Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.923
Filtrar
2.
Expert Opin Investig Drugs ; 33(3): 191-200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366937

RESUMO

INTRODUCTION: Hereditary angioedema (HAE) is a rare genetic disorder characterized by recurrent edema and predominantly caused by the dysregulation of the kinin-kallikrein system. AREAS COVERED: This manuscript presents the results of preclinical and early clinical trials of newer drugs targeting the dysregulated kinin-kallikrein system. ATN-249 is an oral drug that has shown promising results in preclinical and Phase I studies, and good tolerability in the prophylactic treatment of attacks. KVD900 is also an oral agent developed for the on-demand treatment of HAE attacks. It has shown positive results in Phase I/II studies, with rapid absorption. The third drug, IONIS-PKKRx, is an antisense oligonucleotide targeting plasma prekallikrein mRNA. It has shown a dose-dependent reduction of plasma prekallikrein levels and proenzyme activation in Phase I/II studies, and has shown promising results. STAR-0215 is a long acting anti-activated kallikrein monoclonal antibody. A Phase 1a single ascending dose trial evaluated its safety, pharmacokinetics, and pharmacodynamics. Lastly, NTLA-2002 is an investigational gene-editing therapy. EXPERT OPINION: The targeted treatment of the dysregulated kinin-kallikrein system with specific inhibitors is promising for the prevention of angioedema attacks. Ongoing phase III studies will provide further insight into the efficacy and long-term safety of these novel therapies, potentially expanding treatment options for HAE treatment.


Assuntos
Angioedema , Angioedemas Hereditários , Calicreínas , Humanos , Angioedema/tratamento farmacológico , Angioedemas Hereditários/tratamento farmacológico , Proteína Inibidora do Complemento C1/uso terapêutico , Calicreínas/antagonistas & inibidores , Cininas , Pré-Calicreína , Pirazóis , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto
3.
Peptides ; 172: 171135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103839

RESUMO

The causative agent for Chagas disease, Trypanosoma cruzi, is transmitted to a human host in the urine/feces of the kissing bug, Rhodnius prolixus, following blood feeding. Kinins are important chemical messengers in the overall control of blood feeding physiology in R. prolixus, including hindgut contractions and excretion. Thus, disruption in kinin signaling would have damaging consequences to the insect but also interfere with the transmission of Chagas Disease. Here, a heterologous functional receptor assay was used to confirm the validity of the previously cloned putative kinin G-protein-coupled receptor, RhoprKR, in Rhodnius prolixus. Three native R. prolixus kinins were chosen for analysis; two possessing the typical kinin WGamide C-terminal motif and one that possesses an atypical C-terminal WAamide. All three are potent (EC50 values in the nM range), with high efficacy, on CHO-K1-aeq cells expressing the RhoprKR, thereby confirming ligand binding. Members of three other R. prolixus peptide families, which are also myotropins (tachykinins, pyrokinins and sulfakinins) elicited little or no response. In addition, this heterologous receptor assay was used to test characteristics of kinin mimetics previously tested on tick and mosquito kinin receptors. Five α-aminoisobutyric acid (Aib) containing analogs were tested, and four found to have considerably higher potencies than the native kinins, with EC50 values in the pM range. Interestingly, adding Aib to the atypical WAamide kinin improves its EC50 value from 2 nM to 39 pM. Biostable kinin analogs may prove useful leads for novel pest control strategies. Since T. cruzi is transmitted to a human host in the urine/feces after blood feeding, disruption in kinin signaling would also interfere with the transmission of Chagas Disease.


Assuntos
Doença de Chagas , Rhodnius , Cricetinae , Animais , Humanos , Cininas/metabolismo , Rhodnius/metabolismo , Mosquitos Vetores , Cricetulus , Vetores de Doenças
4.
Mol Cell Endocrinol ; 579: 112085, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827227

RESUMO

Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.


Assuntos
Epinefrina , Cininas , Camundongos , Animais , Homeostase , Catecolaminas , Glucose , Norepinefrina
5.
Inflamm Res ; 72(10-11): 1957-1963, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37750921

RESUMO

Kinins are a set of peptides present in tissues and involved in cardiovascular regulation, inflammation, and pain. Here, we briefly comment on recent key findings on the use of kinins in regenerative medicine.


