Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.631
Filtrar
1.
BMC Biol ; 22(1): 81, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609978

RESUMO

BACKGROUND: Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated. RESULTS: Three oxidative stress response regulating Zn2Cys6 transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H2O2 and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation. CONCLUSIONS: These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses.


Assuntos
Ciclinas , Fatores de Transcrição , Fatores de Transcrição/genética , Peróxido de Hidrogênio , Ciclo Celular , Estresse Oxidativo , Antioxidantes
2.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458201

RESUMO

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Assuntos
Ciclinas , Reparo de Erro de Pareamento de DNA , Animais , Ciclinas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interfase , Mamíferos/metabolismo
3.
Crit Rev Immunol ; 44(4): 51-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505921

RESUMO

This study aimed to elucidate the role of microRNA-503 (miR-503) in pancreatic cancer (PC) progression and the underlying regulatory mechanisms. We acquired miR-503-3p and miR-503-5p expression data along with survival times of PC and normal samples from the UCSC Xena database. Using the t-test, we compared the expression of miR-503-3p and miR-503-5p between PC and normal samples, and evaluated their prognostic significance via Kaplan-Meier survival analysis. The expression of miR-503-5p in PC cells was detected by quantitative PCR. We subsequently overexpressed miR-503-5p in PC cells and examined cell viability, apoptosis, and migration through CCK8 assay, flow cytometry, and Transwell assay, respectively. Potential functional targets were identified using miRTarBase and validated by dual-luciferase reporter assay. Both miR-503-3p and miR-503-5p expression were found to be downregulated in PC; however, only miR-503-5p was linked to cancer prognosis based on public data. In vitro experiments demonstrated that overexpression of miR-503-5p substantially decreased cell viability, induced apoptosis, caused G0/G1 arrest, and inhibited cell migration. miR-503-5p was found to target cyclin E2 (CCNE2), and overexpression of CCNE2 could counteract the effects of miR-503-5p on PC cells. Conclusion: The downregulation of miR-503-5p enhances the progression of PC by targeting CCNE2. The detection of miR-503-5p expression may provide valuable insights for the prevention and prognostic evaluation of PC.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , Regulação para Baixo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclinas/metabolismo , Neoplasias Pancreáticas/genética , Regulação Neoplásica da Expressão Gênica
4.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474336

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of motor neurons. Mutations in the cyclin F (CCNF) and fused in sarcoma (FUS) genes have been associated with ALS pathology. In this study, we aimed to investigate the functional role of CCNF and FUS in ALS by using genome editing techniques to generate zebrafish models with genetic disruptions in these genes. Sequence comparisons showed significant homology between human and zebrafish CCNF and FUS proteins. We used CRISPR/Cas9 and TALEN-mediated genome editing to generate targeted disruptions in the zebrafish ccnf and fus genes. Ccnf-deficient zebrafish exhibited abnormal motor neuron development and axonal outgrowth, whereas Fus-deficient zebrafish did not exhibit developmental abnormalities or axonopathies in primary motor neurons. However, Fus-deficient zebrafish displayed motor impairments in response to oxidative and endoplasmic reticulum stress. The Ccnf-deficient zebrafish were only sensitized to endoplasmic reticulum stress, indicating that ALS genes have overlapping as well as unique cellular functions. These zebrafish models provide valuable platforms for studying the functional consequences of CCNF and FUS mutations in ALS pathogenesis. Furthermore, these zebrafish models expand the drug screening toolkit used to evaluate possible ALS treatments.


Assuntos
Esclerose Amiotrófica Lateral , Ciclinas , Doenças Neurodegenerativas , Proteína FUS de Ligação a RNA , Peixe-Zebra , Animais , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Ciclinas/metabolismo , Neurônios Motores/patologia , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Peixe-Zebra/metabolismo
5.
Mol Cancer ; 23(1): 59, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515149

