Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.673
Filtrar
1.
Curr Opin Pharmacol ; 75: 102447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471384

RESUMO

Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.


Assuntos
Dor Musculoesquelética , Neuralgia , Canais de Potencial de Receptor Transitório , Humanos , Capsaicina , Neuralgia/tratamento farmacológico , Canais de Cátion TRPV , Canal de Cátion TRPA1
2.
Int Immunopharmacol ; 131: 111916, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522138

RESUMO

BACKGROUND: TRP protein is sensitive to external temperature changes, but its pathogenic mechanism in the upper airway mucosa is still unclear. OBJECTIVE: To investigate the mechanism of TRPV1and TRPA1 in regulating the secretion of inflammatory factors in nasal epithelial cells. METHODS: The expression of TRPV1 and TRPA1 in nasal mucosal epithelial cells was investigated using immunofluorescence assays. Epithelial cells were stimulated with TRPV1 and TRPA1 agonists and antagonists, and changes in Ca2+ release and inflammatory factor secretion in epithelial cells were detected. TSLP secretion stimulated with the calcium chelating agent EGTA was evaluated. The transcription factor NFAT was observed by immunofluorescence staining. RESULTS: TRPV1 and TRPA1 expression was detected in nasal epithelial cells, and Ca2+ influx was increased after stimulation with agonists. After the activation of TRPV1 and TRPA1, the gene expression of TSLP, IL-25, and IL-33 and the protein expression levels of TSLP and IL-33 were increased, and only TSLP could be inhibited by antagonists and siRNAs. After administration of EGTA, the secretion of TSLP was inhibited significantly, and the expression of the transcription factor NFAT in the nucleus was observed after activation of the TRPV1 and TRPA1 proteins in epithelial cells. CONCLUSION: Activation of TRPV1 and TRPA1 on nasal epithelial cells stimulates the generation of TSLP through the Ca2+/NFAT pathway. It also induces upregulation of IL-25 and IL-33 gene expression levels and increased levels of IL-33 protein, leading to the development of airway inflammation.


Assuntos
Interleucina-33 , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Interleucina-33/metabolismo , Ácido Egtázico/metabolismo , Expressão Gênica , Mucosa Nasal/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição/genética
3.
J Med Chem ; 67(5): 3287-3306, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38431835

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.


Assuntos
Doenças Respiratórias , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1 , Aldeído Oxidase/metabolismo , Oxirredutases/metabolismo , Proteínas do Citoesqueleto/metabolismo
4.
Sci Total Environ ; 918: 170668, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38320701

RESUMO

BACKGROUND: Transient receptor potential (TRP) ankyrin 1 (TRPA1) could mediate ozone-induced lung injury. Optic Atrophy 1 (OPA1) is one of the significant mitochondrial fusion proteins. Impaired mitochondrial fusion, resulting in mitochondrial dysfunction and ferroptosis, may drive the onset and progression of lung injury. In this study, we examined whether TRPA1 mediated ozone-induced bronchial epithelial cell and lung injury by activating PI3K/Akt with the involvement of OPA1, leading to ferroptosis. METHODS: Wild-type, TRPA1-knockout (KO) mice (C57BL/6 J background) and ferrostatin-1 (Fer-1)-pretreated mice were exposed to 2.5 ppm ozone for 3 h. Human bronchial epithelial (BEAS-2B) cells were treated with 1 ppm ozone for 3 h in the presence of TRPA1 inhibitor A967079 or TRPA1-knockdown (KD) as well as pharmacological modulators of PI3K/Akt-OPA1-ferroptosis. Transcriptome was used to screen and decipher the differential gene expressions and pathways. Oxidative stress, inflammation and ferroptosis were measured together with mitochondrial morphology, function and dynamics. RESULTS: Acute ozone exposure induced airway inflammation and airway hyperresponsiveness (AHR), reduced mitochondrial fusion, and enhanced ferroptosis in mice. Similarly, acute ozone exposure induced inflammatory responses, altered redox responses, abnormal mitochondrial structure and function, reduced mitochondrial fusion and enhanced ferroptosis in BEAS-2B cells. There were increased mitochondrial fusion, reduced inflammatory responses, decreased redox responses and ferroptosis in ozone-exposed TRPA1-KO mice and Fer-1-pretreated ozone-exposed mice. A967079 and TRPA1-KD enhanced OPA1 and prevented ferroptosis through the PI3K/Akt pathway in BEAS-2B cells. These in vitro results were further confirmed in pharmacological modulator experiments. CONCLUSION: Exposure to ozone induces mitochondrial dysfunction in human bronchial epithelial cells and mouse lungs by activating TRPA1, which results in ferroptosis mediated via a PI3K/Akt/OPA1 axis. This supports a potential role of TRPA1 blockade in preventing the deleterious effects of ozone.


