Our findings suggest that increased NaCl concentrations may alter gene expression and cause developmental abnormalities in animals found in affected ecosystems.


Assuntos
Proteínas Hedgehog , Perciformes , Animais , Proteínas Hedgehog/genética , Cloreto de Sódio/farmacologia , Água , Peixe-Zebra/genética , Cloreto de Cálcio , Ecossistema , Cloreto de Sódio na Dieta , Larva/genética , Expressão Gênica
3.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612911

RESUMO

Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/ß-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.


Assuntos
Proteínas Hedgehog , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia , Células-Tronco Neoplásicas , Fototerapia
4.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607081

RESUMO

Increased activation of ovarian primordial follicles in Erß knockout (ErßKO) rats becomes evident as early as postnatal day 8.5. To identify the ERß-regulated genes that may control ovarian primordial follicle activation, we analyzed the transcriptome profiles of ErßKO rat ovaries collected on postnatal days 4.5, 6.5, and 8.5. Compared to wildtype ovaries, ErßKO ovaries displayed dramatic downregulation of Indian hedgehog (Ihh) expression. IHH-regulated genes, including Hhip, Gli1, and Ptch1, were also downregulated in ErßKO ovaries. This was associated with a downregulation of steroidogenic enzymes Cyp11a1, Cyp19a1, and Hsd17b1. The expression of Ihh remained very low in ErßKO ovaries despite the high levels of Gdf9 and Bmp15, which are known upregulators of Ihh expression in the granulosa cells of activated ovarian follicles. Strikingly, the downregulation of the Ihh gene in ErßKO ovaries began to disappear on postnatal day 16.5 and recovered on postnatal day 21.5. In rat ovaries, the first wave of primordial follicles is rapidly activated after their formation, whereas the second wave of primordial follicles remains dormant in the ovarian cortex and slowly starts activating after postnatal day 12.5. We localized the expression of Ihh mRNA in postnatal day 8.5 wildtype rat ovaries but not in the age-matched ErßKO ovaries. In postnatal day 21.5 ErßKO rat ovaries, we detected Ihh mRNA mainly in the activated follicles in the ovaries' peripheral regions. Our findings indicate that the expression of Ihh in the granulosa cells of the activated first wave of ovarian follicles depends on ERß.


Assuntos
Receptor beta de Estrogênio , Proteínas Hedgehog , Feminino , Ratos , Animais , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , RNA Mensageiro/metabolismo
5.
Genes Chromosomes Cancer ; 63(4): e23233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607297

RESUMO

Medulloblastomas, the most common malignant pediatric brain tumors, can be classified into the wingless, sonic hedgehog (SHH), group 3, and group 4 subgroups. Among them, the SHH subgroup with the TP53 mutation and group 3 generally present with the worst patient outcomes due to their high rates of recurrence and metastasis. A novel and effective treatment for refractory medulloblastomas is urgently needed. To date, the tumor microenvironment (TME) has been shown to influence tumor growth, recurrence, and metastasis through immunosuppression, angiogenesis, and chronic inflammation. Treatments targeting TME components have emerged as promising approaches to the treatment of solid tumors. In this review, we summarize progress in research on medulloblastoma microenvironment components and their interactions. We also discuss challenges and future research directions for TME-targeting medulloblastoma therapy.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Proteínas Hedgehog/genética , Meduloblastoma/genética , Microambiente Tumoral/genética , Neoplasias Cerebelares/genética
6.
Medicine (Baltimore) ; 103(15): e37629, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608090

RESUMO

Basal cell carcinoma (BCC) represents the most prevalent cancer globally. The past decade has witnessed significant advancements in BCC treatment, primarily through bibliometric studies. Aiming to perform a comprehensive bibliometric analysis of BCC treatments to comprehend the research landscape and identify trends within this domain, a dataset comprising 100 scientific publications from the Web of Science Core Collection was analyzed. Country co-operation, journal co-citation, theme bursts, keyword co-occurrence, author co-operation, literature co-citation, and field-specific references were examined using VOSviewer and CiteSpace visualization tools. These articles, published between 2013 and 2020, originated predominantly from 30 countries/regions and 159 institutions, with the USA and Germany at the forefront, involving a total of 1118 authors. The keyword analysis revealed significant emphasis on the hedgehog pathway, Mohs micrographic surgery, and photodynamic therapy. The research shows developed nations are at the forefront in advancing BCC therapies, with significant focus on drugs targeting the hedgehog pathway. This treatment avenue has emerged as a crucial area, meriting considerable attention in BCC therapeutic strategies.