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are crucial in the targeted treatment of advanced colorectal cancer (CRC). Anlotinib, a multi-target TKI, has previously been demonstrated to offer therapeutic benefits in previous studies. Circular RNAs (circRNAs) have been implicated in CRC progression and their unique structural stability serves as promising biomarkers. The detailed molecular mechanisms and specific biomarkers related to circRNAs in the era of targeted therapies, however, remain obscure. METHODS: The whole transcriptome RNA sequencing and function experiments were conducted to identify candidate anlotinib-regulated circRNAs, whose mechanism was confirmed by molecular biology experiments. CircHAS2 was profiled in a library of patient-derived CRC organoids (n = 22) and patient-derived CRC tumors in mice. Furthermore, a prospective phase II clinical study of 14 advanced CRC patients with anlotinib-based therapy was commenced to verify drug sensitivity (ClinicalTrials.gov identifier: NCT05262335). RESULTS: Anlotinib inhibits tumor growth in vitro and in vivo by downregulating circHAS2. CircHAS2 modulates CCNE2 activation by acting as a sponge for miR-1244, and binding to USP10 to facilitate p53 nuclear export as well as degradation. In parallel, circHAS2 serves as a potent biomarker predictive of anlotinib sensitivity, both in patient-derived organoids and xenograft models. Moreover, the efficacy of anlotinib inclusion into the treatment regimen yields meaningful clinical responses in patients with high levels of circHAS2. Our findings offer a promising targeted strategy for approximately 52.9% of advanced CRC patients who have high circHAS2 levels. CONCLUSIONS: CircHAS2 promotes cell proliferation via the miR-1244/CCNE2 and USP10/p53/CCNE2 bidirectional axes. Patient-derived organoids and xenograft models are employed to validate the sensitivity to anlotinib. Furthermore, our preliminary Phase II clinical study, involving advanced CRC patients treated with anlotinib, confirmed circHAS2 as a potential sensitivity marker.


Assuntos
Neoplasias Colorretais , Indóis , MicroRNAs , Quinolinas , Humanos , Animais , Camundongos , RNA Circular/genética , Proteína Supressora de Tumor p53 , Estudos Prospectivos , MicroRNAs/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células/genética , Biomarcadores , Ubiquitina Tiolesterase/metabolismo , Ciclinas/metabolismo
6.
Chem Biol Interact ; 393: 110940, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38467339

RESUMO

Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Quinases Ciclina-Dependentes/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ciclinas/genética , Ciclinas/metabolismo , Ciclinas/uso terapêutico , Fosforilação , Ciclo Celular
7.
J Mol Biol ; 436(8): 168505, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423454

RESUMO

Skp2, the substrate recognition component of the SCFSkp2 ubiquitin ligase, has been implicated in the targeted destruction of a number of key cell cycle regulators and the promotion of S-phase. One of its critical targets is the Cyclin dependent kinase (Cdk) inhibitor p27, and indeed the overexpression of Skp2 in a number of cancers is directly correlated with the premature degradation of p27. Skp2 was first identified as a protein that interacts with Cyclin A in transformed cells, but its role in this complex has remained unclear. In this paper, we demonstrate that Skp2 interacts with Cyclin A in Drosophila and is required to maintain Cyclin A levels and permit mitotic entry. Failure of mitotic entry in Skp2 mutant cells results in polyploidy. If these cells enter mitosis again they are unable to properly segregate their chromosomes, leading to checkpoint dependent cell cycle arrest or apoptosis. Thus, Skp2 is required for mitosis and for maintaining diploidy and genome stability.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Ciclinas/genética , Proteínas de Ciclo Celular/metabolismo , Diploide , Pontos de Checagem do Ciclo Celular/genética , Ciclina A/genética
8.
Antimicrob Agents Chemother ; 68(3): e0107223, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319085