Assuntos
Ferroptose , Lesão Pulmonar , Doenças Mitocondriais , Oximas , Ozônio , Humanos , Camundongos , Animais , Lesão Pulmonar/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ozônio/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Células Epiteliais , Doenças Mitocondriais/metabolismo , Pulmão/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia , Canal de Cátion TRPA1/metabolismo
5.
Medicine (Baltimore) ; 103(5): e37056, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306561

RESUMO

Colorectal cancer is a cancer that arises from the abnormal growth of cells in the colon or rectum. Osteosarcoma (OS) is a common primary bone tumor with high degree of malignancy. The configuration files for colorectal cancer dataset GSE142279 and OS datasets GSE197158 and GSE206448 were downloaded from Gene Expression Omnibus database using the platforms GPL20795, GPL20301, and GPL24676. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Construction and analysis of protein-protein interactions (PPI) network. Functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. A heat map of gene expression was drawn. The Comparative Toxicogenomics Database (CTD) was used to find the diseases most associated with the core genes. TargetScan was used to screen miRNAs regulating DEGs. According to the Gene Ontology (GO) analysis, DEGs are mainly enriched in acetylcholine binding receptor activity involved in Wnt signaling pathway, cell polarity pathway, PI3K-Akt signaling pathway, receptor regulator activity, cytokine-cytokine receptor interaction, transcriptional misregulation in cancer, and inflammation-mediated regulation of tryptophan transport. In the Metascape enrichment analysis, GO enrichment items related to the regulation of Wnt signaling pathway, regulation of muscle system process, and regulation of actin filament-based movement. Eight core genes (CUX1, NES, BCL11B, PAX6, EMX1, MCOLN2, TRPA1, TRPC4) were identified. CTD showed that 4 genes (CUX1, EMX1, TRPA1, BCL11B) were associated with colorectal neoplasms, colorectal tumors, colonic diseases, multiple myeloma, OS, and inflammation. PAX6, TRPA1, BCL11B, MCOLN2, CUX1, and EMX1 are highly expressed in colorectal cancer and OS, and the higher the expression level, the worse the prognosis.


Assuntos
Neoplasias Ósseas , Neoplasias Colorretais , Proteínas de Homeodomínio , Osteossarcoma , Fator de Transcrição PAX6 , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , Neoplasias Colorretais/genética , Inflamação/genética , Proteínas Supressoras de Tumor/genética , Biologia Computacional , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Canal de Cátion TRPA1/genética , Proteínas Repressoras/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339042

RESUMO

We have previously proven the involvement of transient receptor potential ankyrin 1 (TRPA1) in stress adaptation. A lack of TRPA1 affects both urocortin 1 (member of the corticotropin-releasing hormone (CRH) family) content of the Edinger-Westphal nucleus. The noradrenergic locus ceruleus (LC) is also an important player in mood control. We aimed at investigating whether the TRPA1 is expressed in the LC, and to test if the response to chronic variable mild stress (CVMS) is affected by a lack of TRPA1. The TRPA1 expression was examined via RNAscope in situ hybridization. We investigated TRPA1 knockout and wildtype mice using the CVMS model of depression. Tyrosine hydroxylase (TH) and FOSB double immunofluorescence were used to test the functional neuromorphological changes in the LC. No TRPA1 expression was detected in the LC. The TH content was not affected by CVMS exposure. The CVMS-induced FOSB immunosignal did not co-localize with the TH neurons. TRPA1 is not expressed in the LC. A lack of functional TRPA1 receptor neither directly nor indirectly affects the TH content of LC neurons under CVMS.