Assuntos
Carcinoma Basocelular , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Bibliometria , Carcinoma Basocelular/terapia , Proteínas Hedgehog , Neoplasias Cutâneas/terapia
7.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572590

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Diabetes Mellitus/metabolismo
8.
Bone Res ; 12(1): 21, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561387

RESUMO

Syndactyly type V (SDTY5) is an autosomal dominant extremity malformation characterized by fusion of the fourth and fifth metacarpals. In the previous publication, we first identified a heterozygous missense mutation Q50R in homeobox domain (HD) of HOXD13 in a large Chinese family with SDTY5. In order to substantiate the pathogenicity of the variant and elucidate the underlying pathogenic mechanism causing limb malformation, transcription-activator-like effector nucleases (TALEN) was employed to generate a Hoxd13Q50R mutant mouse. The mutant mice exhibited obvious limb malformations including slight brachydactyly and partial syndactyly between digits 2-4 in the heterozygotes, and severe syndactyly, brachydactyly and polydactyly in homozygotes. Focusing on BMP2 and SHH/GREM1/AER-FGF epithelial mesenchymal (e-m) feedback, a crucial signal pathway for limb development, we found the ectopically expressed Shh, Grem1 and Fgf8 and down-regulated Bmp2 in the embryonic limb bud at E10.5 to E12.5. A transcriptome sequencing analysis was conducted on limb buds (LBs) at E11.5, revealing 31 genes that exhibited notable disparities in mRNA level between the Hoxd13Q50R homozygotes and the wild-type. These genes are known to be involved in various processes such as limb development, cell proliferation, migration, and apoptosis. Our findings indicate that the ectopic expression of Shh and Fgf8, in conjunction with the down-regulation of Bmp2, results in a failure of patterning along both the anterior-posterior and proximal-distal axes, as well as a decrease in interdigital programmed cell death (PCD). This cascade ultimately leads to the development of syndactyly and brachydactyly in heterozygous mice, and severe limb malformations in homozygous mice. These findings suggest that abnormal expression of SHH, FGF8, and BMP2 induced by HOXD13Q50R may be responsible for the manifestation of human SDTY5.


Assuntos
Braquidactilia , Deformidades Congênitas dos Membros , Sindactilia , Camundongos , Humanos , Animais , Proteínas Hedgehog/genética , Fatores de Transcrição/genética , Sindactilia/genética
9.
Clin Exp Dent Res ; 10(2): e861, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38558491

RESUMO

OBJECTIVES: The main objective of this study was to evaluate how an apparently minor anomaly of the sphenoid bone, observed in a haploinsufficient mouse model for Sonic Hedgehog (Shh), affects the growth of the adult craniofacial region. This study aims to provide valuable information to orthodontists when making decisions regarding individuals carrying SHH mutation. MATERIALS AND METHODS: The skulls of embryonic, juvenile and adult mice of two genotypes (Shh heterozygous and wild type) were examined and measured using landmark-based linear dimensions. Additionally, we analysed the clinical characteristics of a group of patients and their relatives with SHH gene mutations. RESULTS: In the viable Shh+/ - mouse model, bred on a C57BL/6J background, we noted the presence of a persistent foramen at the midline of the basisphenoid bone. This particular anomaly was attributed to the existence of an ectopic pituitary gland. We discovered that this anomaly led to premature closure of the intrasphenoidal synchondrosis and contributed to craniofacial deformities in adult mice, including a longitudinally shortened skull base. This developmental anomaly is reminiscent of that commonly observed in human holoprosencephaly, a disorder resulting from a deficiency in SHH activity. However, sphenoid morphogenesis is not currently monitored in individuals carrying SHH mutations. CONCLUSION: Haploinsufficiency of Shh leads to isolated craniofacial skeletal hypoplasia in adult mouse. This finding highlights the importance of radiographic monitoring of the skull base in all individuals with SHH gene mutations.


