Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Cancer Lett ; 587: 216709, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350547

RESUMO

Patients diagnosed with lymph node (LN) metastatic liver cancer face an exceedingly grim prognosis. In-depth analysis of LN metastatic patients' characteristics and tumor cells' interactions with human lymphatic endothelial cells (HLECs), can provide important biological and therapeutic insights. Here we identify at the single-cell level that S100A6 expression differs between primary tumor and their LN metastasis. Of particular significance, we uncovered the disparity in S100A6 expression between tumors and normal tissues is greater in intrahepatic cholangiocarcinoma (ICC) patients, frequently accompanied by LN metastases, than that in hepatocellular carcinoma (HCC), with rare occurrence of LN metastasis. Furthermore, in the infrequent instances of LN metastasis in HCC, heightened S100A6 expression was observed, suggesting a critical role of S100A6 in the process of LN metastasis. Subsequent experiments further uncovered that S100A6 secreted from tumor cells promotes lymphangiogenesis by upregulating the expression and secretion of vascular endothelial growth factor-D (VEGF-D) in HLECs through the RAGE/NF-kB/VEGF-D pathway while overexpression of S100A6 in tumor cells also augmented their migration and invasion. Taken together, these data reveal the dual effects of S100A6 in promoting LN metastasis in liver cancer, thus highlighting its potential as a promising therapeutic target.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fator D de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/farmacologia , Metástase Linfática , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , NF-kappa B/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/farmacologia , Proteínas de Ciclo Celular/metabolismo
2.
Biomolecules ; 13(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37759746

RESUMO

S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.


Assuntos
Fatores Imunológicos , Proteínas S100 , Humanos , Animais , Proteína A6 Ligante de Cálcio S100 , Simulação de Acoplamento Molecular , Sítios de Ligação , Proteínas de Ciclo Celular
3.
Hepatol Commun ; 7(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655980

RESUMO

BACKGROUND: S100 calcium-binding protein A6 (S100A6) is a calcium-binding protein that is involved in a variety of cellular processes, such as proliferation, apoptosis, and the cellular response to various stress stimuli. However, its role in NAFLD and associated metabolic diseases remains uncertain. METHODS AND RESULTS: In this study, we revealed a new function and mechanism of S100A6 in NAFLD. S100A6 expression was upregulated in human and mouse livers with hepatic steatosis, and the depletion of hepatic S100A6 remarkably inhibited lipid accumulation, insulin resistance, inflammation, and obesity in a high-fat, high-cholesterol (HFHC) diet-induced murine hepatic steatosis model. In vitro mechanistic investigations showed that the depletion of S100A6 in hepatocytes restored lipophagy, suggesting S100A6 inhibition could alleviate HFHC-induced NAFLD. Moreover, S100A6 liver-specific ablation mediated by AAV9 alleviated NAFLD in obese mice. CONCLUSIONS: Our study demonstrates that S100A6 functions as a positive regulator of NAFLD, targeting the S100A6-lipophagy axis may be a promising treatment option for NAFLD and associated metabolic diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteína A6 Ligante de Cálcio S100 , Animais , Humanos , Camundongos , Apoptose , Autofagia , Proteínas de Ligação ao Cálcio/genética , Proteína A6 Ligante de Cálcio S100/metabolismo
4.
Biomolecules ; 13(7)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509175

RESUMO

S100A6, also known as calcyclin, is a low-molecular-weight Ca2+-binding protein from the S100 family that contains two EF-hands. S100A6 is expressed in a variety of mammalian cells and tissues. It is also expressed in lung, colorectal, pancreatic, and liver cancers, as well as other cancers such as melanoma. S100A6 has many molecular functions related to cell proliferation, the cell cycle, cell differentiation, and the cytoskeleton. It is not only involved in tumor invasion, proliferation, and migration, but also the pathogenesis of other non-neoplastic diseases. In this review, we focus on the molecular mechanisms and potential therapeutic targets of S100A6 in tumors, nervous system diseases, leukemia, endometriosis, cardiovascular disease, osteoarthritis, and other related diseases.


