Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.655
Filtrar
1.
J Agric Food Chem ; 72(10): 5212-5221, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38433387

RESUMO

To investigate the alterations of yolk protein during embryonic development in Wanxi white goose, the egg yolk protein composition at days 0, 4, 7, 14, 18, and 25 of incubation (D0, D4, D7, D14, D18, and D25) was analyzed by two-dimensional gel electrophoresis combined with mass spectrometry. A total of 65 spots representing 11 proteins with significant abundance changes were detected. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin mainly participated in nutrient (lipid, riboflavin, and iron ion) transport, and vitellogenin-2-like showed a lower abundance after D14. Ovomucoid-like were involved in endopeptidase inhibitory activity and immunoglobulin binding and exhibited a higher expression after D18, suggesting a potential role in promoting the absorption of immunoglobulin and providing passive immune protection for goose embryos after D18. Furthermore, myosin-9 and actin (ACTB) were involved in the tight junction pathway, potentially contributing to barrier integrity. Serum albumin mainly participated in cytolysis and toxic substance binding. Therefore, the high expression of serum albumin, myosin-9, and ACTB throughout the incubation might protect the developing embryo. Apolipoprotein B-100, vitellogenin-1, vitellogenin-2-like, riboflavin-binding protein, and serotransferrin might play a crucial role in providing nutrition for embryonic development, and VTG-2-like was preferentially degraded/absorbed.


Assuntos
Gansos , Vitelogeninas , Animais , Vitelogeninas/análise , Gansos/metabolismo , Apolipoproteína B-100/análise , Apolipoproteína B-100/metabolismo , Proteômica , Transferrina , Proteínas do Ovo/química , Desenvolvimento Embrionário , Albumina Sérica/metabolismo , Imunoglobulinas/análise , Miosinas/análise , Miosinas/metabolismo , Gema de Ovo/química
2.
Gen Comp Endocrinol ; 351: 114479, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431208

RESUMO

Functions of vitellogenins have been in the limelight of fish reproductive physiology research for decades. The Vtg system of acanthomorph teleosts consists of two complete forms of Vtgs (VtgAa and VtgAb) and an incomplete form, VtgC. Insufficient uptake and processing of Vtgs and their yolk proteins lead to inadequate oocyte hydration ensuing failure in acquisition of egg buoyancy and early developmental deficiencies. This review presents a summary of our studies on utilization of multiple Vtgs in species with different egg buoyancy characteristics, as examples. Studies of moronids revealed limited degradation of all three forms of lipovitellin heavy chain derived from their three respective forms of Vtg, by which they contribute to the free amino acid pool driving oocyte hydration during oocyte maturation. In later studies, CRISPR/Cas9 was employed to invalidate zebrafish type I, type II and type III Vtgs, which are orthologs of acanthamorph VtgAa, VtgAb and VtgC, respectively. Results revealed type I Vtg to have essential developmental and nutritional functions in both late embryos and larvae. Genomic disturbance of type II Vtg led to high mortalities during the first 24 h of embryonic development. Despite being a minor form of Vtg in zebrafish and most other species, type III Vtg was also found to contribute essentially to the developmental potential of zebrafish zygotes and early embryos. Apart from severe effects on progeny survival, these studies also disclosed previously unreported regulatory effects of Vtgs on fecundity and fertility, and on embryo hatching. We recently utilized parallel reactions monitoring based liquid chromatography tandem mass spectrometry to assess the processing and utilization of lipovitellins derived from different forms of Vtg in Atlantic halibut and European plaice. Results showed the Lv heavy chain of VtgAa (LvHAa) to be consumed during oocyte maturation and the Lv light chain of VtgAb (LvLAb) to be utilized specifically during late larval stages, while all remaining YPs (LvLAa, LvHAb, LvHC, and LvLC) were utilized during or after hatching up until first feeding in halibut. In plaice, all YPs except LvHAa, which similarly to halibut supports oocyte maturation, are utilized from late embryo to late larval development up until first feeding. The collective findings from these studies affirm substantial disparity in modes of utilization of different types of Vtgs among fish species with various egg buoyancy characteristics, and they reveal previously unknown regulatory functions of Vtgs in maintenance of reproductive assets such as maternal fecundity and fertility, and in embryonic hatching. Despite the progress that has been made over the past two decades by examining multiple Vtgs and their functions, a higher complexity of these systems with much greater diversity between species in modes of Vtg utilization is now evident. Further research is needed to reveal novel ways each species has evolved to utilize these complex multiple Vtg systems and to discover unifying principles for this evolution in fishes of diverse lineages, habitats and life history characteristics.


