Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
1.
Inflamm Res ; 73(4): 669-691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483556

RESUMO

OBJECTIVE AND DESIGN: Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS: We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS: Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1ß up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1ß had this effect only on young and aged neurons, respectively. CONCLUSION: Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.


Assuntos
Canais Iônicos Sensíveis a Ácido , Hiperalgesia , Canal de Sódio Disparado por Voltagem NAV1.8 , Dor , Animais , Feminino , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/farmacologia , Analgésicos/uso terapêutico , Gânglios Espinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
2.
ACS Chem Neurosci ; 15(6): 1063-1073, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38449097

RESUMO

Chronic pain is a growing global health problem affecting at least 10% of the world's population. However, current chronic pain treatments are inadequate. Voltage-gated sodium channels (Navs) play a pivotal role in regulating neuronal excitability and pain signal transmission and thus are main targets for nonopioid painkiller development, especially those preferentially expressed in dorsal root ganglial (DRG) neurons, such as Nav1.6, Nav1.7, and Nav1.8. In this study, we screened in virtual hits from dihydrobenzofuran and 3-hydroxyoxindole hybrid molecules against Navs via a veratridine (VTD)-based calcium imaging method. The results showed that one of the molecules, 3g, could inhibit VTD-induced neuronal activity significantly. Voltage clamp recordings demonstrated that 3g inhibited the total Na+ currents of DRG neurons in a concentration-dependent manner. Biophysical analysis revealed that 3g slowed the activation, meanwhile enhancing the inactivation of the Navs. Additionally, 3g use-dependently blocked Na+ currents. By combining with selective Nav inhibitors and a heterozygous expression system, we demonstrated that 3g preferentially inhibited the TTX-S Na+ currents, specifically the Nav1.7 current, other than the TTX-R Na+ currents. Molecular docking experiments implicated that 3g binds to a known allosteric site at the voltage-sensing domain IV(VSDIV) of Nav1.7. Finally, intrathecal injection of 3g significantly relieved mechanical pain behavior in the spared nerve injury (SNI) rat model, suggesting that 3g is a promising candidate for treating chronic pain.


Assuntos
Dor Crônica , Indóis , Neuralgia , Ratos , Animais , Simulação de Acoplamento Molecular , Canal de Sódio Disparado por Voltagem NAV1.8 , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Gânglios Espinais/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(32): e2217800120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498871

RESUMO

Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.


Assuntos
Dor Crônica , Neuralgia , Animais , Hiperalgesia/induzido quimicamente , Dor Crônica/genética , Dor Crônica/terapia , Macaca mulatta/metabolismo , Neuralgia/genética , Neuralgia/terapia , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8
4.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373335

RESUMO

In heart failure and atrial fibrillation, a persistent Na+ current (INaL) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. We have recently shown that NaV1.8 contributes to arrhythmogenesis by inducing a INaL. Genome-wide association studies indicate that mutations in the SCN10A gene (NaV1.8) are associated with increased risk for arrhythmias, Brugada syndrome, and sudden cardiac death. However, the mediation of these NaV1.8-related effects, whether through cardiac ganglia or cardiomyocytes, is still a subject of controversial discussion. We used CRISPR/Cas9 technology to generate homozygous atrial SCN10A-KO-iPSC-CMs. Ruptured-patch whole-cell patch-clamp was used to measure the INaL and action potential duration. Ca2+ measurements (Fluo 4-AM) were performed to analyze proarrhythmogenic diastolic SR Ca2+ leak. The INaL was significantly reduced in atrial SCN10A KO CMs as well as after specific pharmacological inhibition of NaV1.8. No effects on atrial APD90 were detected in any groups. Both SCN10A KO and specific blockers of NaV1.8 led to decreased Ca2+ spark frequency and a significant reduction of arrhythmogenic Ca2+ waves. Our experiments demonstrate that NaV1.8 contributes to INaL formation in human atrial CMs and that NaV1.8 inhibition modulates proarrhythmogenic triggers in human atrial CMs and therefore NaV1.8 could be a new target for antiarrhythmic strategies.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Estudo de Associação Genômica Ampla , Antiarrítmicos/farmacologia , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Potenciais de Ação , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220175, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37122207