Assuntos
Neoplasias Hepáticas , Proteína A6 Ligante de Cálcio S100 , Animais , Feminino , Humanos , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Mamíferos/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo
5.
ACS Chem Neurosci ; 14(15): 2583-2589, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37433222

RESUMO

Mutations in the proline-rich domain (PRD) of annexin A11 are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, and generate abundant neuronal A11 inclusions by an unknown mechanism. Here, we demonstrate that recombinant A11-PRD and its ALS-associated variants form liquidlike condensates that transform into ß-sheet-rich amyloid fibrils. Surprisingly, these fibrils dissolved in the presence of S100A6, an A11 binding partner overexpressed in ALS. The ALS variants of A11-PRD showed longer fibrillization half-times and slower dissolution, even though their binding affinities for S100A6 were not significantly affected. These findings indicate a slower fibril-to-monomer exchange for these ALS variants, resulting in a decreased level of S100A6-mediated fibril dissolution. These ALS-A11 variants are thus more likely to remain aggregated despite their slower fibrillization.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Anexinas/genética , Solubilidade , Amiloide/metabolismo , Prolina/genética , Proteína A6 Ligante de Cálcio S100 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo
6.
Oncol Res ; 31(3): 317-331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305391

RESUMO

Background: Cholangiocarcinoma (CCA) represents the epithelial cell cancer with high aggressiveness whose five-year survival rate is poor with standard treatment. Calcyclin-binding protein (CACYBP) shows aberrant expression within several malignant tumors, but the role of CACYBP in CCA remains unknown. Methods: Immunohistochemical (IHC) analysis was used to identify CACYBP overexpression in clinical samples of CCA patients. Moreover, its correlation with clinical outcome was revealed. Furthermore, CACYBP's effect on CCA cell growth and invasion was investigated in vitro and in vivo using loss-of-function experiments. Results: CACYBP showed up-regulation in CCA, which predicts the dismal prognostic outcome. CACYBP had an important effect on in-vitro and in-vivo cancer cell proliferation and migration. Additionally, knockdown of CACYBP weakened protein stability by promoting ubiquitination of MCM2. Accordingly, MCM2 up-regulation partly reversed CACYBP deficiency's inhibition against cancer cell viability and invasion. Thus, MCM2 might drive CCA development by Wnt/ß-catenin pathway. Conclusions: CACYBP exerted a tumor-promoting role in CCA by suppressing ubiquitination of MCM2 and activating Wnt/ß-catenin pathway, hence revealing that it may be the possible therapeutic target for CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Proteína A6 Ligante de Cálcio S100 , beta Catenina , Colangiocarcinoma/genética , Ubiquitinação , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Componente 2 do Complexo de Manutenção de Minicromossomo , Proteínas de Ligação ao Cálcio/genética
7.
Breast Cancer Res ; 25(1): 55, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217945

RESUMO

BACKGROUND: S100A6 and murine double minute 2 (MDM2) are important cancer-related molecules. A previous study identified an interaction between S100A6 and MDM2 by size exclusion chromatography and surface plasmon resonance experiments. The present study investigated whether S100A6 could bind to MDM2 in vivo and further explored its functional implication. METHODS: Co-immunoprecipitation, glutathione-S-transferase pull-down assay, and immunofluorescence were performed to determine the in vivo interaction between S100A6 and MDM2. Cycloheximide pulse-chase assay and ubiquitination assay were performed to clarify the mechanism by which S100A6 downregulated MDM2. In addition, clonogenic assay, WST-1 assay, and flow cytometry of apoptosis and the cell cycle were performed and a xenograft model was established to evaluate the effects of the S100A6/MDM2 interaction on growth and paclitaxel-induced chemosensitivity of breast cancer. The expressions of S100A6 and MDM2 in patients with invasive breast cancer were analyzed by immunohistochemistry. In addition, the correlation between the expression of S100A6 and the response to neoadjuvant chemotherapy was statistically analyzed. RESULTS: S100A6 promoted the MDM2 translocation from nucleus to cytoplasm, in which the S100A6 bound to the binding site of the herpesvirus-associated ubiquitin-specific protease (HAUSP) in MDM2, disrupted the MDM2-HAUSP-DAXX interactions, and induced the MDM2 self-ubiquitination and degradation. Furthermore, the S100A6-mediated MDM2 degradation suppressed the growth of breast cancer and enhanced its sensitivity to paclitaxel both in vitro and in vivo. For patients with invasive breast cancer who received epirubicin and cyclophosphamide followed by docetaxel (EC-T), expressions of S100A6 and MDM2 were negatively correlated, and high expression of S100A6 suggested a higher rate of pathologic complete response (pCR). Univariate and multivariate analyses showed that the high expression of S100A6 was an independent predictor of pCR. CONCLUSION: These results reveal a novel function for S100A6 in downregulating MDM2, which directly enhances sensitivity to chemotherapy.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitinação
8.
Br J Pharmacol ; 180(14): 1878-1896, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36727262