Assuntos
Perciformes , Vitelogeninas , Animais , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo , Peixes/metabolismo , Oócitos/metabolismo , Oogênese/genética , Perciformes/metabolismo
3.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412292

RESUMO

In this study, a vitellogenin like1 gene (SfVg-like1) in Sogatella furcifera was identified. The open reading frame (ORF) encoded 1,321 amino acid sequence. Structure analysis reveals that the amino acid sequence of SfVg-like1 has 3 conserved LPD_N, DUF1943 and VWFD domains. Phylogenetic analyses showed that SfVg-like1 was clustered in the same branch with the Vg-like1 of Nilaparvata lugens (100% bootstrap value) compared with other Hemiptera insects Vgs associated with vitellogenesis. Temporo-spatial expression analyses showed that SfVg-like1 expressed during all stages, and in both genders. The relative expression levels of SfVg-like1 mRNA were higher in adults than in nymph developmental stages. The knockdown of SfVg-like1 gene resulted in the inhibition of the ovarian development in female adults, whereas the morphology of the testis in male adults was not been affected. The silence of SfVg-like1 could decrease the relative expression levels of target of rapamycin (SfTOR, GenBank MW193765) and vitellogenin (SfVg, GenBank MH271114) genes significantly in female adults. However, the knockdown of SfTOR or SfVg genes in female adults did not affect the transcript level of SfVg-like1. Therefore, it demonstrated that SfVg-like1 might locate on the upstream signaling pathways of SfTOR and SfVg. These results demonstrate that SfVg-like1 is essential for S. furcifera reproduction, and it could be the potential target for the control of this pest.


Assuntos
Hemípteros , Vitelogeninas , Feminino , Masculino , Animais , Vitelogeninas/genética , Vitelogeninas/metabolismo , Filogenia , Sequência de Aminoácidos , Reprodução
5.
Chemosphere ; 352: 141423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340991

RESUMO

Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 µg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.


Assuntos
Disruptores Endócrinos , Fungicidas Industriais , Nitrilas , Poluentes Químicos da Água , Animais , Masculino , Peixe-Zebra/metabolismo , Disruptores Endócrinos/metabolismo , Eixo Hipotalâmico-Hipofisário-Gonadal , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/metabolismo , Vitelogeninas/metabolismo , Sêmen , Gônadas , Espermatozoides/metabolismo , Reprodução , Poluentes Químicos da Água/metabolismo
6.
Nat Commun ; 15(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167823

RESUMO

Salivary effectors of piercing-sucking insects can suppress plant defense to promote insect feeding, but it remains largely elusive how they facilitate plant virus transmission. Leafhopper Nephotettix cincticeps transmits important rice reovirus via virus-packaging exosomes released from salivary glands and then entering the rice phloem. Here, we report that intact salivary vitellogenin of N. cincticeps (NcVg) is associated with the GTPase Rab5 of N. cincticeps (NcRab5) for release from salivary glands. In virus-infected salivary glands, NcVg is upregulated and packaged into exosomes mediated by virus-induced NcRab5, subsequently entering the rice phloem. The released NcVg inherently suppresses H2O2 burst of rice plants by interacting with rice glutathione S-transferase F12, an enzyme catalyzing glutathione-dependent oxidation, thus facilitating leafhoppers feeding. When leafhoppers transmit virus, virus-upregulated NcVg thus promotes leafhoppers feeding and enhances viral transmission. Taken together, the findings provide evidence that viruses exploit insect exosomes to deliver virus-hijacked effectors for efficient transmission.