RESUMO

We illustrate use of induced pluripotent stem cells (iPSCs) as platforms for investigating cardiomyocyte phenotypes in a human family pedigree exemplified by novel heterozygous RYR2-A1855D and SCN10A-Q1362H variants occurring alone and in combination. The proband, a four-month-old boy, presented with polymorphic ventricular tachycardia. Genetic tests revealed double novel heterozygous RYR2-A1855D and SCN10A-Q1362H variants inherited from his father (F) and mother (M), respectively. His father showed ventricular premature beats; his mother was asymptomatic. Molecular biological characterizations demonstrated greater TNNT2 messenger RNA (mRNA) expression in the iPSCs-induced cardiomyocytes (iPS-CMs) than in the iPSCs. Cardiac troponin Ts became progressively organized but cytoplasmic RYR2 and SCN10A aggregations occurred in the iPS-CMs. Proband-specific iPS-CMs showed decreased RYR2 and SCN10A mRNA expression. The RYR2-A1855D variant resulted in premature spontaneous sarcoplasmic reticular Ca2+ transients, Ca2+ oscillations and increased action potential durations. SCN10A-Q1362H did not confer any specific phenotype. However, the combined heterozygous RYR2-A1855D and SCN10A-Q1362H variants in the proband iPS-CMs resulted in accentuated Ca2+ homeostasis disorders, action potential prolongation and susceptibility to early afterdepolarizations at high stimulus frequencies. These findings attribute the clinical phenotype in the proband to effects of the heterozygous RYR2 variant exacerbated by heterozygous SCN10A modification. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Assuntos
Células-Tronco Pluripotentes Induzidas , Taquicardia Ventricular , Humanos , Lactente , Masculino , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Homeostase , Mutação , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
6.
Mol Pain ; 19: 17448069231170072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37002193

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, and its specific pathogenesis is still unclear. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized in a rat model of visceral hypersensitivity induced by neonatal colonic inflammation (NCI). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for melatonin (MT) in sensitization of sodium channels in NCI rats. METHODS: Colorectal distention (CRD) in adult male rats as a measure of visceral hypersensitivity. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch clamp configurations. Western blot and Immunofluorescence were employed to detect changes in expression of Nav1.8 and MT2. RESULTS: The results showed that rats exhibited visceral hypersensitivity after NCI treatment. Intrathecal application of melatonin significantly increased the threshold of CRD in NCI rats with a dose-dependent manner, but has no role in the control group. Whole-cell patch clamp recording showed that melatonin remarkably decreased the excitability and the density of TTX-R sodium channel in DRG neurons from NCI rats. The expression of MT2 receptor at the protein level was markedly lower in NCI rats. 8MP, an agonist of MT2 receptor, enhanced the distention threshold in NCI rats. Application of 8MP reversed the enhanced hypersensitivity of DRG neurons from NCI rats. 8MP also reduced TTX-R sodium current density and modulated dynamics of TTX-R sodium current activation. CONCLUSIONS: These data suggest that sensitization of sodium channels of colon DRG neurons in NCI rats is most likely mediated by MT2 receptor, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.


Assuntos
Síndrome do Intestino Irritável , Melatonina , Dor Visceral , Ratos , Animais , Masculino , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/metabolismo , Ratos Sprague-Dawley , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Dor Visceral/metabolismo , Nociceptividade , Receptor MT2 de Melatonina/metabolismo , Gânglios Espinais/metabolismo , Tetrodotoxina , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
7.
Nature ; 615(7952): 472-481, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859544

RESUMO

The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.


Assuntos
Encéfalo , Meninges , Meningites Bacterianas , Neuroimunomodulação , Humanos , Encéfalo/imunologia , Encéfalo/microbiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Meninges/imunologia , Meninges/microbiologia , Meninges/fisiopatologia , Dor/etiologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Meningites Bacterianas/complicações , Meningites Bacterianas/imunologia , Meningites Bacterianas/microbiologia , Meningites Bacterianas/patologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/patogenicidade , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade , Nociceptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
8.
Life Sci ; 319: 121520, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828129