Assuntos
Locus Cerúleo , Estresse Psicológico , Canal de Cátion TRPA1 , Animais , Camundongos , Hormônio Liberador da Corticotropina/metabolismo , Expressão Gênica , Locus Cerúleo/fisiopatologia , Urocortinas/metabolismo , Canal de Cátion TRPA1/genética , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Biomed Res ; 45(1): 45-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325845

RESUMO

T-type Ca2+ channels and TRPA1 expressed in sensory neurons are involved in pain. We previously demonstrated a functional interaction of these channels under physiological conditions. Here we investigated the possible involvement of these channels in inflammatory pain condition. We also evaluated the relationship of these channels endogenously expressed in RIN-14B, a rat pancreatic islet tumor cell line. In dorsal root ganglion (DRG) neurons innervated inflammatory side, [Ca2+]i increases induced by 15 mM KCl (15K) were enhanced in neurons responded to AITC. This enhancement was not observed in genetically TRPA1-deficient neurons. The T-type and AITC-induced currents were larger in neurons of the inflammatory side than in those of the control one. In DRGs of the inflammatory side, the protein expression of Cav3.2, but not TRPA1, was increased. In RIN-14B, 15K-induced [Ca2+]i increases were decreased by blockers of T-type Ca2+ channel and TRPA1, and by TRPA1-silencing. Immunoprecipitation suggested the coexistent of these channels in sensory neurons and RIN-14B. In mice with inflammation, mechanical hypersensitivity was suppressed by blockers of both channels. These data suggest that the interaction of Cav3.2 with TRPA1 in sensory neurons is enhanced via the augmentation of the activities of both channels under inflammatory conditions, indicating that both channels are therapeutic targets for inflammatory pain.


Assuntos
Cálcio , Isotiocianatos , Nociceptividade , Animais , Camundongos , Ratos , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Dor/genética , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/genética
8.
Biochem Pharmacol ; 222: 116074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395265

RESUMO

Olanzapine, a widely prescribed atypical antipsychotic, poses a great risk to the patient's health by fabricating a plethora of severe metabolic and cardiovascular adverse effects eventually reducing life expectancy and patient compliance. Its heterogenous receptor binding profile has made it difficult to point out a specific cause or treatment for the related side effects. Growing body of evidence suggest that transient receptor potential (TRP) channel subfamily Ankyrin 1 (TRPA1) has pivotal role in pathogenesis of type 2 diabetes and obesity. With this background, we aimed to investigate the role of pharmacological manipulations of TRPA1 channels in antipsychotic (olanzapine)-induced metabolic alterations in female mice using allyl isothiocyanate (AITC) and HC-030031 (TRPA1 agonist and antagonist, respectively). It was found that after 6 weeks of treatment, AITC prevented olanzapine-induced alterations in body weight and adiposity; serum, and liver inflammatory markers; glucose and lipid metabolism; and hypothalamic appetite regulation, nutrient sensing, inflammatory and TRPA1 channel signaling regulating genes. Furthermore, several of these effects were absent in the presence of HC-030031 (TRPA1 antagonist) indicating protective role of TRPA1 agonism in attenuating olanzapine-induced metabolic alterations. Supplementary in-depth studies are required to study TRPA1 channel effect on other aspects of olanzapine-induced metabolic alterations.