RESUMO

BACKGROUND AND PURPOSE: Repeated amino acid sequences in proteins are widely found, and the glycine-serine-alanine repeat is an element with a general propensity to form ß-sheet aggregates as found in key pathological factors, in several neurodegenerative diseases. Such properties of this repeat may guide development of disease-modifying therapies for neurodegenerative disease. However, details of its role and underlying mechanism(s) remain largely unknown. EXPERIMENTAL APPROACH: Actions of specific glycine-serine-alanine repeat peptides (SNPs), especially SNP-9, on Alzheimer's disease (AD)-like abnormalities were evaluated in transgenic mice and Caenorhabditis elegans, and in rat and cell models. Entry of SNPs into the brain, SNP activity in neuronal cells and peptide entry into cells were analysed in vivo and in vitro. Cell-free systems and the yeast two-hybrid system were also used to explore possible targets of SNP-9, and interactions of potential targets with SNP-9 were confirmed in cell-based systems. KEY RESULTS: We first identified SNP-9 as a potent neuroprotective peptide with the activity to decrease oligomeric amyloid ß (Aß) via co-assembling with the toxic Aß oligomer to form hetero-oligomers. Also, calcyclin-binding protein was found to act as a SNP-9-binding protein, by screening of a human brain cDNA library. Such binding showed that SNP-9 could regulate the abnormal hyperphosphorylation of tau via calcyclin-binding protein. CONCLUSION AND IMPLICATIONS: Our study provides a foundation for development of SNPs, especially SNP-9, as potential therapeutic interventions for AD. We propose SNP-9 as a potential therapeutic agent for the treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Ratos , Animais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Serina , Proteína A6 Ligante de Cálcio S100 , Camundongos Transgênicos , Caenorhabditis elegans/metabolismo
9.
Brain Behav ; 13(3): e2897, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748983

RESUMO

INTRODUCTION: Autoimmune encephalitis (AE) is caused by autoantibodies attacking neuronal cell surface antigens and/or synaptic antigens. We previously demonstrated that S100A6 was hypomethylated in patients with AE and that it promoted B lymphocyte infiltration through the simulated blood-brain barrier (BBB). In this study, we focused on the epigenetic regulation of S100A6, the process by which S100A6 affects B lymphocyte infiltration, and the therapeutic potential of S100A6 antibodies. METHODS: We enrolled and collected serum from 10 patients with AE and 10 healthy control (HC) subjects. Promoter methylation and 5-azacytidine treatment assays were conducted to observe the methylation process of S100A6. The effect of S100A6 on B lymphocytes was analyzed using an adhesion assay and leukocyte transendothelial migration (LTEM) assay. A LTEM assay was also used to compare the effects of the serum of HCs, serum of AE patients, S100A6 recombinant protein, and S100A6 antibodies on B lymphocytes. RESULT: The promoter methylation and 5-azacytidine treatment assays confirmed that S100A6 was regulated by DNA methylation. The adhesion study demonstrated that the addition of S100A6 enhanced adhesion between B lymphocytes and a BBB endothelial cell line in a concentration-dependent manner. The LTEM assay showed that the serum of AE patients, as well as S100A6, promoted B lymphocyte infiltration and that this effect could be attenuated by S100A6 antibodies. CONCLUSION: We clarified that S100A6 was under epigenetic regulation in patients with AE and that it helped B lymphocytes to adhere to and infiltrate the BBB endothelial layer, which could be counteracted by S100A6 antibodies. Therefore, the methylation profile of S100A6 could be a marker of the activity of AE, and countering the effect of S100A6 may be a potential treatment target for AE.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Proteínas S100 , Humanos , Proteínas S100/genética , Proteínas S100/metabolismo , Proteínas de Ciclo Celular/genética , Epigênese Genética , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Autoanticorpos/metabolismo , Azacitidina
10.
Exp Parasitol ; 246: 108475, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707015