RESUMO

AIMS: In the present study, NAN-190 [1-(2-methoxyphenyl)-4-[4-(2-phthalimido) butyl] piperazine] was identified as a Nav1.7 blocker. In the meantime, the compound could alleviate the Complete Freund's Adjuvant (CFA)-induced inflammatory pain. To understand the molecular mechanisms of NAN-190 on pain, the effect of NAN-190 on Nav1.7 sodium channels was studied. MAIN METHODS: Inflammatory pain was induced by injection of CFA solution into the plantar side of the left hindpaw. Thermal hyperalgesia and mechanical allodynia were measured. Whole-cell patch clamp methods were used to record sodium channels and other pain-related targets in the cultured recombinant cells and dorsal root ganglion neurons. KEY FINDINGS: Nan-190 was identified as an inhibitor of Nav1.7 sodium channels and animal experiments showed that NAN-190 significantly alleviated CFA-induced inflammatory pain. Mechanism studies demonstrated that NAN-190 was a state-dependent Nav1.7 blocker with IC50 value on the inactivated state ten-fold more potent than that on the rest state. NAN-190 leftward-shifted the fast and slow inactivation curves about 9.07 mV and 38.56 mV, respectively, but had no effects on channel activation. The compound also slowed the recovery from fast and slow inactivation and showed use-dependent properties. Further, the site-directed mutagenesis experiments demonstrated that NAN-190 mainly worked on the open state of Nav1.7 channels by interacting with sites similar as local anesthetics. In DRG neurons, NAN-190 mainly blocks TTX-sensitive currents but is less sensitive to TTX-R sodium currents. SIGNIFICANCE: Taken together, our results indicated that NAN-190 alleviated pain behaviors by blocking sodium channels by interacting with the open state.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.8 , Serotonina , Animais , Serotonina/farmacologia , Canais de Sódio , Dor/tratamento farmacológico , Piperazinas/farmacologia , Gânglios Espinais , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
9.
Mol Pharmacol ; 103(4): 221-229, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635052

RESUMO

Sodium channel inhibitors used as local anesthetics, antiarrhythmics, or antiepileptics typically have the property of use-dependent inhibition, whereby inhibition is enhanced by repetitive channel activation. For targeting pain, Nav1.8 channels are an attractive target because they are prominent in primary pain-sensing neurons, with little or no expression in most other kinds of neurons, and a number of Nav1.8-targeted compounds have been developed. We examined the characteristics of Nav1.8 inhibition by one of the most potent Nav1.8 inhibitors so far described, A-887826, and found that when studied with physiologic resting potentials and physiologic temperatures, inhibition had strong "reverse use dependence", whereby inhibition was relieved by repetitive short depolarizations. This effect was much stronger with A-887826 than with A-803467, another Nav1.8 inhibitor. The use-dependent relief from inhibition was seen in both human Nav1.8 channels studied in a cell line and in native Nav1.8 channels in mouse dorsal root ganglion (DRG) neurons. In native Nav1.8 channels, substantial relief of inhibition occurred during repetitive stimulation by action potential waveforms at 5 Hz, suggesting that the phenomenon is likely important under physiologic conditions. SIGNIFICANCE STATEMENT: Nav1.8 sodium channels are expressed in primary pain-sensing neurons and are a prime current target for new drugs for pain. This work shows that one of the most potent Nav1.8 inhibitors, A-887826, has the unusual property that inhibition is relieved by repeated short depolarizations. This "reverse use dependence" may reduce inhibition during physiological firing and should be selected against in drug development.


Assuntos
Morfolinas , Canal de Sódio Disparado por Voltagem NAV1.8 , Neurônios , Niacinamida , Dor , Animais , Humanos , Camundongos , Gânglios Espinais , Potenciais da Membrana , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Dor/tratamento farmacológico , Dor/metabolismo , Ratos Sprague-Dawley , Ratos
10.
Mol Psychiatry ; 28(1): 76-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224259

RESUMO

Pitt Hopkins Syndrome (PTHS) is a rare syndromic form of autism spectrum disorder (ASD) caused by autosomal dominant mutations in the Transcription Factor 4 (TCF4) gene. TCF4 is a basic helix-loop-helix transcription factor that is critical for neurodevelopment and brain function through its binding to cis-regulatory elements of target genes. One potential therapeutic strategy for PTHS is to identify dysregulated target genes and normalize their dysfunction. Here, we propose that SCN10A is an important target gene of TCF4 that is an applicable therapeutic approach for PTHS. Scn10a encodes the voltage-gated sodium channel Nav1.8 and is consistently shown to be upregulated in PTHS mouse models. In this perspective, we review prior literature and present novel data that suggests inhibiting Nav1.8 in PTHS mouse models is effective at normalizing neuron function, brain circuit activity and behavioral abnormalities and posit this therapeutic approach as a treatment for PTHS.