Assuntos
Acetanilidas , Antipsicóticos , Diabetes Mellitus Tipo 2 , Purinas , Canais de Potencial de Receptor Transitório , Camundongos , Humanos , Feminino , Animais , Canal de Cátion TRPA1 , Olanzapina , Antipsicóticos/toxicidade , Isotiocianatos/farmacologia , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Fígado/metabolismo
9.
J Ethnopharmacol ; 324: 117741, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224794

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhisou Powder (ZSP), a traditional Chinese medicine (TCM) prescription, has been widely used in the clinic for the treatment of post-infectious cough (PIC). However, the exact mechanism is not clear. AIM OF THE STUDY: The aim of this study was to investigate the ameliorative effect of ZSP on PIC in mice. The possible mechanisms of action were screened based on network pharmacology, and the potential mechanisms were explored through molecular docking and in vivo experimental validation. MATERIALS AND METHODS: Lipopolysaccharide (LPS) (80µg/50 µL) was used to induce PIC in mice, followed by daily exposure to cigarette smoke (CS) for 30 min for 30 d to establish PIC model. The effects of ZSP on PIC mice were observed by detecting the number of coughs and cough latency, peripheral blood and bronchoalveolar lavage fluid (BALF) inflammatory cell counts, enzyme-linked immunosorbent assay (ELISA), and histological analysis. The core targets and key pathways of ZSP on PIC were analyzed using network pharmacology, and TRPA1 and TRPV1 were validated using RT-qPCR and western blotting assays. RESULTS: ZSP effectively reduced the number of coughs and prolonged the cough latency in PIC mice. Airway inflammation was alleviated by reducing the expression levels of the inflammatory mediators TNF-α and IL-1ß. ZSP modulated the expression of Substance P, Calcitonin gene-related peptide (CGRP), and nerve growth factor (NGF) in BALF. Based on the results of network pharmacology, the mechanism of action of ZSP may exert anti-neurogenic airway-derived inflammation by regulating the expression of TRPA1 and TRPV1 through the natural active ingredients α-spinastero, shionone and didehydrotuberostemonine. CONCLUSION: ZSP exerts anti-airway inflammatory effects through inhibition of TRPA1/TRPV1 channels regulating neuropeptides to alleviate cough hypersensitivity and has a favorable therapeutic effect on PIC model mice. It provides theoretical evidence for the clinical application of ZSP.


Assuntos
Lipopolissacarídeos , Canais de Cátion TRPV , Camundongos , Animais , Canal de Cátion TRPA1/metabolismo , Lipopolissacarídeos/toxicidade , Pós/uso terapêutico , Simulação de Acoplamento Molecular , Canais de Cátion TRPV/metabolismo , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Tosse/metabolismo , Inflamação/patologia , Anti-Inflamatórios/efeitos adversos
10.
J Pharmacol Exp Ther ; 388(2): 613-623, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050077

RESUMO

Deployment of the tear gas agent 2-chlorobenzalmalononitrile (CS) for riot control has significantly increased in recent years. The effects of CS have been believed to be transient and benign. However, CS induces severe pain, blepharospasm, lachrymation, airway obstruction, and skin blisters. Frequent injuries and hospitalizations have been reported after exposure. We have identified the sensory neuronal ion channel, transient receptor potential ankyrin 1 (TRPA1), as a key CS target resulting in acute irritation and pain and also as a mediator of neurogenic inflammation. Here, we examined the effects of pharmacologic TRPA1 inhibition on CS-induced cutaneous injury. We modeled CS-induced cutaneous injury by applying 10 µl CS agent [200 mM in dimethyl sulfoxide (DMSO)] to each side of the right ears of 8- to 9-week-old C57BL/6 male mice, whereas left ears were applied with solvent only (DMSO). The TRPA1 inhibitor HC-030031 or A-967079 was administered after CS exposure. CS exposure induced strong tissue swelling, plasma extravasation, and a dramatic increase in inflammatory cytokine levels in the mouse ear skin. We also showed that the effects of CS were not transient but caused persistent skin injuries. These injury parameters were reduced with TRPA1 inhibitor treatment. Further, we tested the pharmacologic activity of advanced TRPA1 antagonists in vitro. Our findings showed that TRPA1 is a crucial mediator of CS-induced nociception and tissue injury and that TRPA1 inhibitors are effective countermeasures that reduce key injury parameters when administered after exposure. Additional therapeutic efficacy studies with advanced TRPA1 antagonists and decontamination strategies are warranted. SIGNIFICANCE STATEMENT: 2-Chlorobenzalmalononitrile (CS) tear gas agent has been deployed as a crowd dispersion chemical agent in recent times. Exposure to CS tear gas agents has been believed to cause transient acute toxic effects that are minimal at most. Here we found that CS tear gas exposure causes both acute and persistent skin injuries and that treatment with transient receptor potential ion channel ankyrin 1 (TRPA1) antagonists ameliorated skin injuries.