Assuntos
Proteínas Hedgehog , Holoprosencefalia , Adulto , Animais , Humanos , Camundongos , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Camundongos Endogâmicos C57BL , Mutação , Osso Esfenoide
10.
Eur Rev Med Pharmacol Sci ; 28(7): 2923-2928, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639529

RESUMO

OBJECTIVE: The purpose of this study is to evaluate the clinical determinants of complete response in locally advanced basal cell carcinoma (laBCC) patients receiving Sonidegib in a real-life, retrospective, observational study.  Hedgehog pathway inhibitors (Vismodegib and Sonidegib) are approved for the systemic treatment of locally advanced basal cell carcinoma (laBCC). The objective response rate was the primary endpoint of the trials for both drugs. PATIENTS AND METHODS: Adult patients with laBCC treated with Sonidegib at the Dermato-Oncology Unit of IFO San Gallicano between June 2020 and September 2022 were included in the study. Patient, tumor, and treatment characteristics were recorded. The complete response rate was the primary outcome. The median time to the best response and complete response were the secondary outcomes. Treatment-related adverse events (TRAEs) and dose adjustments were recorded. RESULTS: Of the 19 patients included in the study, eight (42.1%) achieved a complete response, seven (36.8%) had a partial response, and four experienced progressive disease (21%). The median time to the best response was 3 months in the group of patients with partial response (range 2.0-4.0, with three patients not evaluable) and 3.5 months in the group of patients with complete response (range 2-5). TRAEs occurred in 14 (73.6%) patients, with 8 (57.1%) reporting ≤2 TRAE categories and 6 (42.8%) >2. A total of 78.9% of patients received a modified treatment schedule; 12.5% of patients who achieved a complete response received full dosage from the beginning to the end of treatment, compared with 27.3% of those with a partial response. CONCLUSIONS: The associations between the clinical outcome of interest (objective response rate) and the clinicopathological and treatment characteristics were evaluated. No statistically significant association was observed. Our analysis confirms the observation that no statistically significant correlation exists between clinical response and Sonidegib alternate dose regimen.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Carcinoma Basocelular , Piridinas , Neoplasias Cutâneas , Adulto , Humanos , Neoplasias Cutâneas/patologia , Estudos Retrospectivos , Proteínas Hedgehog , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/patologia , Antineoplásicos/farmacologia
11.
Mol Biol Rep ; 51(1): 542, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642200

RESUMO

BACKGROUND: Inflammatory cancer-associated fibroblasts (iCAFs) was first identified by co-culture of pancreatic stellate cells and tumor organoids. The key feature of iCAFs is IL-6high/αSMAlow. We examine this phenomenon in gastric cancer using two cell lines of gastric fibroblasts (HGF and YS-1). METHODS AND RESULTS: HGF or YS-1 were co-cultured with MKN7 (a gastric adenocarcinoma cell line) in Matrigel. IL-6 protein levels in the culture supernatant were measured by ELISA. The increased production of IL-6 was not observed in any of the combinations. Instead, the supernatant of YS-1 exhibited the higher levels of IL-6. YS-1 showed IL-6high/αSMA (ACTA2)low in real-time PCR, mRNA-seq and immunohistochemistry. In mRNA-seq, iCAFs-associated genes and signaling pathways were up-regulated in YS-1. No transition to myofibroblastic phenotype was observed by monolayer culture, or the exposure to sonic hedgehog (SHH) or TGF-ß. YS-1 conditioned medium induced changes of morphology and stem-ness/differentiation in NUGC-3 (a human gastric adenocarcinoma cell line) and UBE6T-15 (a human bone marrow-derived mesenchymal stem cell line). CONCLUSIONS: YS-1 is a stable cell line of gastric iCAFs. This discovery will promote further research on iCAFs for many researchers.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Hedgehog/metabolismo , Linhagem Celular Tumoral , Neoplasias Gástricas/metabolismo , Fibroblastos/metabolismo , Adenocarcinoma/metabolismo , RNA Mensageiro/metabolismo
12.
Eur J Dermatol ; 34(1): 68-72, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557461