Assuntos
Inflamação , Cininas , Humanos , Cininas/fisiologia , Peptídeos/uso terapêutico , Dor , Bradicinina/fisiologia
6.
Cells ; 12(16)2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37626917

RESUMO

Evidence suggests that patients with long COVID can experience neuropsychiatric, neurologic, and cognitive symptoms. However, these clinical data are mostly associational studies complicated by confounding variables, thus the mechanisms responsible for persistent symptoms are unknown. Here we establish an animal model of long-lasting effects on the brain by eliciting mild disease in K18-hACE2 mice. Male and female K18-hACE2 mice were infected with 4 × 103 TCID50 of SARS-CoV-2 and, following recovery from acute infection, were tested in the open field, zero maze, and Y maze, starting 30 days post infection. Following recovery from SARS-CoV-2 infection, K18-hACE2 mice showed the characteristic lung fibrosis associated with SARS-CoV-2 infection, which correlates with increased expression of the pro-inflammatory kinin B1 receptor (B1R). These mice also had elevated expression of B1R and inflammatory markers in the brain and exhibited behavioral alterations such as elevated anxiety and attenuated exploratory behavior. Our data demonstrate that K18-hACE2 mice exhibit persistent effects of SARS-CoV-2 infection on brain tissue, revealing the potential for using this model of high sensitivity to SARS-CoV-2 to investigate mechanisms contributing to long COVID symptoms in at-risk populations. These results further suggest that elevated B1R expression may drive the long-lasting inflammatory response associated with SARS-CoV-2 infection.


Assuntos
COVID-19 , Feminino , Masculino , Animais , Humanos , Camundongos , COVID-19/complicações , Síndrome Pós-COVID-19 Aguda , SARS-CoV-2 , Doenças Neuroinflamatórias , Cininas
7.
Med Oncol ; 40(8): 224, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405520

RESUMO

Despite campaigns and improvements in detection and treatment, lung cancer continues to increase worldwide and represents a major public health problem. One approach to treating patients suffering from lung cancer is to target surface receptors overexpressed on tumor cells, such as GPCR-family kinin receptors, and proteases that control tumor progression, such as kallikrein-related peptidases (KLKs). These proteases have been visualized in recent years due to their contribution to the progression of cancers, such as prostate and ovarian cancer, facilitating the invasive and metastatic capacity of tumor cells in these tissues. In fact, KLK3 is the specific prostate antigen, the only tissue-specific biomarker used to diagnose this malignancy. In lung cancer to date, evidence indicates that KLK5, KLK6, KLK8, KLK11, and KLK14 are the major peptidases regulated and involved in its progression. The expression levels of KLKs in this neoplasm are modulated by the secretome of the different cell types present in the tumor microenvironment, the cancer subtype and the tumor stage, among others. Considering the multiple functions of kinin receptors and KLKs, this review highlights their roles, even considering the SARS-CoV-2 effects. Since lung cancer is often diagnosed in advanced stages, our efforts should focus on early diagnosis, validating for example specific KLKs, especially in high-risk populations such as smokers and people exposed to carcinogenic fumes, oil fields, and contaminated workplaces, unexplored fields to investigate. Furthermore, their modulation could be considered as a promising approach in lung cancer therapeutics.


Assuntos
COVID-19 , Neoplasias Pulmonares , Masculino , Humanos , Calicreínas Teciduais/metabolismo , Calicreínas , Cininas , SARS-CoV-2 , Microambiente Tumoral
8.
BMC Musculoskelet Disord ; 24(1): 396, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202736