Assuntos
Clorobenzenos , Canais de Potencial de Receptor Transitório , o-Clorobenzilidenomalonitrila , Masculino , Camundongos , Animais , Gases Lacrimogênios/farmacologia , Anquirinas , Canal de Cátion TRPA1 , Dimetil Sulfóxido , Camundongos Endogâmicos C57BL , Dor
11.
Biosci Biotechnol Biochem ; 88(2): 196-202, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37994656

RESUMO

The transient receptor potential (TRP) channel family, including TRPA1, is known to be involved in temperature sensing and response. Previous studies have shown that intragastric administration of cinnamaldehyde (a typical TRPA1 agonist) can change body temperature, but the role of TRPA1 in this response is not clear. In this study, we found that intragastric administration of cinnamaldehyde increased in the intrascapular brown adipose tissue (IBAT) and rectal temperatures. However, this effect was not observed in TRPA1 knockout mice, suggesting that TRPA1 is involved in these temperature changes. Intravenous cinnamaldehyde also increased IBAT and rectal temperatures, only in the presence of TRPA1. We also explored the contribution of the vagus nerve to these temperature changes and found that it played a limited role. These results suggest that cinnamaldehyde can affect body temperature through TRPA1 activation, with the vagus nerve having a minor influence.


Assuntos
Temperatura Corporal , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Canal de Cátion TRPA1/genética , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/agonistas , Acroleína/farmacologia
12.
Neurourol Urodyn ; 43(1): 276-288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010891

RESUMO

AIMS: This study aimed to investigate whether pathways involving transient receptor potential ankyrin 1 (TRPA1) channels in the urinary bladder mediate the bladder overactivity elicited by exposure to a low temperature in rats. METHODS: At postnatal week 10, female Sprague-Dawley (SD) rats were intraperitoneally injected with the TRPA1 channel antagonist, HC030031, at room temperature (RT) and subsequently exposed to low temperature (LT). Bladder specimens treated with HC030031 were evaluated for contractions through cumulative addition of the TRPA1 channel agonist trans-cinnamaldehyde. Two days before cystometric investigation, small interfering RNA (siRNA) targeting TRPA1 was transfected into urinary bladders. Then, cystometric investigations were performed on rats subjected to TRPA1 siRNA transfection at both RT and LT. Expression of TRPA1 channels in the urinary bladder was assessed through immunohistochemistry and real-time reverse transcription-polymerase chain reaction. RESULTS: At RT, micturition patterns were unaffected by HC030031 treatment. However, upon exposure to LT, rats treated with HC030031 exhibited a reduction of LT-elicited bladder overactivity, as evidenced by inhibited decreases in voiding interval, micturition volume, and bladder capacity. Additionally, HC030031 inhibited trans-cinnamaldehyde-induced contractions. Immunohistochemical analysis showed the presence of TRPA1 channels in the urinary bladder. Notably, rats with TRPA1 siRNA-transfected bladders could partially inhibit bladder overactivity during LT exposure. CONCLUSIONS: These findings indicate that pathways involving TRPA1 channels expressed in the urinary bladder could mediate the LT-elicited bladder overactivity.