Assuntos
Hemípteros , Vírus de Plantas , Animais , Vitelogeninas , Floema , Peróxido de Hidrogênio
7.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256163

RESUMO

Vitellogenin (Vtg) is a precursor of yolk proteins in egg-laying vertebrates and invertebrates and plays an important role in vitellogenesis and embryonic development. However, the Vtg family remains poorly characterized in Exopalaemon carinicauda, a major commercial mariculture species found along the coasts of the Yellow and Bohai Seas. In this study, 10 Vtg genes from the genomes of E. carinicauda were identified and characterized. Phylogenetic analyses showed that the Vtg genes in crustaceans could be classified into four groups: Astacidea, Brachyra, Penaeidae, and Palaemonidae. EcVtg genes were unevenly distributed on the chromosomes of E. carinicauda, and a molecular evolutionary analysis showed that the EcVtg genes were primarily constrained by purifying selection during evolution. All putative EcVtg proteins were characterized by the presence of three conserved functional domains: a lipoprotein N-terminal domain (LPD_N), a domain of unknown function (DUF1943), and a von Willebrand factor type D domain (vWD). All EcVtg genes exhibited higher expression in the female hepatopancreas than in other tissues, and EcVtg gene expression during ovarian development suggested that the hepatopancreas is the main synthesis site in E. carinicauda. EcVtg1a, EcVtg2, and EcVtg3 play major roles in exogenous vitellogenesis, and EcVtg3 also plays a major role in endogenous vitellogenesis. Bilateral ablation of the eyestalk significantly upregulates EcVtg mRNA expression in the female hepatopancreas, indicating that the X-organ/sinus gland complex plays an important role in ovarian development, mostly by inducing Vtg synthesis. These results could improve our understanding of the function of multiple Vtg genes in crustaceans and aid future studies on the function of EcVtg genes during ovarian development in E. carinicauda.


Assuntos
Palaemonidae , Vitelogeninas , Animais , Feminino , Vitelogeninas/genética , Palaemonidae/genética , Filogenia , Desenvolvimento Embrionário , Evolução Molecular
8.
PLoS Genet ; 20(1): e1011145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285728

RESUMO

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.


Assuntos
Aedes , Anopheles , Malária , Feminino , Animais , Anopheles/genética , Mosquitos Vetores/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas do Ovo/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fertilidade/genética , Lipídeos , Aedes/genética , Aedes/metabolismo
9.
Sci Rep ; 14(1): 1820, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245605

RESUMO

Vitellogenesis is the most important process in animal reproduction, in which yolk proteins play a vital role. Among multiple yolk protein precursors, vitellogenin (Vtg) is a well-known major yolk protein (MYP) in most oviparous animals. However, the nature of MYP in the freshwater gastropod snail Biomphalaria glabrata remains elusive. In the current study, we applied bioinformatics, tissue-specific transcriptomics, ovotestis-targeted proteomics, and phylogenetics to investigate the large lipid transfer protein (LLTP) superfamily and ferritin-like family in B. glabrata. Four members of LLTP superfamily (BgVtg1, BgVtg2, BgApo1, and BgApo2), one yolk ferritin (Bg yolk ferritin), and four soma ferritins (Bg ferritin 1, 2, 3, and 4) were identified in B. glabrata genome. The proteomic analysis demonstrated that, among the putative yolk proteins, BgVtg1 was the yolk protein appearing in the highest amount in the ovotestis, followed by Bg yolk ferritin. RNAseq profile showed that the leading synthesis sites of BgVtg1 and Bg yolk ferritin are in the ovotestis (presumably follicle cells) and digestive gland, respectively. Phylogenetic analysis indicated that BgVtg1 is well clustered with Vtgs of other vertebrates and invertebrates. We conclude that, vitellogenin (BgVtg1), not yolk ferritin (Bg yolk ferritin), is the major yolk protein precursor in the schistosomiasis vector snail B. glabrata.


Assuntos
Biomphalaria , Esquistossomose , Animais , Biomphalaria/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Multiômica , Filogenia , Proteômica , Proteínas do Ovo/metabolismo , Ferritinas/genética , Schistosoma mansoni/metabolismo
10.
Probiotics Antimicrob Proteins ; 16(1): 259-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36637793