RESUMO

OBJECTIVE: Patients with rheumatoid arthritis (RA) have shown increased levels of neutrophils generating kallikrein-kinin peptides in blood which are potent mediators of inflammation. This study investigated the association between the bioregulation of kinin-mediated inflammation with the clinical, quality of life, and imaging characteristics (e.g. ultrasonography) of different arthritides. METHODS: Patients with osteoarthritis (OA, n = 29), gout (n = 10) and RA (n = 8) were recruited and screened for clinical symptoms, quality of life, and ultrasonographical assessment of arthritis. Blood neutrophils were assessed for the expression of bradykinin receptors (B1R and B2R), kininogens and kallikreins by immunocytochemistry with visualization by bright field microscopy. Levels of plasma biomarkers were measured by ELISA and cytometric bead array. RESULTS: Quality of life (SF-36 domains and summary scores; including pain; and, HAQ) was similar across OA, gout and RA patients; with the exception of worse physical functioning scores between OA and gout patients. Synovial hypertrophy (on ultrasound) differed between groups (p = 0.001), and the dichotomised Power Doppler (PD) score of greater than or equal to 2 (PD-GE2) was marginally significant (p = 0.09). Plasma IL-8 were highest in patients with gout followed by RA and OA (both, P < 0.05). Patients with RA had higher plasma levels of sTNFR1, IL-1ß, IL-12p70, TNF and IL-6, compared to OA and gout patients (all, P < 0.05). Patients with OA had higher expression of K1B and KLK1 on blood neutrophils followed by RA and gout patients (both, P < 0.05). Bodily pain correlated with B1R expression on blood neutrophils (r = 0.334, p = 0.05), and inversely with plasma levels of CRP (r = -0.55), sTNFR1 (r = -0.352) and IL-6 (r = -0.422), all P < 0.05. Expression of B1R on blood neutrophils also correlated with Knee PD (r = 0.403) and PD-GE2 (r = 0.480), both P < 0.05. CONCLUSIONS: Pain levels and quality of life were similar between patients with OA, RA and gout with knee arthritis. Plasma inflammatory biomarkers and B1R expression on blood neutrophils correlated with pain. Targeting B1R to modulate the kinin-kallikrein system may pose as a new therapeutic target in the treatment of arthritis.


Assuntos
Artrite Reumatoide , Gota , Osteoartrite , Humanos , Calicreínas/análise , Calicreínas/metabolismo , Cininas/análise , Cininas/metabolismo , Interleucina-6/metabolismo , Qualidade de Vida , Artrite Reumatoide/diagnóstico , Osteoartrite/metabolismo , Gota/diagnóstico por imagem , Biomarcadores/metabolismo , Fenótipo , Dor/metabolismo , Líquido Sinovial/metabolismo
9.
J Thromb Haemost ; 21(4): 814-827, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990522

RESUMO

BACKGROUND: Human serum albumin (HSA) is the most abundant plasma protein and is sensitive to glycation in vivo. The chronic hyperglycemic conditions in patients with diabetes mellitus (DM) induce a nonenzymatic Maillard reaction that denatures plasma proteins and forms advanced glycation end products (AGEs). HSA-AGE is a prevalent misfolded protein in patients with DM and is associated with factor XII activation and downstream proinflammatory kallikrein-kinin system activity without any associated procoagulant activity of the intrinsic pathway. OBJECTIVES: This study aimed to determine the relevance of HSA-AGE toward diabetic pathophysiology. METHODS: The plasma obtained from patients with DM and euglycemic volunteers was probed for activation of FXII, prekallikrein (PK), and cleaved high-molecular-weight kininogen by immunoblotting. Constitutive plasma kallikrein activity was determined via chromogenic assay. Activation and kinetic modulation of FXII, PK, FXI, FIX, and FX via in vitro-generated HSA-AGE were explored using chromogenic assays, plasma-clotting assays, and an in vitro flow model using whole blood. RESULTS: Plasma obtained from patients with DM contained increased plasma AGEs, activated FXIIa, and resultant cleaved cleaved high-molecular-weight kininogen. Elevated constitutive plasma kallikrein enzymatic activity was identified, which positively correlated with glycated hemoglobin levels, representing the first evidence of this phenomenon. HSA-AGE, generated in vitro, triggered FXIIa-dependent PK activation but limited the intrinsic coagulation pathway activation by inhibiting FXIa and FIXa-dependent FX activation in plasma. CONCLUSION: These data indicate a proinflammatory role of HSA-AGEs in the pathophysiology of DM via FXII and kallikrein-kinin system activation. A procoagulant effect of FXII activation was lost through the inhibition of FXIa and FIXa-dependent FX activation by HSA-AGEs.