Assuntos
Bexiga Urinária Hiperativa , Bexiga Urinária , Animais , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/metabolismo , Feminino , Ratos Sprague-Dawley , Canal de Cátion TRPA1/metabolismo , Acroleína/administração & dosagem , Acroleína/análogos & derivados
13.
Chemosphere ; 349: 140740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006918

RESUMO

Phthalates are extensively used as plasticizers in diverse consumer care products but have been reported to cause adverse health effects in humans. A commonly used phthalate, di-2-ethylhexylphthalate (DEHP) causes developmental and reproductive toxicities in humans, but the associated molecular mechanisms are not fully understood. Mono-2-ethylhexylphthalate (MEHP), a hydrolytic product of DEHP generated by cellular esterases, is proposed to be the active toxicant. We conducted a screen for sensory irritants among compounds used in consumer care using an assay for human Transient Receptor Potential A1 (hTRPA1). We have identified MEHP as a potent agonist of hTRPA1. MEHP-induced hTRPA1 activation was blocked by the TRPA1 inhibitor A-967079. Patch clamp assays revealed that MEHP induced inward currents in cells expressing hTRPA1. In addition, the N855S mutation in hTRPA1 associated with familial episodic pain syndrome decreased MEHP-induced hTRPA1 activation. In summary, we report that MEHP is a potent agonist of hTRPA1 which generates new possible mechanisms for toxic effects of phthalates in humans.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/toxicidade , Canal de Cátion TRPA1/genética , Ácidos Ftálicos/toxicidade , Hormônios Esteroides Gonadais
14.
Adv Sci (Weinh) ; 11(7): e2306704, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072665

RESUMO

The pathogenesis of Diabetic kidney disease(DKD) involves pathological changes in both tubulo-interstitium and the glomerulus. Surprisingly, tubulo-interstitial fibrosis (TIF), does not develop significantly until the late stage of DKD. Here, it is demonstrated that PR domain-containing 16 (PRDM16) is a key to the low level of TIF in DKD. In the experiments, PRDM16 is upregulated in high glucose-treated renal tubular cells, DKD mouse kidneys, and renal biopsy of human DKD patients via activation of NF-κB signal pathway. High glucose-induced expression of fibrotic proteins in renal tubular cells is suppressed by PRDM16. Mechanistically, PRDM16 bound to the promotor region of Transient receptor potential ankyrin 1 (TRPA1) to transactivate its expression and then suppressed MAPK (P38, ERK1/2) activation and downstream expression of TGF-ß1. Knockout of PRDM16 from kidney proximal tubules in mice blocked TRPA1 expression and enhanced MAPK activation, TGF-ß1 production, TIF development, and DKD progression, whereas knock-in of PRDM16 has opposite effects. In addition, overexpression of PRDM16 or its induction by formononetin ameliorated renal dysfunction and fibrosis in db/db diabetic mice. Finally, the above finding are detected in renal biopsies of DKD patients. Together, these results unveil PRDM16/TRPA1 as the mechanism responsible for the low level of TIF in the early stage of DKD by suppressing and TGF-ß1 expression.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteínas de Ligação a DNA/metabolismo , Fibrose , Glucose , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Canal de Cátion TRPA1
15.
Curr Neuropharmacol ; 22(1): 72-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37694792

RESUMO

BACKGROUND: Musculoskeletal pain is a condition that affects bones, muscles, and tendons and is present in various diseases and/or clinical conditions. This type of pain represents a growing problem with enormous socioeconomic impacts, highlighting the importance of developing treatments tailored to the patient's needs. TRP is a large family of non-selective cation channels involved in pain perception. Vanilloid (TRPV1 and TRPV4), ankyrin (TRPA1), and melastatin (TRPM8) are involved in physiological functions, including nociception, mediation of neuropeptide release, heat/cold sensing, and mechanical sensation. OBJECTIVE: In this context, we provide an updated view of the most studied preclinical models of muscle hyperalgesia and the role of transient receptor potential (TRP) in these models. METHODS: This review describes preclinical models of muscle hyperalgesia induced by intramuscular administration of algogenic substances and/or induction of muscle damage by physical exercise in the masseter, gastrocnemius, and tibial muscles. RESULTS: The participation of TRPV1, TRPA1, and TRPV4 in different models of musculoskeletal pain was evaluated using pharmacological and genetic tools. All the studies detected the antinociceptive effect of respective antagonists or reduced nociception in knockout mice. CONCLUSION: Hence, TRPV1, TRPV4, and TRPA1 blockers could potentially be utilized in the future for inducing analgesia in muscle hypersensitivity pathologies.