Assuntos
Deficiência Intelectual , Canal de Sódio Disparado por Voltagem NAV1.8 , Animais , Camundongos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Facies , Hiperventilação/genética , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Fator de Transcrição 4/genética , Canal de Sódio Disparado por Voltagem NAV1.8/química , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
11.
Mol Pain ; 19: 17448069221150138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36550597

RESUMO

Polysorbate 80 is a non-ionic detergent derived from polyethoxylated sorbitan and oleic acid. It is widely used in pharmaceuticals, foods, and cosmetics as an emulsifier. Nav1.7 is a peripheral sodium channel that is highly expressed in sympathetic and sensory neurons, and it plays a critical role in determining the threshold of action potentials (APs). We found that 10 µg/mL polysorbate 80 either abolished APs or increased the threshold of the APs of dorsal root ganglions. We thus investigated whether polysorbate 80 inhibits Nav1.7 sodium current using a whole-cell patch-clamp recording technique. Polysorbate 80 decreased the Nav1.7 current in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 250.4 µg/mL at a holding potential of -120 mV. However, the IC50 was 1.1 µg/mL at a holding potential of -90 mV and was estimated to be 0.9 µg/mL at the resting potentials of neurons, where most channels are inactivated. The activation rate and the voltage dependency of activation of Nav1.7 were not changed by polysorbate 80. However, polysorbate 80 caused hyperpolarizing shifts in the voltage dependency of the steady-state fast inactivation curve. The blocking of Nav1.7 currents by polysorbate 80 was not reversible at a holding potential of -90 mV but was completely reversible at -120 mV, where the channels were mostly in the closed state. Polysorbate 80 also slowed recovery from inactivation and induced robust use-dependent inhibition, indicating that it is likely to bind to and stabilize the inactivated state. Our results indicate that polysorbate 80 inhibits Nav1.7 current in concentration-, state-, and use-dependent manners when used even below commercial concentrations. This suggests that polysorbate 80 may be helpful in pain medicine as an excipient. In addition, in vitro experiments using polysorbate 80 with neurons should be conducted with caution.


Assuntos
Neurônios , Polissorbatos , Polissorbatos/farmacologia , Polissorbatos/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Potenciais da Membrana/fisiologia , Potenciais de Ação , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
12.
Genes (Basel) ; 13(9)2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36140801

RESUMO

The genetic dissection of autism spectrum disorders (ASD) has uncovered the contribution of de novo mutations in many single genes as well as de novo copy number variants. More recent work also suggests a strong contribution from recessively inherited variants, particularly in populations in which consanguineous marriages are common. What is also becoming more apparent is the degree of pleiotropy, whereby mutations in the same gene may have quite different phenotypic and clinical consequences. We performed whole exome sequencing in a group of 115 trios from countries with a high level of consanguineous marriages. In this paper we report genetic and clinical findings on a proband with ASD, who inherited a biallelic truncating pathogenic/likely pathogenic variant in the gene encoding voltage-gated sodium channel X alpha subunit, SCN10A (NM_006514.2:c.937G>T:(p.Gly313*)). The biallelic pathogenic/likely pathogenic variant in this study have different clinical features than heterozygous mutations in the same gene. The study of consanguineous families for autism spectrum disorder is highly valuable.


Assuntos
Transtorno do Espectro Autista , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Transtorno do Espectro Autista/genética , Humanos , Mutação com Perda de Função , Mutação , Paquistão
13.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35131865

RESUMO

The antidiabetic drug metformin has been shown to reduce pain hypersensitivity in preclinical models of chronic pain and in neuropathic pain in humans. Multiple intracellular pathways have been described as metformin targets. Among them, metformin is an activator of the adenosine 5'-monophosphate protein kinase that can in turn modulate the activity of the E3 ubiquitin ligase NEDD4-2 and thus post-translational expression of voltage-gated sodium channels (NaVs). In this study, we found that the bulk of the effect of metformin on Na1.7 is dependent on NEDD4-2. In HEK cells, the expression of NaV1.7 at the membrane fraction, obtained by a biotinylation approach, is only reduced by metformin when cotransfected with NEDD4-2. Similarly, in voltage-clamp recordings, metformin significantly reduced NaV1.7 current density when cotransfected with NEDD4-2. In mouse dorsal root ganglion (DRG) neurons, without changing the biophysical properties of NaV1.7, metformin significantly decreased NaV1.7 current densities, but not in Nedd4L knock-out mice (SNS-Nedd4L-/-). In addition, metformin induced a significant reduction in NEDD4-2 phosphorylation at the serine-328 residue in DRG neurons, an inhibitory phosphorylation site of NEDD4-2. In current-clamp recordings, metformin reduced the number of action potentials elicited by DRG neurons from Nedd4Lfl/fl , with a partial decrease also present in SNS-Nedd4L-/- mice, suggesting that metformin can also change neuronal excitability in an NEDD4-2-independent manner. We suggest that NEDD4-2 is a critical player for the effect of metformin on the excitability of nociceptive neurons; this action may contribute to the relief of neuropathic pain.