Assuntos
Calicreínas , Calicreína Plasmática , Humanos , Calicreínas/metabolismo , Calicreína Plasmática/metabolismo , Cininas , Fator XIIa/metabolismo , Cininogênio de Alto Peso Molecular/metabolismo , Pré-Calicreína/metabolismo , Albuminas , Produtos Finais de Glicação Avançada
10.
J Pept Sci ; 29(1): e3444, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35900188

RESUMO

Insect kinins are endogenous, biologically active peptides with various physiological functions. The use of insect kinins in plant protection is being evaluated by many groups. Some kinins have been chosen as lead compounds for pest control. We previously reported an insect kinin mimic IV-3 that had insecticidal activity. And by introducing a strong electron withdrawing group (-CF3 ) on the benzene ring (Phe2 ), we discovered a compound, L7 , with better activity than lead IV-3. In this work, taking L7 as the lead compound, we designed and synthesized 13 compounds to evaluate the influence of position 4 (Trp4 ) of insect kinin on insecticidal activity, by replacing the H atom on tryptophan with -CH3 and -Cl or substituting the indole ring of tryptophan with the benzene, naphthalene, pyridine, imidazole, cyclohexane, and alkyl carboxamides. The aphid bioassay results showed that the compounds M1 , M3 , and M5 were more active than the positive control, pymetrozine. Especially, replacing the side chain by an indole ring with 4-Cl substitution (M1 , LC50 = 0.0029 mmol/L) increased the aphicidal activity. The structure-activity relationships (SARs) indicated that the side chain benzene ring at this position may be important to the aphicidal activity. In addition, the toxicity prediction by Toxtree, and the toxicity experiments on Apis mellifera suggested that M1 was no toxicity risk on a non-target organism. It could be used as a selective and bee-friendly insecticide to control aphids.


Assuntos
Afídeos , Animais , Abelhas , Benzeno , Cininas , Triptofano
11.
J Vis Exp ; (190)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533828

RESUMO

G protein-coupled receptors (GPCRs) represent the largest superfamily of receptors and are the targets of numerous human drugs. High-throughput screening (HTS) of random small molecule libraries against GPCRs is used by the pharmaceutical industry for target-specific drug discovery. In this study, an HTS was employed to identify novel small-molecule ligands of invertebrate-specific neuropeptide GPCRs as probes for physiological studies of vectors of deadly human and veterinary pathogens. The invertebrate-specific kinin receptor was chosen as a target because it regulates many important physiological processes in invertebrates, including diuresis, feeding, and digestion. Furthermore, the pharmacology of many invertebrate GPCRs is poorly characterized or not characterized at all; therefore, the differential pharmacology of these groups of receptors with respect to the related GPCRs in other metazoans, especially humans, adds knowledge to the structure-activity relationships of GPCRs as a superfamily. An HTS assay was developed for cells in 384-well plates for the discovery of ligands of the kinin receptor from the cattle fever tick, or southern cattle tick, Rhipicephalus microplus. The tick kinin receptor was stably expressed in CHO-K1 cells. The kinin receptor, when activated by endogenous kinin neuropeptides or other small molecule agonists, triggers Ca2+ release from calcium stores into the cytoplasm. This calcium fluorescence assay combined with a "dual-addition" approach can detect functional agonist and antagonist "hit" molecules in the same assay plate. Each assay was conducted using drug plates carrying an array of 320 random small molecules. A reliable Z' factor of 0.7 was obtained, and three agonist and two antagonist hit molecules were identified when the HTS was at a 2 µM final concentration. The calcium fluorescence assay reported here can be adapted to screen other GPCRs that activate the Ca2+ signaling cascade.


Assuntos
Cálcio , Rhipicephalus , Animais , Humanos , Cálcio/análise , Ensaios de Triagem em Larga Escala , Cininas/química , Cininas/farmacologia , Receptores Acoplados a Proteínas G , Cricetulus
12.
J Transl Med ; 20(1): 590, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514072