Assuntos
Dor Musculoesquelética , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Humanos , Canais de Cátion TRPV , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Dor Musculoesquelética/tratamento farmacológico , Canal de Cátion TRPA1 , Manejo da Dor
16.
J Ethnopharmacol ; 322: 117581, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38103845

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Borneol is a long-established traditional Chinese medicine that has been found to be effective in treating pain and itchy skin. However, whether borneol has a therapeutic effect on chronic itch and its related mechanisms remain unclear. AIM OF THE STUDY: To investigate the antipruritic effect of borneol and its molecular mechanism. MATERIALS AND METHODS: DrugBAN framework and molecular docking were applied to predict the targets of borneol, and the calcium imaging or patch-clamp recording analysis were used to detect the effects of borneol on TRPA1, TRPM8 or TRPV3 channels in HEK293T cells. In addition, various mouse models of acute itch and chronic itch were established to evaluate the antipruritic effects of borneol on C57BL/6J mice. Then, the borneol-induced pruritic relief was further investigated in Trpa1-/-, Trpm8-/-, or Trpa1-/-/Trpm8-/- mice. The effects of borneol on the activation of TRPM8 and the inhibition of TRPA1 were also measured in dorsal root ganglia neurons of wild-type (WT), Trpm8-/- and Trpv1-/- mice. Lastly, a randomized, double-blind study of adult patients was conducted to evaluate the clinical antipruritic effect of borneol. RESULTS: TRPA1, TRPV3 and TRPM8 are the potential targets of borneol according to the results of DrugBAN algorithm and molecular docking. Calcium imaging and patch-clamp recording analysis demonstrated that borneol activates TRPM8 channel-induced cell excitability and inhibits TRPA1 channel-mediated cell excitability in transfected HEK293T cells. Animal behavior analysis showed that borneol can significantly reduce acute and chronic itch behavior in C57BL/6J mice, but this effect was eliminated in Trpa1-/-, Trpm8-/- mice, or at least in Trpa1-/-/Trpm8-/- mice. Borneol elicits TRPM8 channel induced [Ca2+]i responses but inhibits AITC or SADBE-induced activation of TRPA1 channels in dorsal root ganglia neurons of WT and Trpv1-/- mice, respectively. Furthermore, the clinical results indicated that borneol could reduce itching symptoms in patients and its efficacy is similar to that of menthol. CONCLUSION: Borneol has therapeutic effects on multiple pruritus models in mice and patients with chronic itch, and the mechanism may be through inhibiting TRPA1 and activating TRPM8.


Assuntos
Canfanos , Proteínas de Membrana , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Humanos , Camundongos , Animais , Canais de Potencial de Receptor Transitório/genética , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Cálcio/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Canal de Cátion TRPA1/genética , Prurido/tratamento farmacológico , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/genética , Gânglios Espinais
17.
Environ Health Perspect ; 131(11): 117003, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909725

RESUMO

BACKGROUND: Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE: In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS: A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS: A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100µM. None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (Ntotal=144). DISCUSSION: Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.


Assuntos
Poluentes Ambientais , Transtornos de Enxaqueca , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Canal de Cátion TRPA1/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Xenobióticos , Canais de Potencial de Receptor Transitório/metabolismo , Transtornos de Enxaqueca/metabolismo , Dor , Poluentes Ambientais/toxicidade
18.
Nihon Yakurigaku Zasshi ; 158(6): 475-477, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37914327

RESUMO

The unscheduled proliferation of cancer cells outside their natural niches subjects the cells to multiple insults, such as metabolic aberrations, detachment from the extracellular matrix (ECM), hypoxia, and immune cell attacks. Oxidative stress is a hallmark of cancer because these insults can all lead to the accumulation of reactive oxygen species (ROS). However, it remained largely elusive how cancer cells are able to adapt to harsh oxidative environments. Here, we provide evidence that cancer cells co-opt the neuronal ROS-sensing channel TRPA1 to tolerate highly oxidative environments. While TRPA1 is usually expressed at sensory neurons, we found that the channel is also overexpressed in various types of human cancer. TRPA1 does not affect canonical ROS-neutralizing programs but senses ROS and upregulates Ca2+-dependent anti-apoptotic programs that promotes oxidative-stress tolerance. These findings offer a significant advance in our understanding of adaptation mechanisms to oxidative stress, which represents a substantial hurdle that impedes tumor initiation and progression.