RESUMO

Oral targeted therapy with hedgehog pathway inhibitors has revolutionized the standard of care for patients with advanced basal cell carcinoma (BCC). These patients are frail and elderly, have various comorbidities, and receive pharmacological polytherapy. Moreover, adverse events may have a significant impact on therapeutic adherence, which must be managed by the clinician. We evaluated the impact of caregivers on the treatment of patients with advanced BCC in terms of continuation of therapy over time. All patients included in this observational prospective study had histologically confirmed metastatic or locally advanced BCC (LaBCC) and were treated with hedgehog pathway inhibitors from January 2016 to December 2021 at the Department of Dermatology at the University of Florence, Italy. The collected patient data included: age, sex, BCC site and area of spread; number of cycles, dose, duration and tolerability of therapy; marital status (single, divorced, married/living with a partner, widow/widower); and information such as living with someone, and the presence of any caregivers. Of the 34 patients included, 33 had LaBCC and one metastatic BCC. There were 11 females (32.4%) and 23 males (67.6%). Patients who were married or living with a caregiver -tolerated therapy better than single patients who lived alone. Indeed, patients with married/live-in caregivers and/or those with an adequate caregiver experienced greater therapeutic adherence and tolerance of adverse events. Given the greater therapeutic adherence of patients with live-in caregivers as partners, it is essential to consider patients' marital status. It is advisable to involve the caregiver early on, and there should be a training discussion on the various possible adverse events and the best way to mitigate them. Therapeutic success is linked not only to patients being informed but also to training of caregivers.


Assuntos
Antineoplásicos , Carcinoma Basocelular , Neoplasias Cutâneas , Masculino , Feminino , Humanos , Idoso , Neoplasias Cutâneas/patologia , Estudos Prospectivos , Cuidadores , Proteínas Hedgehog/metabolismo , Piridinas/efeitos adversos , Carcinoma Basocelular/patologia , Antineoplásicos/uso terapêutico , Anilidas/uso terapêutico
13.
Sci Rep ; 14(1): 8101, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582868

RESUMO

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Ratos , Masculino , Animais , Proteínas Hedgehog , MicroRNAs/genética , MicroRNAs/uso terapêutico , Ratos Sprague-Dawley , Metaloproteinase 13 da Matriz/genética , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Condrócitos , Injeções Intra-Articulares , Inflamação , Modelos Animais de Doenças
14.
Sci Adv ; 10(10): eadg7380, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457499

RESUMO

Calcitonin gene-related peptide (CGRP), an osteopromotive neurotransmitter with a short half-life, shows increase while calcitonin receptor-like (CALCRL) level is decreased at the early stage in bone fractures. Therefore, the activation of CALCRL-mediated signaling may be more critical to promote the tendon-bone healing. We found CGRP enhanced osteogenic differentiation of BMSCs through PKA/CREB/JUNB pathway, contributing to improved sonic hedgehog (SHH) expression, which was verified at the tendon-bone interface (TBI) in the mice with Calcrl overexpression. The osteoblast-derived SHH and slit guidance ligand 3 were reported to favor nerve regeneration and type H (CD31hiEMCNhi) vessel formation, respectively. Encouragingly, the activation or inactivation of CALCRL-mediated signaling significantly increased or decreased intensity of type H vessel and nerve fiber at the TBI, respectively. Simultaneously, improved gait characteristics and biomechanical performance were observed in the Calcrl overexpression group. Together, the gene therapy targeting CGRP receptor may be a therapeutic strategy in sports medicine.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Camundongos , Animais , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Osteogênese , Proteínas Hedgehog/genética , Tendões/metabolismo
15.
Insect Biochem Mol Biol ; 168: 104114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552809