RESUMO

BACKGROUND AND AIMS: Kinin B1 receptors (B1Rs) are implicated in the pathogenesis of fibrosis. This study examined the anti-fibrotic effects of B1R blockade with BI 113823 in two established mouse models of hepatic fibrosis induced by intraperitoneal carbon tetrachloride (CCl4) injection or bile duct ligation (BDL). The mechanisms underlying the protection afforded by B1R inhibition were examined using human peripheral blood cells and LX2 human hepatic stellate cells (HSCs). METHODS: Fibrotic liver diseases were induced in mice by intraperitoneal carbon tetrachloride (CCl4) injection for 6 weeks, and by bile duct ligation (BDL) for 3 weeks, respectively. Mice received daily treatment of vehicle or BI 113823 (B1R antagonist) from onset of the experiment until the end of the study. RESULTS: B1Rs were strongly induced in fibrotic mouse liver. BI 113823 significantly attenuated liver fibrosis and portal hypertension (PH), and improved survival in both CCl4 and BDL mice. BI 113823 significantly reduced the expression of fibrotic proteins α-SMA, collagens 1, 3, 4, and profibrotic growth factors PDGF, TGFß, CTGF, VEGF, proliferating cell nuclear antigen; and reduced hepatic Akt phosphorylation in CCl4- and BDL-induced liver fibrosis. BI 113823 also reduced expression of Cytokines IL-1, IL-6; chemokines MCP-1, MCP-3 and infiltration of inflammatory cells; and inhibited human monocyte and neutrophil activation, transmigration, TNF-α & MPO production in vitro. BI 113823 inhibited TGF-ß and B1R agonist-stimulated human-HSC activation, contraction, proliferation, migration and fibrosis protein expression, and inhibited activation of PI3K/Akt signalling pathway. CONCLUSIONS: B1Rs merits consideration as a novel therapeutic target for chronic liver fibrosis and PH.


Assuntos
Hipertensão Portal , Cirrose Hepática , Receptores de Peptídeos , Animais , Humanos , Camundongos , Tetracloreto de Carbono , Fibrose , Células Estreladas do Fígado , Hipertensão Portal/complicações , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Cininas/metabolismo , Cininas/farmacologia , Cininas/uso terapêutico , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores de Peptídeos/antagonistas & inibidores
13.
Front Immunol ; 13: 997148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203598

RESUMO

Hereditary angioedema (HAE) is a rare disease where known causes involve C1 inhibitor dysfunction or dysregulation of the kinin cascade. The updated HAE management guidelines recommend performing genetic tests to reach a precise diagnosis. Unfortunately, genetic tests are still uncommon in the diagnosis routine. Here, we characterized for the first time the genetic causes of HAE in affected families from the Canary Islands (Spain). Whole-exome sequencing data was obtained from 41 affected patients and unaffected relatives from 29 unrelated families identified in the archipelago. The Hereditary Angioedema Database Annotation (HADA) tool was used for pathogenicity classification and causal variant prioritization among the genes known to cause HAE. Manual reclassification of prioritized variants was used in those families lacking known causal variants. We detected a total of eight different variants causing HAE in this patient series, affecting essentially SERPING1 and F12 genes, one of them being a novel SERPING1 variant (c.686-12A>G) with a predicted splicing effect which was reclassified as likely pathogenic in one family. Altogether, the diagnostic yield by assessing previously reported causal genes and considering variant reclassifications according to the American College of Medical Genetics guidelines reached 66.7% (95% Confidence Interval [CI]: 30.1-91.0) in families with more than one affected member and 10.0% (95% CI: 1.8-33.1) among cases without family information for the disease. Despite the genetic causes of many patients remain to be identified, our results reinforce the need of genetic tests as first-tier diagnostic tool in this disease, as recommended by the international WAO/EAACI guidelines for the management of HAE.


Assuntos
Angioedemas Hereditários , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/epidemiologia , Angioedemas Hereditários/genética , Proteína Inibidora do Complemento C1/genética , Humanos , Cininas , Espanha/epidemiologia
14.
Life Sci ; 309: 121034, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208659