RESUMO

Malaria remains as a global life-threatening disorder due to the emergence of resistance against standard antimalarials. Consequently, there is a serious need to better understand the biology of the malaria parasite in order to determine appropriate targets for new interventions. Calcyclin binding protein (CacyBP) is a multi-functional and multi-ligand protein that is not well characterized in malaria disease. In this study, we have cloned CacyBP from rodent species Plasmodium yoelii nigeriensis and purified the recombinant protein to carry out its detailed molecular, biophysical and immunological characterization. Molecular characterization indicates that PyCacyBP is a ∼27 kDa protein in parasite lysate and exists in monomer and dimer forms. Bioinformatic analysis of CacyBP showed significant sequence and structural similarities between rodent and human malaria parasites. CacyBP is expressed in all blood stages of P. yoelii nigeriensis parasite. In silico studies proposed the immunogenic potential of CacyBP. The rPyCacyBP immunized mice exhibited elevated levels of IgG1, IgG2a, IgG2b and IgG3 in their serum. Notably, cellular immune response in splenocytes from immunized mice showed increased expression of pro-inflammatory cytokines such as IL-12, IFN-γ and TNF-α. This CacyBP exhibited pro-inflammatory immune response in rodent host. These finding revealed that CacyBP may have the potential to boost the host immunity for protection against malaria infection. The present study provides basis for further exploration of the biological function of CacyBP in malaria parasite.


Assuntos
Antimaláricos , Malária , Parasitos , Plasmodium yoelii , Humanos , Animais , Camundongos , Parasitos/metabolismo , Proteína A6 Ligante de Cálcio S100 , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Imunidade Celular , Plasmodium yoelii/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/uso terapêutico
11.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674873

RESUMO

S100A6, also known as calcyclin, is a calcium-binding protein belonging to the S100 protein family. It was first identified and purified more than 30 years ago. Initial structural studies, focused mostly on the mode and affinity of Ca2+ binding and resolution of the resultant conformational changes, were soon complemented by research on its expression, localization and identification of binding partners. With time, the use of biophysical methods helped to resolve the structure and versatility of S100A6 complexes with some of its ligands. Meanwhile, it became clear that S100A6 expression was altered in various pathological states and correlated with the stage/progression of many diseases, including cancers, indicative of its important, and possibly causative, role in some of these diseases. This, in turn, prompted researchers to look for the mechanism of S100A6 action and to identify the intermediary signaling pathways and effectors. After all these years, our knowledge on various aspects of S100A6 biology is robust but still incomplete. The list of S100A6 ligands is growing all the time, as is our understanding of the physiological importance of these interactions. The present review summarizes available data concerning S100A6 expression/localization, interaction with intracellular and extracellular targets, involvement in Ca2+-dependent cellular processes and association with various pathologies.


Assuntos
Neoplasias , Proteínas S100 , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Ligantes , Proteínas S100/química , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais
12.
Pathol Res Pract ; 242: 154325, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680929

RESUMO

High levels of S100A6 have been associated with progression in some types of human cancers. Cancers related to S100A6 have been reported to include lung cancer, cervical cancer, pancreatic cancer, gastric cancer, colon cancer, etc., but its role in the molecular pathogenesis of these cancers is largely unknown. This study investigated the expression and functional roles of S100A6 in human thyroid cancer. The expression level of S100A6 in thyroid cancer cells was determined by bioinformatics and transcriptomic analysis. Furthermore, the potential functions of S100A6 in tumorigenesis were analyzed by cell proliferation, migration, invasion, and Western blot assays in human thyroid cancer cells. Public database queries revealed high S100A6 expression in thyroid cancer. In addition, we also found that high expression of S100A6 was positively correlated with malignant clinicopathological characteristics of thyroid cancer in The Cancer Genome Atlas database. qPCR results confirmed the high expression of S100A6 in thyroid cancer cells. S100A6 silencing inhibited cell proliferation, migration, and invasion. Western blot assays and response experiments showed that S100A6 promotes cell proliferation and tumorigenicity partly through the PI3K/AKT/mTOR signaling pathway. These results suggest that S100A6 affects the progression of thyroid cancer and can be used as a target in the future treatment of thyroid cancer.