RESUMO

Current antiretroviral therapy for HIV-1 infection does not represent a cure for infection as viral rebound inevitably occurs following discontinuation of treatment. The "block and lock" therapeutic strategy is intended to enforce proviral latency and durably suppress viremic reemergence in the absence of other intervention. The transcription-associated cyclin-dependent protein kinases (tCDKs) are required for expression from the 5´ HIV-1 long-terminal repeat, but the therapeutic potential of inhibiting these kinases for enforcing HIV-1 latency has not been characterized. Here, we expanded previous observations to directly compare the effect of highly selective small molecule inhibitors of CDK7 (YKL-5-124), CDK9 (LDC000067), and CDK8/19 (Senexin A), and found each of these prevented HIV-1 provirus expression at concentrations that did not cause cell toxicity. Inhibition of CDK7 caused cell cycle arrest, whereas CDK9 and CDK8/19 inhibitors did not, and could be continuously administered to establish proviral latency. Upon discontinuation of drug administration, HIV immediately rebounded in cells that had been treated with the CDK9 inhibitor, while proviral latency persisted for several days in cells that had been treated with CDK8/19 inhibitors. These results identify the mediator kinases CDK8/CDK19 as potential "block and lock" targets for therapeutic suppression of HIV-1 provirus expression.


Assuntos
HIV-1 , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Ciclinas/farmacologia
9.
Virus Genes ; 60(2): 148-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340271

RESUMO

Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.


Assuntos
Herpesviridae , Herpesvirus Humano 8 , Cricetinae , Cobaias , Humanos , Animais , Ratos , Chlorocebus aethiops , Antígenos Virais/genética , Mesocricetus , Ciclinas , Herpesvirus Humano 8/genética
10.
BMC Plant Biol ; 24(1): 157, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424498

RESUMO

BACKGROUND: D-type cyclins (CYCD) regulate the cell cycle G1/S transition and are thus closely involved in cell cycle progression. However, little is known about their functions in rice. RESULTS: We identified 14 CYCD genes in the rice genome and confirmed the presence of characteristic cyclin domains in each. The expression of the OsCYCD genes in different tissues was investigated. Most OsCYCD genes were expressed at least in one of the analyzed tissues, with varying degrees of expression. Ten OsCYCD proteins could interact with both retinoblastoma-related protein (RBR) and A-type cyclin-dependent kinases (CDKA) forming holistic complexes, while OsCYCD3;1, OsCYCD6;1, and OsCYCD7;1 bound only one component, and OsCYCD4;2 bound to neither protein. Interestingly, all OsCYCD genes except OsCYCD7;1, were able to induce tobacco pavement cells to re-enter mitosis with different efficiencies. Transgenic rice plants overexpressing OsCYCD2;2, OsCYCD6;1, and OsCYCD7;1 (which induced cell division in tobacco with high-, low-, and zero-efficiency, respectively) were created. Higher levels of cell division were observed in both the stomatal lineage and epidermal cells of the OsCYCD2;2- and OsCYCD6;1-overexpressing plants, with lower levels seen in OsCYCD7;1-overexpressing plants. CONCLUSIONS: The distinct expression patterns and varying effects on the cell cycle suggest different functions for the various OsCYCD proteins. Our findings will enhance understanding of the CYCD family in rice and provide a preliminary foundation for the future functional verification of these genes.


Assuntos
Ciclinas , Oryza , Ciclinas/genética , Ciclinas/metabolismo , Oryza/genética , Oryza/metabolismo , Fosforilação , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclo Celular/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Mitose
11.
J Cell Sci ; 137(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206091

RESUMO

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Assuntos
Proteínas de Ciclo Celular , Ciclinas , Animais , Ciclo Celular , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Mitose , Proteínas Cdc20/metabolismo , Mamíferos/metabolismo
12.
ACS Chem Biol ; 19(1): 173-184, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38193430

RESUMO

Small molecules that induce protein degradation hold the potential to overcome several limitations of the currently available inhibitors. Monovalent or molecular glue degraders, in particular, enable the benefits of protein degradation without the disadvantages of high molecular weight and the resulting challenge in drug development that are associated with bivalent molecules like Proteolysis Targeting Chimeras. One key challenge in designing monovalent degraders is how to build in the degrader activity─how can we convert an inhibitor into a degrader? If degradation activity requires very specific molecular features, it will be difficult to find new degraders and challenging to optimize those degraders toward drugs. Herein, we demonstrate that an unexpectedly wide range of modifications to the degradation-inducing group of the cyclin K degrader CR8 are tolerated, including both aromatic and nonaromatic groups. We used these findings to convert the pan-CDK inhibitors dinaciclib and AT-7519 to Cyclin K degraders, leading to a novel dinaciclib-based compound with improved degradation activity compared to CR8 and confirm the mechanism of degradation. These results suggest that general design principles can be generated for the development and optimization of monovalent degraders.