RESUMO

The Kallikrein-Kinin System (KKS) plays an important role in energy metabolism. We have previously described the importance of the kinin B1 receptor (B1R) in metabolism regulation. Considering that the liver manages the different energy demands of different body tissues, we combined two stressful conditions - fasting and voluntary exercise - to address how B1R may affect liver metabolism, focusing on mitochondrial function. AIMS: To investigate how the kinin B1 receptor (B1R) modulates mitochondrial activity under stress conditions, focusing on the rate of energy expenditure and shift in metabolism. MAIN METHODS: Wild-type and B1R-knockout (B1KO) male mice remained in a calorimetric cage with a wheel for 7 days; 48 h before euthanasia, half of the animals from both groups were submitted to fasting conditions. Mitochondrial activity, ketone bodies, and gene expression involving mitochondrial activity were evaluated. KEY FINDINGS: B1R modulates the mitochondrial activity under fasting and voluntary exercise, reducing the VO2 expenditure and HEAT. B1KO animals who exercised and underwent fasting did not have increased glucose levels, suggesting a preference for lipids as an energy source. Moreover, these animals displayed RER around 0.8, which indicates a ß-oxidation increment. Interestingly, the lack of B1R did not induce mitochondrial activity and biogenesis, suggesting interference in metabolism responsivity, a condition modulated by sirtuins under PGC-1α control. SIGNIFICANCE: B1R modulates mitochondrial respiratory control ratios, which suggests metabolic suppression, influencing hepatic metabolism and, consequently, energy homeostasis.


Assuntos
Receptor B1 da Bradicinina , Sirtuínas , Camundongos , Animais , Masculino , Receptor B1 da Bradicinina/genética , Cininas , Jejum , Mitocôndrias/metabolismo , Corpos Cetônicos , Glucose , Lipídeos , Receptor B2 da Bradicinina/genética
15.
Biochim Biophys Acta Rev Cancer ; 1877(6): 188807, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167271

RESUMO

Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.


Assuntos
Cininas , Neoplasias , Humanos , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais/fisiologia , Microambiente Tumoral
16.
Mol Immunol ; 150: 99-113, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030710

RESUMO

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a clinical spectrum ranging from asymptomatic carriers to critically ill patients with complications including thromboembolic events, myocardial injury, multisystemic inflammatory syndromes and death. Since the beginning of the pandemic several therapeutic options emerged, with a multitude of randomized trials, changing the medical landscape of COVID-19. The effect of various monoclonal antibodies, antiviral, anti-inflammatory and anticoagulation drugs have been studied, and to some extent, implemented into clinical practice. In addition, a multitude of trials improved the understanding of the disease and emerging evidence points towards a significant role of the complement system, kallikrein-kinin, and contact activation system as drivers of disease in severe COVID-19. Despite their involvement in COVID-19, treatments targeting these plasmatic cascades have neither been systematically studied nor introduced into clinical practice, and randomized studies with regards to these treatments are scarce. Given the multiple-action, multiple-target nature of C1 inhibitor (C1-INH), the natural inhibitor of these cascades, this drug may be an interesting candidate to prevent disease progression and combat thromboinflammation in COVID-19. This narrative review will discuss the current evidence with regards to the involvement of these plasmatic cascades as well as endothelial cells in COVID-19. Furthermore, we summarize the evidence of C1-INH in COVID-19 and potential benefits and pitfalls of C1-INH treatment in COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Trombose , Anticorpos Monoclonais , Anticoagulantes/uso terapêutico , Antivirais/uso terapêutico , Proteína Inibidora do Complemento C1/uso terapêutico , Progressão da Doença , Células Endoteliais , Humanos , Inflamação/tratamento farmacológico , Calicreínas , Cininas , SARS-CoV-2 , Tromboinflamação , Trombose/tratamento farmacológico
17.
J Immunol Methods ; 509: 113343, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029800

RESUMO

Lipopolysaccharide (LPS) is a major pathogen-associated pattern molecule that can initiate lethal sepsis. Bioactive peptides in amphibian skin secretions, especially antimicrobial peptides, are essential components of the host immune system and help fight the microbial invasion. In this study, two peptides: peptide 1 (KINRKGPRPPG) and peptide 2 (INRKGPRPPG) were isolated, from skin secretions of the Chinese red belly frog (Bombina maxima). After stimulation with LPS, peptide 1 showed direct LPS-binding activity, low cytotoxicity, immunoregulatory functions in vitro, and neutralizing LPS effects in animal models. Thus, natural peptide 1 exhibits potential as an ideal candidate against LPS.


Assuntos
Anuros , Lipopolissacarídeos , Sequência de Aminoácidos , Animais , Anuros/genética , Sequência de Bases , Clonagem Molecular , Cininas , Lipopolissacarídeos/farmacologia , Neuropeptídeos , Peptídeos/química , Pele
18.
Am J Physiol Cell Physiol ; 323(4): C1070-C1087, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993513

RESUMO

The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.