Assuntos
Metformina , Canais de Sódio Disparados por Voltagem , Animais , Gânglios Espinais/metabolismo , Hipoglicemiantes/farmacologia , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/metabolismo , Ubiquitina/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
16.
Exp Neurol ; 348: 113927, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34798136

RESUMO

In preclinical rodent models, spinal cord injury (SCI) manifests as gastric vagal afferent dysfunction both acutely and chronically. However, the mechanism that underlies this dysfunction remains unknown. In the current study, we examined the effect of SCI on gastric nodose ganglia (NG) neuron excitability and on voltage-gated Na+ (NaV) channels expression and function in rats after an acute (i.e. 3-days) and chronic (i.e. 3-weeks) period. Rats randomly received either T3-SCI or sham control surgery 3-days or 3-weeks prior to experimentation as well as injections of 3% DiI solution into the stomach to identify gastric NG neurons. Single cell qRT-PCR was performed on acutely dissociated DiI-labeled NG neurons to measure NaV1.7, NaV1.8 and NaV1.9 expression levels. The results indicate that all 3 channel subtypes decreased. Current- and voltage-clamp whole-cell patch-clamp recordings were performed on acutely dissociated DiI-labeled NG neurons to measure active and passive properties of C- and A-fibers as well as the biophysical characteristics of NaV1.8 channels in gastric NG neurons. Acute and chronic SCI did not demonstrate deleterious effects on either passive properties of dissociated gastric NG neurons or biophysical properties of NaV1.8. These findings suggest that although NaV gene expression levels change following SCI, NaV1.8 function is not altered. The disruption throughout the entirety of the vagal afferent neuron has yet to be investigated.


Assuntos
Potenciais de Ação/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Gânglio Nodoso/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Masculino , Neurônios/fisiologia , Ratos , Ratos Wistar
17.
Clin Exp Pharmacol Physiol ; 49(3): 350-359, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34750860

RESUMO

It has been repeatedly proved that Nav1.8 tetrodotoxin (TTX)-resistant sodium currents are expressed in peripheral sensory neurons where they play important role in nociception. There are very few publications that show the presence of TTX-resistant sodium currents in central neurons. The aim of this study was to assess if functional Nav1.8 TTX-resistant sodium currents are expressed in prefrontal cortex pyramidal neurons. All recordings were performed in the presence of TTX in the extracellular solution to block TTX-sensitive sodium currents. The TTX-resistant sodium current recorded in this study was mainly carried by the Nav1.8 sodium channel isoform because the Nav1.9 current was inhibited by the -65 mV holding potential that we used throughout the study. Moreover, the sodium current that we recorded was inhibited by treatment with the selective Nav1.8 inhibitor A-803467. Confocal microscopy experiments confirmed the presence of the Nav1.8 α subunit in prefrontal cortex pyramidal neurons. Activation and steady state inactivation properties of TTX-resistant sodium currents were also assessed in this study and they were similar to activation and inactivation properties of TTX-resistant sodium currents expressed in dorsal root ganglia (DRG) neurons. Moreover, this study showed that carbamazepine (60 µM) inhibited the maximal amplitude of the TTX-resistant sodium current. Furthermore, we found that carbamazepine shifts steady state inactivation curve of TTX-resistant sodium currents toward hyperpolarization. This study suggests that the Nav1.8 TTX-resistant sodium channel is expressed not only in DRG neurons, but also in cortical neurons and may be molecular target for antiepileptic drugs such as carbamazepine.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia , Sódio/metabolismo , Tetrodotoxina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Carbamazepina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Ratos , Ratos Wistar
18.
Can J Physiol Pharmacol ; 100(1): 43-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34425056

RESUMO

A gamma-pyrone derivative, comenic acid, activates the opioid-like receptor-mediated signaling pathway that modulates the NaV1.8 channels in the primary sensory neuron membrane. These channels are responsible for the generation of the nociceptive signal; therefore, gamma-pyrones have great therapeutic potential as analgesics, and this effect deserves a deeper understanding. The novelty of our approach to the design of a medicinal substance is based on a combination of the data obtained from living neurons using very sensitive physiological methods and the results of quantum chemical calculations. This approach allows the correlation of the molecular structure of gamma-pyrones with their ability to evoke a physiological response of the neuron. Comenic acid can bind to two calcium cations. One of them is chelated by the carbonyl and hydroxyl functional groups, while the other forms a salt bond with the carboxylate anion. Calcium-bound gamma-pyrones have fundamentally different electrostatic properties from free gamma-pyrone molecules. These two calcium ions are key elements involved in ligand-receptor binding. It is very likely that ion-ionic interactions between these cations and anionic functional groups of the opioid-like receptor activate the latter. The calculated intercationic distance of 9.5 Å is a structural criterion for effective ligand-receptor binding of calcium-bound gamma-pyrones.