RESUMO

The research aims to give new insights on the effect of administering selected bacterial strains, isolated from honey bee gut, and/or a commercial plant extract blend (HiveAlive®) on Nosema ceranae. Analyses were first performed under laboratory conditions such as different infective doses of N. ceranae, the effect of single strains and their mixture and the influence of pollen administration. Daily survival and feed consumption rate were recorded and pathogen development was analysed using qPCR and microscope counts. Biomarkers of immunity and physiological status were also evaluated for the different treatments tested using one bacterial strain, a mixture of all the bacteria and/or a plant extract blend as treatments. The results showed an increase of abaecin transcript levels in the midgut of the honey bees treated with the bacterial mixture and an increased expression of the protein vitellogenin in the haemolymph of honey bees treated with two separate bacterial strains (Bifidobacterium coryneforme and Apilactobacillus kunkeei). A significant effectiveness in reducing N. ceranae was shown by the bacterial mixture and the plant extract blend regardless of the composition of the diet. This bioactivity was seasonally linked. Quantitative PCR and microscope counts showed the reduction of N. ceranae under different experimental conditions. The antiparasitic efficacy of the treatments at field conditions was studied using a semi-field approach which was adapted from research on insecticides for the first time, to analyse antiparasitic activity against N. ceranae. The approach proved to be reliable and effective in validating data obtained in the laboratory. Both the mixture of beneficial bacteria and its association with Hive Alive® are effective in controlling the natural infection of N. ceranae in honey bee colonies.


Assuntos
Nosema , Extratos Vegetais , Abelhas , Animais , Vitelogeninas , Antiparasitários
11.
Insect Mol Biol ; 33(1): 17-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37707297

RESUMO

In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.


Assuntos
Testículo , Vitelogeninas , Feminino , Masculino , Animais , Vitelogeninas/genética , Vitelogeninas/metabolismo , Insetos/genética , Reprodução , Gametogênese
12.
J Agric Food Chem ; 72(1): 200-208, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38159287

RESUMO

Spodoptera frugiperda, one of the most destructive corn pests in the world, invaded China in December 2018. In this study, sublethal concentrations (LC10 and LC30) of emamectin benzoate (EB) were used to treat pesticide-free treatment (PFT) and EB treatment (ET) of S. frugiperda. In PFT, compared with the control (CK), the pupal weight, hatching rate, and pupation rate of LC10 and LC30 groups were significantly reduced. The fecundity and the expression of vitellogenin gene (SfVg) were decreased after LC30 treatment, while the LC10 treatment groups showed no significant difference from the control group. In ET, compared to CK, the fecundity was increased by 11.14 and 18.8%. The expression of SfVg was upregulated by 2.6 times after LC30 treatment. Moreover, RNAi-mediated SfVg knockdown resulted in a nearly 70% reduction in oviposition. The result provided a theoretical basis for optimizing the application of EB and Vg-dsRNA in the control of S. frugiperda.


Assuntos
Inseticidas , Praguicidas , Animais , Feminino , Spodoptera , Vitelogeninas/genética , Interferência de RNA , Reprodução , Praguicidas/farmacologia , Larva , Inseticidas/toxicidade
13.
Chemosphere ; 346: 140662, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949182

RESUMO

Perchlorate, a widespread environmental contaminant originating from various industrial applications, agricultural practices, and natural sources, poses potential risks to ecosystems and human health. While previous studies have highlighted its influence on the thyroid endocrine system and its impact on gonadal maturation, reproduction, and sex hormone synthesis, the specific interplay between thyroid and steroid hormones, in this context, remains largely unexplored. Therefore, this study was undertaken to investigate the adverse effects and underlying mechanisms triggered by exposure to sodium perchlorate (SP) on reproductive endocrine activity in zebrafish. For 21 d, the fish were exposed to test SP concentrations (0, 3, 30, 300 mg/L), which were determined based on the exposure concentrations that induced various toxic effects in the fish, considering naturally occurring concentrations. Exposure to SP, except at 3 mg/L in males, significantly decreased the production of thyroid hormone (TH) in both female and male zebrafish. Moreover, gonadal steroid levels were markedly reduced in both sexes. The expression of hepatic vitellogenin (VTG) mRNA in female zebrafish was significantly decreased, whereas aromatase activity in male zebrafish was significantly elevated in the SP exposure groups. The reduced levels of THs and gonadal steroid hormones were strongly correlated. Abnormal responses to SP exposure led to reduced reproductive success in the 300 mg/L SP exposure group. These findings indicate that prolonged and continuous exposure to a specific concentration of SP may lead to long-term reproductive problems in zebrafish, primarily through hormonal imbalances and suppression of hepatic VTG mRNA expression.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Humanos , Feminino , Masculino , Peixe-Zebra/metabolismo , Percloratos/toxicidade , Percloratos/metabolismo , Glândula Tireoide/metabolismo , Saúde Reprodutiva , Ecossistema , Gônadas , Hormônios Esteroides Gonadais/metabolismo , Reprodução , Esteroides/metabolismo , RNA Mensageiro/metabolismo , Vitelogeninas/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Biol Reprod ; 110(3): 521-535, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38145497