Assuntos
Neoplasias , Estresse Oxidativo , Humanos , Canal de Cátion TRPA1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Neoplasias/metabolismo , Células Receptoras Sensoriais/metabolismo
19.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989590

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that is activated by electrophilic irritants, oxidative stress, cold temperature, and GPCR signaling. TRPA1 expression has been primarily identified in subsets of nociceptive sensory afferents and is considered a target for future analgesics. Nevertheless, TRPA1 has been implicated in other cell types including keratinocytes, epithelium, enterochromaffin cells, endothelium, astrocytes, and CNS neurons. Here, we developed a knock-in mouse that expresses the recombinase FlpO in TRPA1-expressing cells. We crossed the TRPA1Flp mouse with the R26ai65f mouse that expresses tdTomato in a Flp-sensitive manner. We found tdTomato expression correlated well with TRPA1 mRNA expression and sensitivity to TRPA1 agonists in subsets of TRPV1 (transient receptor potential vanilloid receptor type 1)-expressing neurons in the vagal ganglia and dorsal root ganglia (DRGs), although tdTomato expression efficiency was limited in DRG. We observed tdTomato-expressing afferent fibers centrally (in the medulla and spinal cord) and peripherally in the esophagus, gut, airways, bladder, and skin. Furthermore, chemogenetic activation of TRPA1-expressing nerves in the paw evoked flinching behavior. tdTomato expression was very limited in other cell types. We found tdTomato in subepithelial cells in the gut mucosa but not in enterochromaffin cells. tdTomato was also observed in supporting cells within the cochlea, but not in hair cells. Lastly, tdTomato was occasionally observed in neurons in the somatomotor cortex and the piriform area, but not in astrocytes or vascular endothelium. Thus, this novel mouse strain may be useful for mapping and manipulating TRPA1-expressing cells and deciphering the role of TRPA1 in physiological and pathophysiological processes.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Camundongos , Gânglios Espinais/metabolismo , Expressão Gênica , Células Receptoras Sensoriais/metabolismo , Pele , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
20.
Cell Rep ; 42(11): 113401, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37943660

RESUMO

TRPA1 is pivotal in cold hypersensitivity, but its regulatory mechanisms in inflammatory cold hyperalgesia remain poorly understood. We show here that the upregulation of SUMO1-conjugated protein levels in a complete Freund's adjuvant (CFA)-induced inflammatory pain model enhances TRPA1 mRNA stability, ultimately leading to increased expression levels. We further demonstrate that hnRNPA1 binds to TRPA1 mRNA, and its SUMOylation, upregulated in CFA-induced inflammatory pain, contributes to stabilizing TRPA1 mRNA by accumulating hnRNPA1 in the cytoplasm. Moreover, we find that wild-type hnRNPA1 viral infection in dorsal root ganglia neurons, and not infection with the SUMOylation-deficient hnRNPA1 mutant, can rescue the reduced ability of hnRNPA1-knockdown mice to develop inflammatory cold pain hypersensitivity. These results suggest that hnRNPA1 is a regulator of TRPA1 mRNA stability, the capability of which is enhanced upon SUMO1 conjugation at lysine 3 in response to peripheral inflammation, and the increased expression of TRPA1 in turn underlies the development of chronic inflammatory cold pain hypersensitivity.


Assuntos
Dor Crônica , Sumoilação , Animais , Camundongos , Dor Crônica/metabolismo , Adjuvante de Freund , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...