Assuntos
Proteína A6 Ligante de Cálcio S100 , Neoplasias da Glândula Tireoide , Humanos , Apoptose/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Glândula Tireoide/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Plant Physiol ; 191(2): 1052-1065, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461944

RESUMO

Fructokinase (FRK) activates fructose through phosphorylation, which sends the activated fructose into primary metabolism and regulates fructose signaling capabilities in plants. The apple (Malus × domestica) FRK gene MdFRK2 shows especially high affinity to fructose, and its overexpression decreases fructose levels in the leaves of young plants. However, in the current study of mature plants, fruits of transgenic apple trees overexpressing MdFRK2 accumulated a higher level of fructose than wild-type (WT) fruits (at both young and mature stages). Transgenic apple trees with high mRNA MdFRK2 expression showed no significant differences in MdFRK2 protein abundance or FRK enzyme activity compared to WT in mature leaves, young fruits, and mature fruits. Immunoprecipitation-mass spectrometry analysis identified an skp1, cullin, F-box (SCF) E3 ubiquitin ligase, calcyclin-binding protein (CacyBP), that interacted with MdFRK2. RNA-sequencing analysis provided evidence for ubiquitin-mediated post-transcriptional regulation of MdFRK2 protein for the maintenance of fructose homeostasis in mature leaves and fruits. Further analyses suggested an MdCacyBP-MdFRK2 regulatory module, in which MdCacyBP interacts with and ubiquitinates MdFRK2 to facilitate its degradation by the 26S proteasome, thus decreasing the FRK enzyme activity to elevate fructose concentration in transgenic apple trees. This result uncovered an important mechanism underlying plant fructose homeostasis in different organs through regulating the MdFRK2 protein level via ubiquitination and degradation. Our study provides usable data for the future improvement of apple flavor and expands our understanding of the molecular mechanisms underlying plant fructose content and signaling regulation.


Assuntos
Malus , Malus/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Homeostase , Frutose , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
14.
J Cell Biochem ; 124(2): 205-220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502516

RESUMO

Receptor for advanced glycation end products (RAGE), a member of the immunoglobulin family, interactions with its ligands trigger downstream signaling and induce an inflammatory response linked to diabetes, inflammation, carcinogenesis, cardiovascular disease, and a variety of other human disorders. The interaction of RAGE and S100A6 has been associated with a variety of malignancies. For the control of RAGE-related illnesses, there is a great demand for more specialized drug options. To identify the most effective target for combating human malignancies associated with RAGE-S100A6 complex, we conducted single and differential gene expression analyses of S100A6 and RAGE, comparing normal and malignant tissues. Further, a structure-based virtual screening was conducted using the ZINC15 database. The chosen compounds were then subjected to a molecular docking investigation on the RAGE active site region, recognized by the various cancer-related RAGE ligands. An optimized RAGE structure was screened against a library of drug-like molecules. The screening results suggested that three promising compounds were presented as the top acceptable drug-like molecules with a high binding affinity at the RAGE V-domain catalytic region. We depicted that these compounds may be potential RAGE inhibitors and could be used to produce a successful medication against human cancer and other RAGE-related diseases based on their various assorted parameters, binding energy, hydrogen bonding, ADMET characteristics, etc. MD simulation on a time scale of 50 ns was used to test the stability of the RAGE-inhibitor complexes. Therefore, targeting RAGE and its ligands using these drug-like molecules may be an effective therapeutic approach.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Ligantes , Perfilação da Expressão Gênica , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas de Ciclo Celular/genética
15.
Diabetes ; 71(11): 2284-2296, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35899967

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an independent predictor of systemic insulin resistance and type 2 diabetes mellitus (T2DM). However, converse correlates between excess liver fat content and ß-cell function remain equivocal. Specifically, how the accumulation of liver fat consequent to the enhanced de novo lipogenesis (DNL) leads to pancreatic ß-cell failure and eventually to T2DM is elusive. Here, we have identified that low-molecular-weight calcium-binding protein S100A6, or calcyclin, inhibits glucose-stimulated insulin secretion (GSIS) from ß cells through activation of the receptor for the advanced glycation end products and diminution of mitochondrial respiration. Serum S100A6 level is elevated both in human patients with NAFLD and in a high-fat diet-induced mouse model of NAFLD. Although serum S100A6 levels are negatively associated with ß-cell insulin secretory capacity in human patients, depletion of hepatic S100A6 improves GSIS and glycemia in mice, suggesting that S100A6 contributes to the pathophysiology of diabetes in NAFLD. Moreover, transcriptional induction of hepatic S100A6 is driven by the potent regulator of DNL, carbohydrate response element-binding protein (ChREBP), and ectopic expression of ChREBP in the liver suppresses GSIS in a S100A6-sensitive manner. Together, these data suggest elevated serum levels of S100A6 may serve as a biomarker in identifying patients with NAFLD with a heightened risk of developing ß-cell dysfunction. Overall, our data implicate S100A6 as, to our knowledge, a hitherto unknown hepatokine to be activated by ChREBP and that participates in the hepato-pancreatic communication to impair insulin secretion and drive the development of T2DM in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteína A6 Ligante de Cálcio S100 , Animais , Humanos , Camundongos , Glicemia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo
16.
Stem Cell Rev Rep ; 18(8): 2699-2708, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35796891