RESUMO

Vitamin D receptors and vitamin D3-metabolizing enzymes have been found to be highly expressed in the ovaries and spermatophores of fish. However, the role of vitamin D3 on fish gonadal development has rarely been reported. In this study, 2-month-old female zebrafish were fed with different concentrations of vitamin D3 diets (0, 700, 1400, and 11 200 IU/kg) to investigate the effects of vitamin D3 on ovarian development. The diet with 0 IU/kg vitamin D3 resulted in elevated interstitial spaces, follicular atresia, and reproductive toxicity in zebrafish ovaries. Supplementation with 700 and 1400 IU/kg of vitamin D3 significantly increased the oocyte maturation rate; upregulated ovarian gonadal steroid hormone synthesis capacity; and elevated plasma estradiol, testosterone, and ovarian vitellogenin levels. Furthermore, the current study identified a vitamin D response element in the cyp19a1a promoter and demonstrated that 1.25(OH)2D3-vitamin D response directly activated cyp19a1a production through activating the vitamin D response element. In conclusion, this study shows that an appropriate concentration of vitamin D3 can promote zebrafish ovarian development and affect vitellogenin synthesis through the vdr/cyp19a1a/er/vtg gene axis.


Assuntos
Colecalciferol , Peixe-Zebra , Animais , Feminino , Colecalciferol/farmacologia , Vitelogeninas/genética , Atresia Folicular , Vitamina D , Hormônios Esteroides Gonadais , Oócitos
15.
Environ Toxicol Chem ; 43(4): 772-783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38116984

RESUMO

Understanding species differences in sensitivity to toxicants is a critical issue in ecotoxicology. We recently established that double-crested cormorant (DCCO) embryos are more sensitive than Japanese quail (JQ) to the developmental effects of ethinylestradiol (EE2). We explored how this difference in sensitivity between species is reflected at a transcriptomic level. The EE2 was dissolved in dimethyl sulfoxide and injected into the air cell of eggs prior to incubation at nominal concentrations of 0, 3.33, and 33.3 µg/g egg weight. At midincubation (JQ 9 days; DCCO 16 days), livers were collected from five embryos/treatment group for RNA sequencing. Data were processed and analyzed using EcoOmicsAnalyst and ExpressAnalyst. The EE2 exposure dysregulated 238 and 1,987 genes in JQ and DCCO, respectively, with 78 genes in common between the two species. These included classic biomarkers of estrogen exposure such as vitellogenin and apovitellenin. We also report DCCO-specific dysregulation of Phase I/II enzyme-coding genes and species-specific transcriptional ontogeny of vitellogenin-2. Twelve Kyoto Encyclopedia of Genes and Genomes pathways and two EcoToxModules were dysregulated in common in both species including the peroxisome proliferator-activated receptor (PPAR) signaling pathway and fatty acid metabolism. Similar to previously reported differences at the organismal level, DCCO were more responsive to EE2 exposure than JQ at the gene expression level. Our description of differences in transcriptional responses to EE2 in early life stage birds may contribute to a better understanding of the molecular basis for species differences. Environ Toxicol Chem 2024;43:772-783. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Coturnix , Etinilestradiol , Animais , Etinilestradiol/toxicidade , Coturnix/genética , Vitelogeninas , Perfilação da Expressão Gênica , Fígado
16.
PLoS Pathog ; 19(12): e1011859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060601