RESUMO

The Drosophila hindgut is a classical model to study organogenesis. The adult hindgut originates from the precursor cells in the larval hindgut. However, the territory of these cells has still not been well determined. A ring of wingless (wg)-expressing cells lies at the anterior zone of both the larval and adult hindgut. The larval Wg ring was thought as a portion of precursor of the adult hindgut. By applying a cell lineage tracing tool (G-TRACE), we demonstrate that larval wg-expressing cells have no cell lineage contribution to the adult hindgut. Additionally, adult Wg ring cells do not divide and move posteriorly to replenish the hindgut tissue. Instead, we determine that the precursors of the adult pylorus and ileum are situated in the cubitus interruptus (ci)-expressing cells in the anterior zone, and deduce that the precursor stem cells of the adult rectum locate in the trunk region of the larval pylorus including hedgehog (hh)-expressing cells. Together, this research advances our understanding of cell lineage origins and the development of the Drosophila hindgut.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Wnt1 , Proteínas Hedgehog/genética , Regulação da Expressão Gênica no Desenvolvimento
16.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540766

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disorder characterized by abnormal bone formation due to ACVR1 gene mutations. The identification of the molecular mechanisms underlying the ectopic bone formation and expansion in FOP is critical for the effective treatment or prevention of HO. Here we find that Hh signaling activation is required for the aberrant ectopic bone formation in FOP. We show that the expression of Indian hedgehog (Ihh), a Hh ligand, as well as downstream Hh signaling, was increased in ectopic bone lesions in Acvr1R206H; ScxCre mice. Pharmacological treatment with an Ihh-neutralizing monoclonal antibody dramatically reduced chondrogenesis and ectopic bone formation. Moreover, we find that the activation of Yap in the FOP mouse model and the genetic deletion of Yap halted ectopic bone formation and decreased Ihh expression. Our mechanistic studies showed that Yap and Smad1 directly bind to the Ihh promoter and coordinate to induce chondrogenesis by promoting Ihh expression. Therefore, the Yap activation in FOP lesions promoted ectopic bone formation and expansion in both cell-autonomous and non-cell-autonomous manners. These results uncovered the crucial role of the Yap-Ihh axis in FOP pathogenesis, suggesting the inhibition of Ihh or Yap as a potential therapeutic strategy to prevent and reduce HO.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Camundongos , Animais , Proteínas Hedgehog/genética , Condrogênese , Osteogênese , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Miosite Ossificante/patologia , Mutação
17.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542295

RESUMO

Hedgehog (Hh) signaling is crucial in cardiovascular development and maintenance. However, the biological role of Patched1 (Ptch1), an inhibitory receptor of the Hh signaling pathway, remains elusive. In this study, a Ptch1 ortholog was characterized in Nile tilapia (Oreochromis niloticus), and its function was investigated through CRISPR/Cas9 gene knockout. When one-cell embryos were injected with CRISPR/Cas9 targeting ptch1, the mutation efficiency exceeded 70%. During 0-3 days post fertilization (dpf), no significant differences were observed between the ptch1 mutant group and the control group; at 4 dpf (0 day after hatching), about 10% of the larvae showed an angiogenesis defect and absence of blood flow; from 5 dpf, most larvae exhibited an elongated heart, large pericardial cavity, and blood leakage and coagulation, ultimately dying during the 6-8 dpf period due to the lack of blood circulation. Consistently, multiple differentially expressed genes related to angiogenesis, blood coagulation, and heart development were enriched in the ptch1 mutants. Furthermore, Smoothened (Smo) antagonist (cyclopamine) treatment of the ptch1 mutants greatly rescued the cardiovascular disorders. Collectively, our study suggests that Ptch1 is required for cardiovascular development and vascular integrity via Smo signaling, and excessive Hh signaling is detrimental to cardiovascular development.