RESUMO

Adult or tissue stem cells are present in various tissues of the organism where they reside in a specific environment called the niche. Owing to their ability to generate a progeny that can proliferate and differentiate into specialized cell types, adult stem cells constitute a source of new cells necessary for tissue maintenance and/or regeneration. Under normal conditions they divide with a frequency matching the pace of tissue renewal but, following tissue damage, they can migrate to the site of injury and expand/divide intensively to facilitate tissue repair. For this reason much hope is being placed on the use of adult stem cells in regenerative therapies, including tissue engineering. Identification and characterization of tissue stem cells has been a laborious process due to their scarcity and lack of universal markers. Nonetheless, recent studies, employing various types of transcriptomic analyses, revealed some common trends in gene expression pattern among stem cells derived from different tissues, suggesting the importance of certain genes/proteins for the unique properties of these cells. S100A6, a small calcium binding protein, has been recognized as an important factor influencing cell proliferation and differentiation. Accumulating results show that S100A6 is a constituent of adult stem cells and, in some cases, may even be considered as their marker. Thus, in this review we summarize literature data concerning the presence of S100A6 in adult and cancer stem cells and speculate on its potential role and usefulness as a marker of these cells.


Assuntos
Células-Tronco Adultas , Neoplasias , Humanos , Biomarcadores , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Proliferação de Células/genética , Neoplasias/genética , Células-Tronco Neoplásicas , Proteína A6 Ligante de Cálcio S100 , Adulto
17.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 137-147, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130629

RESUMO

The mechanism behind the aberrant expression of S100A6 in osteosarcoma is seldom reported so far. This study sought to explore the regulatory axis targeting S100A6 involved in osteosarcoma progression. Clinical samples collected from osteosarcoma patients were used to detect the expressions of SNHG1, miR-493-5p, and S100A6 by western bolt analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of S100A6 on proliferation and osteogenic differentiation were investigated by the CCK-8 assay, colony formation assay, Ethynyl deoxyuridine staining, matrix mineralization assay, and alkaline phosphatase assay. The potential of lncRNAs/miRNAs targeting S100A6 was identified by the bioinformatics approach, and the results were verified by the dual luciferase assay and RNA immunoprecipitation assay. Both and rescue experiments were performed to investigate the regulatory relationship between the identified lncRNAs and S100A6. The results showed that S100A6 is highly expressed in osteosarcoma. S100A6 overexpression not only increases the proliferation but also reduces the osteogenic differentiation of osteosarcoma cells, while S1006A silence exerts the opposite effects. Then, SNHG1 is identified to directly interact with miR-493-5p to attenuate miR-493-5p binding to the 3'-untranslated region of S100A6. Notably, S100A6 silence partially rescues the effect of SNHG1 overexpression on proliferation and osteogenic differentiation of osteosarcoma cells. Furthermore, the suppressive role of SNHG1 silence in the growth of osteosarcoma xenograft tumors is countered by S100A6 overexpression. Collectively, this study reveals that S100A6 plays an important role in osteosarcoma progression, and SNHG1 promotes S100A6 expression by competitively sponging miR-493-5p.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/genética , Proteína A6 Ligante de Cálcio S100/genética
18.
Sci Rep ; 12(1): 1410, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082358

RESUMO

Dp40 is ubiquitously expressed including the central nervous system. In addition to being present in the nucleus, membrane, and cytoplasm, Dp40 is detected in neurites and postsynaptic spines in hippocampal neurons. Although Dp40 is expressed from the same promoter as Dp71, its role in the cognitive impairment present in Duchenne muscular dystrophy patients is still unknown. Here, we studied the effects of overexpression of Dp40 and Dp40L170P during the neuronal differentiation of PC12 Tet-On cells. We found that Dp40 overexpression increased the percentage of PC12 cells with neurites and neurite length, while Dp40L170P overexpression decreased them compared to Dp40 overexpression. Two-dimensional gel electrophoresis analysis showed that the protein expression profile was modified in nerve growth factor-differentiated PC12-Dp40L170P cells compared to that of the control cells (PC12 Tet-On). The proteins α-internexin and S100a6, involved in cytoskeletal structure, were upregulated. The expression of vesicle-associated membrane proteins increased in differentiated PC12-Dp40 cells, in contrast to PC12-Dp40L170P cells, while neurofilament light-chain was decreased in both differentiated cells. These results suggest that Dp40 has an important role in the neuronal differentiation of PC12 cells through the regulation of proteins involved in neurofilaments and exocytosis of synaptic vesicles, functions that might be affected in PC12-Dp40L170P.