RESUMO

Microsporidia are a group of obligate intracellular parasites that infect almost all animals, causing serious human diseases and major economic losses to the farming industry. Nosema bombycis is a typical microsporidium that infects multiple lepidopteran insects via fecal-oral and transovarial transmission (TOT); however, the underlying TOT processes and mechanisms remain unknown. Here, we characterized the TOT process and identified key factors enabling N. bombycis to invade the ovariole and oocyte of silkworm Bombyx mori. We found that the parasites commenced with TOT at the early pupal stage when ovarioles penetrated the ovary wall and were exposed to the hemolymph. Subsequently, the parasites in hemolymph and hemolymph cells firstly infiltrated the ovariole sheath, from where they invaded the oocyte via two routes: (I) infecting follicular cells, thereby penetrating oocytes after proliferation, and (II) infecting nurse cells, thus entering oocytes following replication. In follicle and nurse cells, the parasites restructured and built large vacuoles to deliver themselves into the oocyte. In the whole process, the parasites were coated with B. mori vitellogenin (BmVg) on their surfaces. To investigate the BmVg effects on TOT, we suppressed its expression and found a dramatic decrease of pathogen load in both ovarioles and eggs, suggesting that BmVg plays a crucial role in the TOT. Thereby, we identified the BmVg domains and parasite spore wall proteins (SWPs) mediating the interaction, and demonstrated that the von Willebrand domain (VWD) interacted with SWP12, SWP26 and SWP30, and the unknown function domain (DUF1943) bound with the SWP30. When disrupting these interactions, we found significant reductions of the pathogen load in both ovarioles and eggs, suggesting that the interplays between BmVg and SWPs were vital for the TOT. In conclusion, our study has elucidated key aspects about the microsporidian TOT and revealed the key factors for understanding the molecular mechanisms underlying this transmission.


Assuntos
Bombyx , Nosema , Animais , Humanos , Vitelogeninas/metabolismo , Esporos Fúngicos/metabolismo , Nosema/metabolismo , Bombyx/metabolismo
17.
Bull Environ Contam Toxicol ; 112(1): 11, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092994

RESUMO

The present study evaluates the endocrine effect in flatfish through vitellogenin (vtg) gene expression and its association with pollutants data obtained from fish muscle and sediment from two regions in the Gulf of Mexico (GoM): Perdido Fold Belt (northwestern) and the Yucatan Peninsula (southeast). The results revealed induction of vtg in male flatfish in both geographical regions with different levels and patterns of distribution per oceanographic campaign (OC). In the Perdido Fold Belt, vtg was observed in male fish during four OC (carried out in 2016 and 2017), positively associated with Pb, V, Cd and bile metabolites (hydroxynaphthalene and hydroxyphenanthrene). In the Yucatan Peninsula, the induction of vtg in males was also detected in three OC (carried out in 2016 and 2018) mainly associated with Ni, Pb, Al, Cd, V and polycyclic aromatic hydrocarbons. Ultimately, estrogenic alterations could affect reproductive capacity of male flatfish in the GoM.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Linguados , Poluentes Químicos da Água , Animais , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Golfo do México , Cádmio , Chumbo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Monitoramento Ambiental/métodos
18.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138959

RESUMO

The red imported fire ant (Solenopsis invicta Buren) is a social pest species with a robust reproductive ability that causes extensive damage. Identification of the genes involved in queen fertility is critical in order to better understand the reproductive biology and screening for the potential molecular targets in S. invicta. Here, we used the mRNA deep sequencing (RNA-seq) approach to identify differentially expressed genes (DEGs) in the transcriptomes of three reproductive caste types of S. invicta, including queen (QA) and winged female (FA) and male (MA) ants. The genes that were specific to and highly expressed in the queens were then screened, and the Vg2 and Vg3 genes were chosen as targets to explore their functions in oogenesis and fertility. A minimum of 6.08 giga bases (Gb) of clean reads was obtained from all samples, with a mapping rate > 89.78%. There were 7524, 7133, and 977 DEGs identified in the MA vs. QA, MA vs. FA, and FA vs. QA comparisons, respectively. qRT-PCR was used to validate 10 randomly selected DEGs, including vitellogenin 2 (Vg2) and 3 (Vg3), and their expression patterns were mostly consistent with the RNA-seq data. The S. invicta Vgs included conserved domains and motifs that are commonly found in most insect Vgs. SiVg2 and SiVg3 were highly expressed in queens and winged females and were most highly expressed in the thorax, followed by the fat body, head, and epidermis. Evaluation based on a loss-of-function-based knockdown analysis showed that the downregulation of either or both of these genes resulted in smaller ovaries, less oogenesis, and less egg production. The results of transcriptional sequencing provide a foundation for clarifying the regulators of queen fertility in S. invicta. The functions of SiVg2 and SiVg3 as regulators of oogenesis highlight their importance in queen fecundity and their potential as targets of reproductive disruption in S. invicta control.