Assuntos
Analgésicos , Desenho de Fármacos/métodos , Desenho de Fármacos/tendências , Pironas , Animais , Cálcio , Ácidos Carboxílicos , Embrião de Galinha , Imunofluorescência , Humanos , Íons , Canal de Sódio Disparado por Voltagem NAV1.8 , Pironas/química , Pironas/farmacologia , Receptores Opioides
19.
Pain ; 163(4): 753-764, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34326297

RESUMO

ABSTRACT: Human NaV1.9 (hNaV1.9), encoded by SCN11A, is preferentially expressed in nociceptors, and its mutations have been linked to pain disorders. NaV1.9 could be a promising drug target for pain relief. However, the modulation of NaV1.9 activity has remained elusive. Here, we identified a new candidate NaV1.9-interacting partner, protein arginine methyltransferase 7 (PRMT7). Whole-cell voltage-clamp recordings showed that coelectroporation of human SCN11A and PRMT7 in dorsal root ganglion (DRG) neurons of Scn11a-/- mice increased the hNaV1.9 current density. By contrast, a PRMT7 inhibitor (DS-437) reduced mNaV1.9 currents in Scn11a+/+ mice. Using the reporter molecule CD4, we observed an increased distribution of hLoop1 on the cell surface of PRMT7-overexpressing HKE293T cells. Furthermore, we found that PRMT7 mainly binds to residues 563 to 566 within the first intracellular loop of hNaV1.9 (hLoop1) and methylates hLoop1 at arginine residue 519. Moreover, overexpression of PRMT7 increased the number of action potential fired in DRG neurons of Scn11a+/+ mice but not Scn11a-/- mice. However, DS-437 significantly inhibited the action potential frequency of DRG neurons and relieved pain hypersensitivity in Scn11aA796G/A796G mice. In summary, our observations revealed that PRMT7 modulates neuronal excitability by regulating NaV1.9 currents, which may provide a potential method for pain treatment.


Assuntos
Gânglios Espinais , Proteína-Arginina N-Metiltransferases , Potenciais de Ação/genética , Animais , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Neurônios/metabolismo , Dor/genética , Dor/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
20.
Sci Rep ; 11(1): 24283, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930944

RESUMO

The inhibition of voltage-gated sodium (NaV) channels in somatosensory neurons presents a promising novel modality for the treatment of pain. However, the precise contribution of these channels to neuronal excitability, the cellular correlate of pain, is unknown; previous studies using genetic knockout models or pharmacologic block of NaV channels have identified general roles for distinct sodium channel isoforms, but have never quantified their exact contributions to these processes. To address this deficit, we have utilized dynamic clamp electrophysiology to precisely tune in varying levels of NaV1.8 and NaV1.9 currents into induced pluripotent stem cell-derived sensory neurons (iPSC-SNs), allowing us to quantify how graded changes in these currents affect different parameters of neuronal excitability and electrogenesis. We quantify and report direct relationships between NaV1.8 current density and action potential half-width, overshoot, and repetitive firing. We additionally quantify the effect varying NaV1.9 current densities have on neuronal membrane potential and rheobase. Furthermore, we examined the simultaneous interplay between NaV1.8 and NaV1.9 on neuronal excitability. Finally, we show that minor biophysical changes in the gating of NaV1.8 can render human iPSC-SNs hyperexcitable, in a first-of-its-kind investigation of a gain-of-function NaV1.8 mutation in a human neuronal background.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Neurônios/metabolismo , Córtex Somatossensorial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Autopsia , Diferenciação Celular , Eletrofisiologia , Humanos , Imuno-Histoquímica , Potenciais da Membrana , Mutação , Canal de Sódio Disparado por Voltagem NAV1.9/fisiologia , Neurociências , Dor , Técnicas de Patch-Clamp , Isoformas de Proteínas , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...