Assuntos
Ciclinas , Proteólise , Pontos de Checagem do Ciclo Celular , Ciclinas/metabolismo
13.
Eur J Gastroenterol Hepatol ; 36(3): 306-312, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251437

RESUMO

BACKGROUND: Adenocarcinoma in Barrett's esophagus (BE) occurs more frequently between 12 and 3 o'clock at the gastroesophageal junction (GEJ). METHODS: BE patients were prospectively recruited from December 2013 to July 2016. Expression of p53, Ki-67, cyclin-D1, COX-2 and p21 was assessed in quadrantic biopsies from the proximal and distal margins of the BE segments. Cell cycle marker association with current or subsequent dysplasia or adenocarcinoma was examined. RESULTS: 110 patients: median age 64 (IQR, 56-71) years; median BE segment length C4M6; and a median follow-up of 4.7 (IQR, 3.6-5.7) years. In total 13 (11.8%) had evidence of dysplasia or neoplasia (2.7% indefinite for dysplasia, 5.5% low grade, 1.8% high grade and 1.8% adenocarcinoma) at index endoscopy. Six (7%) developed dysplasia or neoplasia (1 low grade, 2 high grade and 3 adenocarcinoma) during follow-up. Ki-67 expression was highest at 3 o'clock, and overall was 49.6% higher in the 12-6 o'clock position compared to 6-12 o'clock [odds ratio (OR), 1.42 (95% confidence interval (CI), 1.00-2.12)]. A similar pattern was found with p21 [1.82 (1.00-3.47)]. There was increased expression of several markers in distal BE biopsies; cyclin-D1 [1.74 (1.29-2.34)]; Cyclo-oxygenase 2 [2.03 (1.48-2.78]) and p21 [2.06 (1.16-3.68)]. Expression of Ki-67 was lower in distal compared to proximal biopsies [0.58 (0.43-0.78)]. P53 expression had high specificity (93.8%) for subsequent low-grade dysplasia, high-grade dysplasia or adenocarcinoma. CONCLUSION: Increased cellular proliferation was seen at 12-6 o'clock at the GEJ. Cell-cycle marker expression was increased at the GEJ compared to the proximal BE segment. These findings mirror reflux esophagitis and suggest ongoing reflux contributes to the progression of dysplasia and malignancy in BE.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Pessoa de Meia-Idade , Esôfago de Barrett/patologia , Neoplasias Esofágicas/patologia , Antígeno Ki-67/metabolismo , Proteína Supressora de Tumor p53 , Adenocarcinoma/patologia , Margens de Excisão , Ciclinas/metabolismo , Ciclo Celular
14.
Neurobiol Dis ; 192: 106421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286389

RESUMO

Previously, we demonstrated that the SCFcyclin F complex directly mediates the poly-ubiquitylation of TDP-43, raising the question of whether cyclin F can be used to enhance the turnover of TDP-43. A hurdle to the use of cyclin F, however, is that the overexpression of cyclin F can lead to the initiation of cell death pathways. Accordingly, the aim of this study was to identify and evaluate a less toxic variant of cyclin F. To do so, we first confirmed and validated our previous findings that cyclin F binds to TDP-43 in an atypical manner. Additionally, we demonstrated that mutating the canonical substrate region in cyclin F (to generate cyclin FMRL/AAA) led to reduced binding affinity to known canonical substrates without impacting the interaction between cyclin F and TDP-43. Notably, both wild-type and cyclin FMRL/AAA effectively reduced the abundance of TDP-43 in cultured cells whilst cyclin FMRL/AAA also demonstrated reduced cell death compared to the wild-type control. The decrease in toxicity also led to a reduction in morphological defects in zebrafish embryos. These results suggest that cyclin F can be modified to enhance its targeting of TDP-43, which in turn reduces the toxicity associated with the overexpression of cyclin F. This study provides greater insights into the interaction that occurs between cyclin F and TDP-43 in cells and in vivo.