Assuntos
Formigas , Vitelogeninas , Animais , Feminino , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Reprodução/genética , Fertilidade/genética , Formigas/genética
19.
Sci Rep ; 13(1): 18795, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914813

RESUMO

The specific functions and essentiality of type II vitellogenin (Vtg2) in early zebrafish development were investigated in this study. A vtg2-mutant zebrafish line was produced and effects of genomic disturbance were observed in F2 females and F3 offspring. No change in vtg2 transcript has been detected, however, Vtg2 abundance in F2 female liver was 5×, and in 1 hpf F3 vtg2-mutant embryos was 3.8× less than Wt (p < 0.05). Fecundity was unaffected while fertilization rate was more than halved in F2 vtg2-mutant females (p < 0.05). Hatching rate was significantly higher in F3 vtg2-mutant embryos in comparison to Wt embryos. Survival rate declined drastically to 29% and 18% at 24 hpf and 20 dpf, respectively, in F3 vtg2-mutant embryos. The introduced mutation caused vitelline membrane deficiencies, significant mortalities at early embryonic stages, and morphological abnormalities in the surviving F3 vtg2-mutant larvae. Overrepresentation of histones, zona pellucida proteins, lectins, and protein degradation related proteins in F3 vtg2-mutant embryos provide evidence to impaired mechanisms involved in vitellin membrane formation. Overall findings imply a potential function of Vtg2 in acquisition of vitellin membrane integrity, among other reproductive functions, and therefore, its essentiality in early zebrafish embryo development.


Assuntos
Vitelogeninas , Peixe-Zebra , Animais , Feminino , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Genômica , Larva/metabolismo , Vitelinas/metabolismo , Vitelinas/farmacologia , Vitelogeninas/genética , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo
20.
Ecotoxicol Environ Saf ; 268: 115721, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000300

RESUMO

Penthiopyrad (PO), a succinate dehydrogenase inhibitor (SDHI) fungicide, poses a potential risk to fish. Here, we investigated the adverse effects of PO on endocrine regulation and reproductive capacity in zebrafish during a 21-d sublethal exposure to PO concentrations ranging from 0.02 to 2.00 mg/L. Following exposure to PO (0.20 and 2.00 mg/L), female-specific effects including follicle necrosis, structural disturbance of the yolk follicle, fusion of cortical follicles appeared in ovarian tissue of adult females, which led to a significant reduction in fertility. Correspondingly, 0.20 and 2.00 mg/L PO led to a marked reduction in the GSI values of females, and 2.00 mg/L PO caused a 31% decline in the proportion of perinucleolar oocytes (PCO) in oocytes. In addition, testosterone (T) level was obviously suppressed and 17ß-estradiol (E2) level was increased in females after exposure to 2.00 mg/L PO. Male zebrafish treated with 0.20 and 2.00 mg/L of PO exhibited significant interstitial enlargement, edema in the testes, and reduced diameter of seminiferous tubules, along with a thinner basement membrane. The effects of PO on males were associated with significant increase in E2 level, suggesting that PO has an estrogenic effect on male fish. Greater E2 levels in serum were further supported by increased transcription levels of genes linked to the hypothalamic-pituitary-gonad-liver (HPGL) axis. Notably, transcription levels of cyp19a, er2b, era, and cyp19b was remarkably increased, exhibiting a clear link with variations in E2 levels. Overall, the present study demonstrates that PO induces reproductive impairment in zebrafish by promoting steroidogenesis.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Masculino , Feminino , Peixe-Zebra/fisiologia , Gônadas , Sistema Endócrino , Pirazóis/farmacologia , Reprodução , Poluentes Químicos da Água/toxicidade , Vitelogeninas/genética , Disruptores Endócrinos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...