Assuntos
Ciclídeos , Animais , Ciclídeos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Técnicas de Inativação de Genes , Mutação , Receptor Smoothened/genética
18.
Invest Ophthalmol Vis Sci ; 65(3): 30, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517430

RESUMO

Purpose: Intraflagellar transport 46 (IFT46) is an integral subunit of the IFT-B complex, playing a key role in the assembly and maintenance of primary cilia responsible for transducing signaling pathways. Despite its predominant expression in the basal body of cilia, the precise role of Ift46 in ocular development remains undetermined. This study aimed to elucidate the impact of neural crest (NC)-specific deletion of Ift46 on ocular development. Methods: NC-specific conditional knockout mice for Ift46 (NC-Ift46F/F) were generated by crossing Ift46F mice with Wnt1-Cre2 mice, enabling the specific deletion of Ift46 in NC-derived cells (NCCs). Sonic Hedgehog (Shh) and Notch signaling activities in NC-Ift46F/F mice were evaluated using Gli1lacZ and CBF:H2B-Venus reporter mice, respectively. Cell fate mapping was conducted using ROSAmTmG reporter mice. Results: The deletion of Ift46 in NCCs resulted in a spectrum of ocular abnormalities, including thickened corneal stroma, hypoplasia of the anterior chamber, irregular iris morphology, and corneal neovascularization. Notably, this deletion led to reduced Shh signal activity in the periocular mesenchyme, sustained expression of key transcription factors Foxc1, Foxc2 and Pitx2, along with persistent cell proliferation. Additionally, it induced increased Notch signaling activity and the development of ectopic neovascularization within the corneal stroma. Conclusions: The absence of primary cilia due to Ift46 deficiency in NCCs is associated with anterior segment dysgenesis (ASD) and corneal neovascularization, suggesting a potential link to Axenfeld-Rieger syndrome, a disorder characterized by ASD. This underscores the pivotal role of primary cilia in ensuring proper anterior segment development and maintaining an avascular cornea.


Assuntos
Cílios , Neovascularização da Córnea , Anormalidades do Olho , Camundongos , Animais , Cílios/metabolismo , Crista Neural/metabolismo , Neovascularização da Córnea/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Córnea , Camundongos Knockout , Proteínas do Citoesqueleto/metabolismo
19.
Cancer Lett ; 588: 216768, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38453045

RESUMO

Hedgehog signaling is activated in response to liver injury, and modulates organogenesis. However, the role of non-canonical hedgehog activation via TGF-ß1/SMAD3 in hepatic carcinogenesis is poorly understood. TGF-ß1/SMAD3-mediated non-canonical activation was found in approximately half of GLI2-positive hepatocellular carcinoma (HCC), and two new GLI2 isoforms with transactivating activity were identified. Phospho-SMAD3 interacted with active GLI2 isoforms to transactivate downstream genes in modulation of stemness, epithelial-mesenchymal transition, chemo-resistance and metastasis in poorly-differentiated hepatoma cells. Non-canonical activation of hedgehog signaling was confirmed in a transgenic HBV-associated HCC mouse model. Inhibition of TGF-ß/SMAD3 signaling reduced lung metastasis in a mouse in situ hepatic xenograft model. In another cohort of 55 HCC patients, subjects with high GLI2 expression had a shorter disease-free survival than those with low expression. Moreover, co-positivity of GLI2 with SMAD3 was observed in 87.5% of relapsed HCC patients with high GLI2 expression, indicating an increased risk of post-resection recurrence of HCC. The findings underscore that suppressing the non-canonical hedgehog signaling pathway may confer a potential strategy in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
20.
Nat Commun ; 15(1): 2229, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472182

RESUMO

Apoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined. Here, we use a mouse model of brachydactyly type A1 (BDA1) with an IhhE95K mutation, to show that a missing middle phalangeal bone is due to the failure of the developing joint to cavitate, associated with reduced apoptosis, and a joint is not formed. We showed an intricate relationship between IHH and interacting partners, CDON and GAS1, in the interzone that regulates apoptosis. We propose a model in which CDON/GAS1 may act as dependence receptors in this context. Normally, the IHH level is low at the center of the interzone, enabling the "ligand-free" CDON/GAS1 to activate cell death for cavitation. In BDA1, a high concentration of IHH suppresses apoptosis. Our findings provided new insights into the role of IHH and CDON in joint formation, with relevance to hedgehog signaling in developmental biology and diseases.


Assuntos
Braquidactilia , Proteínas Hedgehog , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Braquidactilia/genética , Braquidactilia/metabolismo , Articulações/metabolismo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...