Assuntos
Cininas , Hormônios Peptídicos , Citocinas , Epiderme/metabolismo , Homeostase , Humanos , Calicreínas/metabolismo , Cininogênios/química , Cininogênios/metabolismo , Cininas/metabolismo , Calicreínas Teciduais
19.
Endocrinology ; 163(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863039

RESUMO

Sex differences in the control of prolactin secretion are well documented. Sex-related differences in intrapituitary factors regulating lactotroph function have recently attracted attention. Sex differences in prolactinoma development are well documented in clinic, prolactinomas being more frequent in women but more aggressive in men, for poorly understood reasons. Kallikrein, the enzyme releasing kinins has been found in the pituitary, but there is no information on pituitary kinin receptors and their function. In the present work, we characterized pituitary bradykinin receptors (BRs) at the messenger RNA and protein levels in 2 mouse models of prolactinoma, Drd2 receptor gene inactivation and hCGß gene overexpression, in both males and females, wild type or genomically altered. BR B2 (B2R) accounted for 97% or more of total pituitary BRs in both models, regardless of genotype, and was present in lactotrophs, somatotrophs, and gonadotrophs. Male pituitaries displayed higher level of B2R than females, regardless of genotype. Pituitary B2R gene expression was downregulated by estrogen in both males and females but only in females by dopamine. Activation of B1R or B2R by selective pharmacological agonists induced prolactin release in male pituitaries but inhibited prolactin secretion in female pituitaries. Increased B2R content was observed in pituitaries of mutated animals developing prolactinomas, compared to their respective wild-type controls. The present study documents a novel sex-related difference in the control of prolactin secretion and suggests that kinins are involved, through B2R activation, in lactotroph function and prolactinoma development.


Assuntos
Neoplasias Hipofisárias , Prolactinoma , Animais , Feminino , Humanos , Cininas , Masculino , Camundongos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Prolactina/metabolismo , Prolactinoma/genética , Prolactinoma/metabolismo , Receptor B2 da Bradicinina/agonistas , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Receptores da Bradicinina
20.
PLoS One ; 17(5): e0267845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617279

RESUMO

The kallikrein-kinin system has been implicated in body weight and glucose homeostasis. Their major effectors act by binding to the kinin B2 and B1 receptors. It was assessed the role of the kinin B1 receptor in weight and glucose homeostasis in B1 receptor knockout mice (B1RKO) subjected to a cafeteria diet (CAF). Wild-type (WT) and B1RKO male mice (C57BL/6 background; 8 weeks old) were fed a standard diet (SD) or CAF for 14 weeks, ad libitum, and four groups were formed: WT-SD; B1RKO-SD; WT-CAF; B1RKO-CAF. Body weight and food intake were assessed weekly. It was performed glucose tolerance (GTT) and insulin tolerance tests (ITT), and HOMA-IR, HOMA-ß and HOMA-ß* 1/HOMA-IR were calculated. Islets from WT and B1RKO were isolated in order to measure the insulin secretion. Western blot was used to assess the hepatic AKT phosphorylation and qPCR to assess gene expression. CAF induced a higher body mass gain in B1RKO compared to WT mice. CAF diet increased epididymal fat depot mass, hepatic fat infiltration and hepatic AKT phosphorylation in both genotypes. However, B1RKO mice presented lower glycemic response during GTT when fed with CAF, and a lower glucose decrease in the ITT. This higher resistance was overcomed with higher insulin secretion when stimulated by high glucose, resulting in higher glucose uptake in the GTT when submitted to CAF, despite lower insulin sensitivity. Islets from B1RKO delivered 4 times more insulin in 3-month-old mice than islets from WT. The higher insulin disposition index and high insulin delivery of B1RKO can explain the decreased glucose excursion during GTT. In conclusion, CAF increased the ß-cell function in B1RKO mice, compensated by the diet-induced insulin resistance and resulting in a healthier glycemic response despite the higher weight gain.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Receptores da Bradicinina/metabolismo , Animais , Glicemia/metabolismo , Dieta , Dieta Hiperlipídica , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Resistência à Insulina/fisiologia , Cininas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...