Assuntos
Esclerose Amiotrófica Lateral , Animais , Esclerose Amiotrófica Lateral/metabolismo , Peixe-Zebra , Proteínas de Ligação a DNA/metabolismo , Ubiquitinação , Ciclinas/genética , Ciclinas/metabolismo
15.
Mol Biol Cell ; 35(4): ar46, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231863

RESUMO

Entry into the cell cycle in late G1 phase occurs only when sufficient growth has occurred. In budding yeast, a cyclin called Cln3 is thought to link cell-cycle entry to cell growth. Cln3 accumulates during growth in early G1 phase and eventually helps trigger expression of late G1 phase cyclins that drive cell-cycle entry. All current models for cell-cycle entry assume that expression of late G1 phase cyclins is initiated at the transcriptional level. Current models also assume that the sole function of Cln3 in cell-cycle entry is to promote transcription of late G1 phase cyclins, and that Cln3 works solely in G1 phase. Here, we show that cell cycle-dependent expression of the late G1 phase cyclin Cln2 does not require any functions of the CLN2 promoter. Moreover, Cln3 can influence accumulation of Cln2 protein via posttranscriptional mechanisms. Finally, we show that Cln3 has functions in mitosis that strongly influence cell size. Together, these discoveries reveal the existence of surprising new mechanisms that challenge current models for control of cell-cycle entry and cell size.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Ciclinas/metabolismo , Tamanho Celular , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/metabolismo
16.
EMBO Rep ; 25(2): 745-769, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233717

RESUMO

Pho85 is a multifunctional CDK that signals to the cell when environmental conditions are favorable. It has been connected to cell cycle control, mainly in Start where it promotes the G1/S transition. Here we describe that the Start repressor Whi7 is a key target of Pho85 in the regulation of cell cycle entry. The phosphorylation of Whi7 by Pho85 inhibits the repressor and explains most of the contribution of the CDK in the activation of Start. Mechanistically, Pho85 downregulates Whi7 protein levels through the control of Whi7 protein stability and WHI7 gene transcription. Whi7 phosphorylation by Pho85 also restrains the intrinsic ability of Whi7 to associate with promoters. Furthermore, although Whi5 is the main Start repressor in normal cycling cells, in the absence of Pho85, Whi7 becomes the major repressor leading to G1 arrest. Overall, our results reveal a novel mechanism by which Pho85 promotes Start through the regulation of the Whi7 repressor at multiple levels, which may confer to Whi7 a functional specialization to connect the response to adverse conditions with the cell cycle control.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
17.
Breast Cancer Res Treat ; 204(3): 443-452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240935

RESUMO

PURPOSE: The cyclin-dependent kinase (CDK) 4/6 inhibitors significantly altered the treatment landscape of hormone-positive (HR+), HER2- metastatic breast cancer (MBC). However, biomarkers predicting long-term benefit and early progression are yet to be defined. Several studies suggested the possibility of diminished efficacy in patients with HER2-low disease. Therefore, we conducted a systematic review and meta-analysis to evaluate the association between low-level HER2 expression and efficacy outcomes (PFS, OS, ORR) with CDK 4/6 inhibitors. METHODS: The Pubmed, Web of Science, and Scopus databases were used to systematically filter the published studies from inception to 08 August 2023 for this systemic review. Studies including MBC patients treated with CDK 4/6 inhibitors and reported survival outcomes according to HER2 expression were included. We performed the meta-analyses with the generic inverse-variance method with a fixed-effects model and used HRs with 95% two-sided CIs as the principal summary measure. RESULTS: Nine studies encompassing 2705 patients were included in the analyses. In the pooled analysis of nine studies, the risk of progression and/or death was higher in patients with HER2-low tumors compared to HER2-zero (HR: 1.22, 95% CI 1.10-1.35, p < 0.001). In the pooled analysis of five studies, although the median follow-up was short, the risk of death was higher in the HER2-low group compared to the HER2-zero group (HR: 1.22, 95% CI 1.04-1.44, p = 0.010). CONCLUSION: The available evidence demonstrates a significantly higher risk of progression or death with CDK 4/6 inhibitors in HER2-low tumors. Further research is needed to improve outcomes in patients with HR+-HER2-low tumors.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Quinase 4 Dependente de Ciclina , Ciclinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
18.
Int J Cancer ; 154(6): 1082-1096, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37916780