Assuntos
Substituição de Aminoácidos , Distrofina/genética , Filamentos Intermediários/metabolismo , Crescimento Neuronal/genética , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Distrofina/metabolismo , Exocitose , Regulação da Expressão Gênica , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neurônios/citologia , Células PC12 , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Transdução de Sinais , Vesículas Sinápticas/ultraestrutura
19.
BMC Cancer ; 21(1): 1039, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530774

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a treatment-refractory malignancy with poor prognosis. It is urgent to identify novel and valid biomarkers to predict the progress and prognosis of PDAC. The S100A family have been identified as being involved in cell proliferation, migration and differentiation progression of various cancer types. However, the expression patterns and prognostic values of S100As in PDAC remain to be analyzed. METHODS: We investigated the transcriptional expressions, methylation level and prognostic value of S100As in PDAC patients from the Oncomine, GEPIA2, Linkedomics and cBioPortal databases. Real-time PCR was used to detect the expressions of S100A2/4/6/10/14/16 in four pancreatic cancer cell lines and pancreatic cancer tissues from PDAC patients undergoing surgery. To verify the results further, immunohistochemistry was used to measure the expression of S100A2/4/6/10/14/16 in 43 PDAC patients' tissue samples. The drug relations of S100As were analyzed by using the Drugbank database. RESULTS: The results suggested that, the expression levels of S100A2/4/6/10/14/16 were elevated to PDAC tissues than in normal pancreatic tissues, and the promoter methylation levels of S100A S100A2/4/6/10/14/16 in PDAC (n = 10) were lower compared with normal tissue (n = 184) (P < 0.05). In addition, their expressions were negatively correlated with PDAC patient survival. CONCLUSIONS: Taken together, these results suggest that S100A2/4/6/10/14/16 might be served as prognostic biomarkers for survivals of PDAC patients.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas S100/metabolismo , Adenocarcinoma/mortalidade , Anexina A2/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Fatores Quimiotáticos/metabolismo , Bases de Dados Genéticas , Progressão da Doença , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/mortalidade , Prognóstico , RNA Mensageiro/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteínas S100/genética , Transcrição Gênica
20.
PLoS One ; 16(8): e0256746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34464420

RESUMO

The use of metal additive manufacturing (AM) is steadily increasing and is an emerging concern regarding occupational exposure. In this study, non-invasive sampled nasal lavage fluid (NLF) from the upper airways was collected from metal AM operators at the beginning and end of a workweek during two consecutive years with preventive interventions in the occupational setting in-between (n = 5 year 1, n = 9 year 2). During year one, NLF was also collected from welders (n = 6) from the same company to get a comparison with a traditional manufacturing technique with known exposure and health risks. The samples were investigated using untargeted proteomics, as well as using multi-immunoassay to analyze a panel of 71 inflammatory protein markers. NLF in AM operators from year 1 showed decreased levels of Immunoglobulin J and WAP four-disulfide core domain protein 2 and increased levels of Golgi membrane protein 1, Uteroglobin and Protein S100-A6 at the end of the workweek. At year two, after preventive interventions, there were no significant differences at the end of the workweek. In welders, Annexin A1 and Protein S100-A6 were increased at the end of the workweek. The analysis of 71 inflammatory biomarkers showed no significant differences between the beginning and the end of workweek year 1 in AM operators. We identified several proteins of interest in the AM operators that could serve as possible markers for exposure in future studies with a larger cohort for validation.


Assuntos
Indústria Manufatureira , Metais/efeitos adversos , Líquido da Lavagem Nasal/química , Exposição Ocupacional/estatística & dados numéricos , Proteoma/efeitos dos fármacos , Adulto , Biomarcadores/análise , Feminino , Humanos , Cadeias J de Imunoglobulina/análise , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Projetos Piloto , Proteoma/análise , Proteína A6 Ligante de Cálcio S100/análise , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/análise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...