RESUMO

Androgen deprivation therapy (ADT) is the mainstay of the current first-line treatment concepts for patients with advanced prostate carcinoma (PCa). However, due to treatment failure and recurrence investigation of new targeted therapeutics is urgently needed. In this study, we investigated the suitability of the Cyclin K-CDK12 complex as a novel therapeutic approach in PCa using the new covalent CDK12/13 inhibitor THZ531. Here we show that THZ531 impairs cellular proliferation, induces apoptosis, and decreases the expression of selected DNA repair genes in PCa cell lines, which is associated with an increasing extent of DNA damage. Furthermore, combination of THZ531 and ADT leads to an increase in these anti-tumoral effects in androgen-sensitive PCa cells. The anti-proliferative and pro-apoptotic activity of THZ531 in combination with ADT was validated in an ex vivo PCa tissue culture model. In a retrospective immunohistochemical analysis of 300 clinical tissue samples we show that Cyclin K (CycK) but not CDK12 expression correlates with a more aggressive type of PCa. In conclusion, this study demonstrates the clinical relevance of the CycK-CDK12 complex as a promising target for combinational therapy with ADT in PCa and its importance as a prognostic biomarker for patients with PCa.


Assuntos
Anilidas , Neoplasias da Próstata , Pirimidinas , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios , Estudos Retrospectivos , Dano ao DNA , Ciclinas/genética , Quinases Ciclina-Dependentes
19.
New Phytol ; 241(2): 878-895, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044565

RESUMO

The establishment of root-knot nematode (RKN; Meloidogyne spp.) induced galls in the plant host roots likely involves a wound-induced regeneration response. Confocal imaging demonstrates physical stress or injury caused by RKN infection during parasitism in the model host Arabidopsis thaliana. The ERF115-PAT1 heterodimeric transcription factor complex plays a recognized role in wound-induced regeneration. ERF115 and PAT1 expression flanks injured gall cells likely driving mechanisms of wound healing, implying a local reactivation of cell division which is also hypothetically involved in gall genesis. Herein, functional investigation revealed that ectopic ERF115 expression resulted in premature induction of galls, and callus formation adjacent to the expanding female RKN was seen upon PAT1 upregulation. Smaller galls and less reproduction were observed in ERF115 and PAT1 knockouts. Investigation of components in the ERF115 network upon overexpression and knockdown by qRT-PCR suggests it contributes to steer gall wound-sensing and subsequent competence for tissue regeneration. High expression of CYCD6;1 was detected in galls, and WIND1 overexpression resulted in similar ERF115OE gall phenotypes, also showing faster gall induction. Along these lines, we show that the ERF115-PAT1 complex likely coordinates stress signalling with tissue healing, keeping the gall functional until maturation and nematode reproduction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclinas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tylenchoidea/fisiologia
20.
Nucleic Acids Res ; 52(3): 1258-1271, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38048302

RESUMO

Progression through the mitotic and meiotic cell cycle is driven by fluctuations in the levels of cyclins, the regulatory subunits controlling the localization and activity of CDK1 kinases. Cyclin levels are regulated through a precise balance of synthesis and degradation. Here we demonstrate that the synthesis of Cyclin B1 during the oocyte meiotic cell cycle is defined by the selective translation of mRNA variants generated through alternative cleavage and polyadenylation (APA). Using gene editing in mice, we introduced mutations into the proximal and distal polyadenylation elements of the 3' untranslated region (UTR) of the Ccnb1 mRNA. Through in vivo loss-of-function experiments, we demonstrate that the translation of mRNA with a short 3' UTR specifies Cyclin B1 protein levels that set the timing of meiotic re-entry. In contrast, translation directed by a long 3' UTR is necessary to direct Cyclin B1 protein accumulation during the MI/MII transition. These findings establish that the progression through the cell cycle is dependent on the selective translation of multiple mRNA variants generated by APA.


Assuntos
Ciclina B1 , Meiose , Poliadenilação , Animais , Camundongos , Regiões 3' não Traduzidas/genética , Ciclo Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...